
usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Exploring Parallel and
Distributed Programming

Models with River

Greg Benson and Alex Fedosov
October 25, 2006

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

River

‣ Parallel and distributed programming system

‣ Python-based

‣ River core API

‣ River extensions provide different models

‣ Reliable virtual resources

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Why Parallel?

‣ Apps must get faster

‣ Multi-core processors

‣ Clusters

‣ Underutilized resources

‣ The tipping point

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Why River?

‣ Tackle hard usability issues

‣ Simple programming and deployment

‣ Drag and drop computations

‣ Reliable execution

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Low Hanging Fruit

Developer

How do I code that

"easy" parallelism?

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Need a Simple Platform

Developer

Ahhh, there it is!

 River

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Higher Hanging Fruit

Developer

 River

River

Extensions

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

The 30 Minute Challenge

‣ You have Linux, Mac, and Windows boxes

‣ In 30 minutes can you do the following?

‣ Write a program that will distribute an
array to remote machines

‣ Compute partial sums on each machine in
parallel

‣ Retrieve and add partial sums

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Array Sum in Python

$ cat array_sequential.py
a = range(0,1000)
s = sum(a)
print s

$ python array_sequential.py
499500

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Array Sum in River

$ cat array_river.py
machines = connect(4)
chunks = [range(i, i+250) for i in range(0,1000,250)]
results = forkjoin(machines, sum, chunks)
s = sum(results)
print s

$ river array_river.py
discovered 4 VMs
499500

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Really, is that it?

‣ The small fine print

‣ Python is required (not for long)

‣ Firewall must not block River port

‣ Need to start River on each machine

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Drag and Drop Computing

‣ Parallel computation is notoriously fragile

‣Want to easily manage a computation:

‣ Suspend and migrate

‣ Add or remove machines

‣ River provides a completely virtual run-time
environment.

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Reliable Execution

‣ Most parallel and distributed languages
ignore fault tolerance

‣ The River virtual environment allows for
seamless redundancy

‣ Replicated processes

‣ Application independent checkpoints

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Remainder of this Talk

‣ Exploring programming models in River

‣ Some River concepts

‣ Consider two models:

‣ Trickle

‣ rMPI

‣ How to implement models in River

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

River Concepts

‣ River Virtual Machine (RVM)

‣ Python + River Core

‣ Virtual Resource (VR)

‣ A container of data, code, a stack, and a
thread

‣ VRs run on top of RVMs

 RVM

 VR

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Virtual Resources

‣ A VR is a Python class

‣ Each VR has a unique id (UUID)

‣ Each VR has a message queue

‣ VRs can send messages to each other

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Trickle: Extended Python

‣ Some Python features:

‣ Object oriented, dynamically typed

‣ Rich module library (sockets, xml, etc.)

‣ Trickle

‣ Extends Python and River to enable
remote access to multiple Python VMs

‣ Push and use objects, code, data on RVMs

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Trickle Execution

 RVM (Initiator)

 VR

 RVM

 VR

 RVM

 VR

 RVM

 VR

inject/use

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Trickle Programming

‣ Connecting to remote VRs

‣ vrlist = connect(count)

‣ Injecting code/data

‣ inject(vr, element)

‣ Invocation

‣ vr.foo(args)

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Parallel Invocation

‣ Fork/join semantics

‣ Asynchronously fork code on remote VRs

‣ Join synchronizes with forked code

def foo(x,y):
 return x + y

vrlist = connect(2)
for r in vrlist: inject(r, foo)
results = forkjoin(vrlist, foo, [[1,2],[3,4]])

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Alternate Interfaces

‣ forkall() and joinall()

‣ fork() and join()

hlist = forkall(vrlist, foo)
results = joinall(hlist)

hlist = [fork(vr, foo) for vr in vrlist]
results = [join(h) for h in hlist]

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Example: Integration

f(x)

xba

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Simpson’s Rule
def simpsonsrule(func, a, b, TOL=1e-10):
 h = b - a
 old2 = old = h * (func(a) + func(b)) / 2.0
 count = 0
 while True:
 h = h / 2.0
 x, sum = a + h, 0
 while x < b:
 sum = sum + func(x)
 x = x + 2 * h
 new = old / 2.0 + h * sum
 new2 = (4 * new - old) / 3.0
 if abs(new2 - old2) < TOL * (1 + abs(old2)): return new
 old = new
 old2 = new2
 count = count + 1

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Trickle Version
import math

def simpsonsrule(func, a, b, TOL=1e-10):
 ...
f = math.sin

vrlist = connect(4)
for r in vrlist:
 inject(r, simpsonsrule)
chunks = [(f,0,10),(f,10,20),(f,20,30),(f,30,40)]
results = forkjoin(vrlist, simpsonsrule, chunks)

print sum(results)
print simpsonsrule(f,0,40)

$ trickle simpsonsrule.py
trickle: discovered 4 VMs:
1.66693806166
1.66693806166

Output:

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Heterogeneous Machines
import math

def simpsonsrule(func, a, b, TOL=1e-10):
 ...

f = math.sin
work = [(f,i,i+2) for i in range(0,40,2)]
results = []; hlist = []

vrlist = connect(4)
for r in vrlist: inject(r, simpsonsrule)

while True:
 while len(work) > 0 and len(vrlist) > 0:
 w = work.pop(); v = vrlist.pop()
 hlist += [fork(v, simpsonsrule, w[0], w[1], w[2])]

 if len(hlist) > 0:
 h, rv = join(hlist)
 results.append(rv); vrlist.append(h.vr)
 else:
 break

print sum(results)
print simpsonsrule(f,0,40)

$ trickle simpsonsrule.py
trickle: discovered 4 VMs:
1.66693806166
1.66693806166

Output:

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Other Cool Trick(le)s

‣ Injection

‣ Functions, Classes, Data

‣ Can pass remote object references to VRs

‣ Local directory export

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

River MPI (rMPI)

‣ MPI (Message Passing Interface)

‣ Almost complete MPI 1.2 implementation

‣ Built on top of River Core

‣ Only 650 lines of Python!

‣ Easy to modify

‣ E.g., optimize collective communication

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

rMPI Example
from mpi import *

class Hello(mpi):
 def main(self):
 self.MPI_Init()
 rank = mpi_Rank()
 np = mpi_Size()
 self.MPI_Comm_rank(MPI_COMM_WORLD, rank)
 self.MPI_Comm_size(MPI_COMM_WORLD, np)
 status = MPI_Status()

 recvbuf = [0.0]
 sendbuf = [rank.value * 100.0]

 print 'Hello from rank %d' % (rank.value)

 if rank.value == 0:
 for i in xrange(1, np.value):
 self.MPI_Recv(recvbuf, 1, MPI_FLOAT, i, 0, MPI_COMM_WORLD, status)
 print 'From rank %d: %f' % (i, recvbuf[0])
 else:
 print 'Rank %d sending %f' % (rank.value, sendbuf[0])
 self.MPI_Send(sendbuf, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD)

 self.MPI_Finalize()

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

River Core API

‣ More powerful than Trickle API

‣ Deployment becomes programmer’s
responsibility

‣ Communication via message passing

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Core Execution Model

 RVM (Initiator)

 VR

 RVM

 VR

deploy

vr_init

main

deploy

deploy

main

 RVM

 VR

main

 RVM

 VR

main

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Super Flexible Packets

‣ SFP is a set of (attribute : value) pairs

‣ Provides a powerful mechanism for
communication

‣ Any type can be a value (ints, strings, lists,
objects)

‣ Messages can be received from the queue by
matching on any attribute

‣ No need to define packet structure!

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

SFP in a Nutshell
Send simply by listing attribute-value pairs as arguments:

send(dest=someVR, tag='inputlist', input=[1,2,3,4,5])

Receive by specifying which attributes you want to match:
(multiple attributes can be specified)

recv(src=otherVR) or...
recv(tag='inputlist') or even...
recv(src=someVR, tag='inputlist')

and of course, just simply

recv()

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

SFP Matching
Message Queue

src : ...
dest : ...

attr1 : value1
attr2 : value2

Super Flexible Packet

src : ...
dest : ...

name : value

Super Flexible Packet

src : ...
dest : ...

tag : result

Super Flexible Packet

src : ...
dest : ...

message : hello

Super Flexible Packet

recv(tag = 'result')

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Core API Example
from vr import VirtualResource

class Hello (VirtualResource):
 def vr_init(self):
 discovered = self.discover()
 allocated = self.allocate(discovered)
 deployed = self.deploy(allocated, module=self.__module__)
 self.vrlist = [vm['uuid'] for vm in deployed]

 return True

 def main(self):
 if self.parent is None:
 for vr in self.vrlist:
 msg = self.recv()
 print '%s says hello' % msg.myname
 else:
 self.send(dest=self.parent, myname=gethostname()

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

The River Implementation

‣ Run-time support for the River interface

‣ Main elements

‣ Socket communication (TCP/UDP)

‣ Connection pool/cache

‣ SFP queue

‣ Communication thread

‣ Control VR

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Work in Progress

‣ A River native distributed file system

‣ River state capture for checkpointing and
migration

‣ RJAX - A browser-based River GUI

‣ A River debugger

‣ RVM status monitoring

usf CSCS
UNIVERSITY of SAN FRANCISCO
department of computer science

Contributors

‣ Current students

‣ Brian Hardie, Tony Ngo, Jennifer Reyes,
Joseph Gutierrez

‣ Past students

‣ Jean Bovet, Yiting Wu, Sorasak
Konglertviboon, Gao Lin, Chris Fraschetti,
Deniz Efendioglu

