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River

‣ Parallel and distributed programming system

‣ Python-based

‣ River core API

‣ River extensions provide different models

‣ Reliable virtual resources
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Why Parallel?

‣ Apps must get faster

‣ Multi-core processors

‣ Clusters

‣ Underutilized resources

‣ The tipping point
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Why River?

‣ Tackle hard usability issues

‣ Simple programming and deployment

‣ Drag and drop computations

‣ Reliable execution
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Low Hanging Fruit

Developer

How do I code that 

"easy" parallelism?



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

Need a Simple Platform

Developer

Ahhh, there it is!

 River
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Higher Hanging Fruit

Developer

 River

River

Extensions
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The 30 Minute Challenge

‣ You have Linux, Mac, and Windows boxes

‣ In 30 minutes can you do the following?

‣  Write a program that will distribute an 
array to remote machines

‣ Compute partial sums on each machine in 
parallel

‣ Retrieve and add partial sums
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Array Sum in Python

$ cat array_sequential.py 
a = range(0,1000)
s = sum(a)
print s

$ python array_sequential.py 
499500
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Array Sum in River

$ cat array_river.py
machines = connect(4)
chunks = [range(i, i+250) for i in range(0,1000,250)]
results = forkjoin(machines, sum, chunks)
s = sum(results)
print s

$ river array_river.py 
discovered 4 VMs 
499500 
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Really, is that it?

‣ The small fine print

‣ Python is required (not for long)

‣ Firewall must not block River port

‣ Need to start River on each machine
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Drag and Drop Computing

‣ Parallel computation is notoriously fragile

‣Want to easily manage a computation:

‣ Suspend and migrate

‣ Add or remove machines

‣ River provides a completely virtual run-time 
environment.
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Reliable Execution

‣ Most parallel and distributed languages 
ignore fault tolerance

‣ The River virtual environment allows for 
seamless redundancy

‣ Replicated processes

‣ Application independent checkpoints
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Remainder of this Talk

‣ Exploring programming models in River

‣ Some River concepts

‣ Consider two models:

‣ Trickle

‣ rMPI

‣ How to implement models in River
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River Concepts

‣ River Virtual Machine (RVM)

‣ Python + River Core 

‣ Virtual Resource (VR)

‣ A container of data, code, a stack, and a 
thread

‣ VRs run on top of RVMs

  RVM

 

  VR
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Virtual Resources

‣ A VR is a Python class

‣ Each VR has a unique id (UUID)

‣ Each VR has a message queue

‣ VRs can send messages to each other
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Trickle: Extended Python

‣ Some Python features:

‣ Object oriented, dynamically typed

‣ Rich module library (sockets, xml, etc.)

‣ Trickle

‣ Extends Python and River to enable 
remote access to multiple Python VMs

‣ Push and use objects, code, data on RVMs
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Trickle Execution

  RVM (Initiator)

 
  VR

  RVM

 
  VR

  RVM

 
  VR

  RVM

 
  VR

inject/use
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Trickle Programming

‣ Connecting to remote VRs

‣ vrlist = connect(count)

‣ Injecting code/data

‣ inject(vr, element)

‣ Invocation

‣ vr.foo(args)
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Parallel Invocation

‣ Fork/join semantics

‣ Asynchronously fork code on remote VRs

‣ Join synchronizes with forked code

def foo(x,y):
    return x + y

vrlist = connect(2)
for r in vrlist: inject(r, foo)
results = forkjoin(vrlist, foo, [[1,2],[3,4]])
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Alternate Interfaces

‣ forkall() and joinall()

‣ fork() and join()

hlist = forkall(vrlist, foo)
results = joinall(hlist)

hlist = [fork(vr, foo) for vr in vrlist]
results = [join(h) for h in hlist]
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Example: Integration

f(x)

xba
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Simpson’s Rule
def simpsonsrule( func, a, b, TOL=1e-10 ):
    h = b - a
 old2 = old = h * ( func( a ) + func( b ) ) / 2.0
 count = 0
 while True:
  h = h / 2.0
  x, sum = a + h, 0
  while x < b:
   sum = sum + func( x )
   x = x + 2 * h
  new = old / 2.0 + h * sum
  new2 = ( 4 * new - old ) / 3.0
  if abs( new2 - old2 ) < TOL * ( 1 + abs( old2 ) ): return new
        old = new
        old2 = new2
  count = count + 1
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Trickle Version
import math

def simpsonsrule( func, a, b, TOL=1e-10 ):
    ...
f = math.sin

vrlist = connect(4)
for r in vrlist:
 inject(r, simpsonsrule)
chunks = [(f,0,10),(f,10,20),(f,20,30),(f,30,40)]
results = forkjoin(vrlist, simpsonsrule, chunks)

print sum(results)
print simpsonsrule(f,0,40)

$ trickle simpsonsrule.py
trickle: discovered 4 VMs: 
1.66693806166 
1.66693806166 

Output:
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Heterogeneous Machines
import math

def simpsonsrule( func, a, b, TOL=1e-10 ):
    ...

f = math.sin
work = [(f,i,i+2) for i in range(0,40,2)]
results = []; hlist = []

vrlist = connect(4)
for r in vrlist: inject(r, simpsonsrule)

while True:
    while len(work) > 0 and len(vrlist) > 0:
        w = work.pop(); v = vrlist.pop()
        hlist += [fork(v, simpsonsrule, w[0], w[1], w[2])]

    if len(hlist) > 0:
        h, rv = join(hlist)
        results.append(rv); vrlist.append(h.vr)
    else:
     break

print sum(results)
print simpsonsrule(f,0,40)

$ trickle simpsonsrule.py
trickle: discovered 4 VMs: 
1.66693806166 
1.66693806166 

Output:
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Other Cool Trick(le)s

‣ Injection

‣ Functions, Classes, Data

‣ Can pass remote object references to VRs

‣ Local directory export
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River MPI (rMPI)

‣ MPI (Message Passing Interface)

‣ Almost complete MPI 1.2 implementation

‣ Built on top of River Core

‣ Only 650 lines of Python!

‣ Easy to modify

‣ E.g., optimize collective communication



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

rMPI Example
from mpi import *

class Hello( mpi ):
    def main( self ):        
        self.MPI_Init()
        rank = mpi_Rank()
        np   = mpi_Size()
        self.MPI_Comm_rank( MPI_COMM_WORLD, rank )
        self.MPI_Comm_size( MPI_COMM_WORLD, np )
        status = MPI_Status()

        recvbuf = [ 0.0 ]
        sendbuf = [ rank.value * 100.0 ]

        print 'Hello from rank %d' % ( rank.value )

        if rank.value == 0:
            for i in xrange( 1, np.value ):
                self.MPI_Recv( recvbuf, 1, MPI_FLOAT, i, 0, MPI_COMM_WORLD, status )
                print 'From rank %d: %f' % ( i, recvbuf[0] )
        else:
            print 'Rank %d sending %f' % ( rank.value, sendbuf[0] )
  self.MPI_Send( sendbuf, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD )

    self.MPI_Finalize()
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River Core API

‣ More powerful than Trickle API

‣ Deployment becomes programmer’s 
responsibility

‣ Communication via message passing
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Core Execution Model

  RVM (Initiator)

 
  VR

  RVM

 
  VR

deploy

vr_init

main

deploy

deploy

main

  RVM

 
  VR

main

  RVM

 
  VR

main
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Super Flexible Packets

‣ SFP is a set of (attribute : value) pairs

‣ Provides a powerful mechanism for 
communication

‣ Any type can be a value (ints, strings, lists, 
objects)

‣ Messages can be received from the queue by 
matching on any attribute

‣ No need to define packet structure!
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SFP in a Nutshell
Send simply by listing attribute-value pairs as arguments:

send(dest=someVR, tag='inputlist', input=[1,2,3,4,5])

Receive by specifying which attributes you want to match:
(multiple attributes can be specified)

recv(src=otherVR)        or...
recv(tag='inputlist')    or even...
recv(src=someVR, tag='inputlist')

and of course, just simply

recv()
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SFP Matching
Message Queue

src  :  ...
dest : ...

attr1 : value1
attr2 : value2

Super Flexible Packet

src  :  ...
dest : ...

name : value

Super Flexible Packet

src  :  ...
dest : ...

tag : result

Super Flexible Packet

src  :  ...
dest : ...

message : hello

Super Flexible Packet

recv(tag = 'result')
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Core API Example
from vr import VirtualResource

class Hello (VirtualResource):
  def vr_init(self):
    discovered = self.discover()
    allocated = self.allocate(discovered)
    deployed = self.deploy(allocated, module=self.__module__)
    self.vrlist = [vm['uuid'] for vm in deployed]

    return True

  def main(self):
    if self.parent is None:
      for vr in self.vrlist:
        msg = self.recv()
        print '%s says hello' % msg.myname
    else:
      self.send(dest=self.parent, myname=gethostname()
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The River Implementation

‣ Run-time support for the River interface

‣ Main elements

‣ Socket communication (TCP/UDP)

‣ Connection pool/cache

‣ SFP queue

‣ Communication thread

‣ Control VR
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Work in Progress

‣ A River native distributed file system

‣ River state capture for checkpointing and 
migration

‣ RJAX - A browser-based River GUI

‣ A River debugger

‣ RVM status monitoring
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