Exploring Parallel and
Distributed Programming
Models with River

Greg Benson and Alex Fedosov
October 25,2006

usf RVR

department of computer science

River

» Parallel and distributed programming system

» Python-based

4
4
4

usf

River core AP

River extensions provide different models

Reliable virtual resources

department of computer science

Why Parallel?

» Apps must get faster

» Multi-core processors
» Clusters

» Underutilized resources

» The tipping point

usf

department of computer science

Why River?

» Tackle hard usabllity issues
» Simple programming and deployment
» Drag and drop computations

» Reliable execution

usf

department of computer science

Low Hanging Frurt

How do | code that
"easy" parallelism?
é O O

Developer

Need a Simple Platform

Ahhh, there it is!

Developer

River

Higher Hanging Frurt

© ® -

é ~

Developer

River
Extensions

he 30 Minute Challenge

» You have Linux, Mac, and Windows boxes
» In 30 minutes can you do the following?

» Write a program that will distribute an
array to remote machines

» Compute partial sums on each machine In
parallel

» Retrieve and add partial sums

usf RVR

department of computer science

usf

Array Sum in Python

$ cat array_sequential.py
a = range(0,1000)

s = sum(a)

print s

$ python array_sequential.py
499500

department of computer science

Array Sum in River

$ cat array_river.py

machines = connect(4)

chunks = [range(i, 1+250) for 1 in range(0,1000,250)]
results = forkjoin(machines, sum, chunks)

s = sum(results)

print s

$ river array_river.py
discovered 4 VMs
499500

usf

department of computer science

Really, Is that it/

» The small fine print

4
4
4

usf

Python Is required (not for long)

-irewall must not block River port

Nleed to start River on each machine

department of computer science

Drag and Drop Computing

» Parallel computation is notoriously fragile
» Want to easily manage a computation:

» Suspend and migrate

» Add or remove machines

» River provides a completely virtual run-time
environment.

usf RVR

department of computer science

Reliable

—xecution

» Most parallel and distributed languages
ignore fault tolerance

» The River virtual environment allows for
seamless redundancy

» Replicated processes

» Application independent checkpoints

usf

department of computer science

RVR

Remainder of this Talk

» Exploring programming models in River
» Some River concepts

» Consider two models:
» Trickle
» rMPl

» How to implement models in River

usf

department of computer science

River Concepts

RVM

» Python + River Core
» Virtual Resource (VR)

b RiverVirtual Machine (RVM) R 3 j

S—
» A container of data, code, a stack, and a
thread

» VRs run on top of RVMs

usf

department of computer science

Virtual Resources

» AVR s a Python class
» Each VR has a unique 1d (UUID)
» Each VR has a message queue

» VRs can send messages to each other

usf

department of computer science

rickle: Extended Python

» Some Python features:

» Object oriented, dynamically typed

» Rich module library (sockets, xml, etc.)
» Trickle

» Extends Python and River to enable
remote access to multiple Python VMs

» Push and use objects, code, data on RVMs

usf RVR

department of computer science

rickle Execution

§) \ RVM
S—

usf

department of computer science

’ . inject/use
RVM (Initiator) / r
—
VR
>

rickle Programming

usf

department

» Connecting to remote VRs

» vrlist = connect(count)
» Injecting code/data

» inject(vr, element)
» Invocation

» vr.foo(args)

of computer science

Parallel Invocation

» Fork/join semantics

» Asynchronously fork code on remote VRs
» Join synchronizes with forked code

def foo(x,y):
return x + vy

vrlist = connect(2)
for r in vrlist: inject(r, foo)
results = forkjoin(vrlist, foo, [[1,2],[3,4]11])

usf RVR

department of computer science

Alternate Interfaces

» forkall() and joinall()

hlist = forkall(vrlist, foo)
results = joinall(Chlist)

» fork() and join()

hlist = [fork(vr, foo) for vr in vrlist]
results = [joinCh) for h in hlist]

usf

department of computer science

-xample: Integration

£(x)

SImpson’s Rule

def simpsonsrule(func, a, b, TOL=1e-10):

h=b-a
old2 = old = h * (funcCa) + funcCb)) / 2.0
count = 0
while True:
h=h/2.0

X, sum =a + h, 0
while x < b:
sum = sum + func(x)
=X+ 2 *h
new = old / 2.0 + h * sum
new2 = (4 * new - old) / 3.0
if abs(new2 - old2) < TOL * (1 + abs(C old2)): return new
old = new
old2 = newZ2
count = count + 1

X

usf RVR

department of computer science

rickle Version

import math

Output:

def simpsonsrule(func, a, b, TOL=1e-10):

ce $ trickle simpsonsrule.py
f = math.sin trickle: discovered 4 WMs:
1.66693806166
1.66693806166

vrlist = connect(4)
for r in vrlist:

inject(r, simpsonsrule)
chunks = [(f,0,10),(f,10,20),(f,20,30),(f,30,40)]
results = forkjoin(vrlist, simpsonsrule, chunks)

print sum(results)
print simpsonsrule(f,0,40)

usf

department of computer science

usf

Heterogeneous Machines

import math

def ?TTpsonsrule(func, a, b, TOL=1e-10): (:)LItF)LIt:

f = math.sin ' .
work = [(f,i,1+2) for i in range(9,40,2)] $ trickle simpsonsrule.py
results = []; hlist = [] trickle: discovered 4 VMs:
’ 1.66693806166

vrlist = connect(4) 1.66693806166

for r in vrlist: inject(r, simpsonsrule)

while True:
while len(work) > @ and len(vrlist) > 0:
w = work.pop(); v = vrlist.pop()
hlist += [fork(v, simpsonsrule, w[0@], w[1l], w[2])]

if len(hlist) > 0:

h, rv = join(Chlist)

results.append(rv); vrlist.appendCh.vr)
else:

break

print sum(results)
print simpsonsrule(f,0,40)

department of computer science

usf

department

Other Cool Trick(le)s

» Injection
» Functions, Classes, Data
» Can pass remote object references to VRs

» Local directory export

of computer science

River MP| (rMPI)

» MPI (Message Passing Interface)

» Almost complete MPI |.2 implementation
» Built on top of River Core

» Only 650 lines of Python!

» Easy to modify

» E.g., optimize collective communication

usf RVR

department of computer science

™MPl Example

from mpi import *

class Hello(mpi):
def main(self):

self .MPI_Init()
rank = mpi_Rank()
np mpi_Size()
self .MPI_Comm_rank(MPI_COMM_WORLD, rank)
self.MPI_Comm_size(MPI_COMM_WORLD, np)
status = MPI_Status()

[0.0]
[rank.value * 100.0]

recvbuf
sendbuf

print 'Hello from rank %d' % (rank.value)

if rank.value ==
for i in xrange(1, np.value):
self.MPI_Recv(recvbuf, 1, MPI_FLOAT, i, @, MPI_COMM_WORLD, status)

print 'From rank %d: %f' % (C i, recvbuf[0Q])
else:

print 'Rank %d sending %f' % (rank.value, sendbuf[@])
self .MPI_Send(sendbuf, 1, MPI_FLOAT, @, @, MPI_COMM_WORLD)

self .MPI_Finalize()

usf RVR

department of computer science

usf

department

River Core API

» More powerful than Trickle AP

» Deployment becomes programmer’s
responsibility

» Communication via message passing

of computer science

Core Execution Model

RVM (Initiator)

VR

~ N
\

deploy

deploy

vr_init

deploy

E

usf

department of computer science

RVM

VR

N

E

Super Flexible Packets

D
» SFP is a set of (attribute : value) pairs

» Provides a powerful mechanism for
communication

» Any type can be a value (ints, strings, lists,
objects)

» Messages can be received from the queue by
matching on any attribute

» No need to define packet structure!

usf RVR

department of computer science

SFP in a Nutshell

Send simply by listing attribute-value pairs as arguments:
send(dest=someVR, tag="inputlist', input=[1,2,3,4,5])

Receive by specifying which attributes you want to match:
(multiple attributes can be specified)

recv(src=otherVR) or...
recv(tag="1inputlist’) or even...
recv(src=someVR, tag="inputlist')

and of course, just simply

recv()

usf

department of computer science

SFP Matching

recv(tag = 'result') src : ...
dest : ...

attr1 : value1

attr2 : value2

usf

department of computer science

Message Queue

Super Flexible Packet

Super Flexible Packet
src : ...
dest: ...

name : value
Super Flexible Packet
Src ;...
dest :
tag : result
Super Flexible Packet

—>

src : ...
dest :

message : hello

Core APl Example

from vr import VirtualResource

class Hello (VirtualResource):
def vr_init(self):
discovered = self.discover()
allocated = self.allocate(discovered)
deployed = self.deploy(allocated, module=self.__module__)
self.vrlist = [vm['uuid'] for vm in deployed]

return True

def main(self):
if self.parent is None:

for vr in self.vrlist:
msg = self.recv()

print '%s says hello' % msg.myname
else:

self.send(dest=self.parent, myname=gethostname()

usf

department of computer science

he River Implementation

» Run-time support for the River interface
» Main elements

» Socket communication (TCP/UDP)

» Connection pool/cache

» SFP queue

» Communication thread

» Control VR
usf

department of computer science

Work In Progress

» A River native distributed file system

» River state capture for checkpointing and
migration

» RJAX - A browser-based River GUI
» A River debugger
» RVM status monitoring

usf

department of computer science

Contributors

» Current students

» Brian Hardie, Tony Ngo, Jennifer Reyes,
Joseph Gutierrez

» Past students

» Jean Bovet, Yiting Wu, Sorasak
Konglertviboon, Gao Lin, Chris Fraschett,
Deniz Efendioglu

usf RVR

department of computer science

