PROJECT: ENUMERATORS

ALGORITHMIC LEARNING THEORY, SUMMER 2014

1. INTRODUCTION

Imagine a learner that, instead of trying to learn a language (i.e., a set) is trying to learn a *function*. This is something that scientists often do when they are trying to find a model to describe the behavior of some system. Moreover, scientists often have some idea of what kind of model they're looking for (an ordinary differential equation, a linear system, etc.) and are, in a sense, just trying to choose the right one from a "list" of all possible models. Learners choosing from a list of possible answers like this are called *enumerators*, and in this project you'll investigate the ability of these learners to learn sets and functions.

2. Computability theory: Lemmas and exercises

Exercise 1. Let L_n { $x \mid x \ge n$ }. Find a computable function $h : \mathbb{N} \to \mathbb{N}$ such that h(n) is an index for L_n (i.e., $W_{h(n)} = L_n$).

3. LEARNING THEORY I: IDENTIFICATION, LEMMAS AND EXERCISES

Lemma 1. Let $L_n = \{x \mid x \ge n\}$ and $\mathcal{L} = \{L_n \mid n \in \mathbb{N}\}$. Then \mathcal{L} is identifiable. Moreover, \mathcal{L} is recursively identifiable.

Lemma 2. If $\varphi \in \mathcal{F}^{REC}$ identifies RE_{SVT} and

 $\sigma = \langle 0, x_0 \rangle, \langle 1, x_1 \rangle, \langle 2, x_2 \rangle, \dots, \langle n, x_n \rangle$

then there are natural numbers j and k so that if

$$\begin{split} \tau &= \sigma^{\hat{}} \langle n+1,0\rangle, \dots, \langle n+j,0\rangle \\ \tau' &= \tau^{\hat{}} \langle n+j+1\rangle, \dots, \langle n+j+k,1\rangle \end{split}$$

then $\varphi(\tau) \neq \varphi(\tau')$.

4. LEARNING THEORY II: LIMITATIONS

Definition 1. A learning function $\varphi \in \mathcal{F}$ is called an enumerator if there is a total function $f \in \mathcal{F}$ such that for all $\sigma \in SEQ$, $\varphi(\sigma) = f(i)$, where i is the least natural number for which $rng(\sigma) \subset W_{f(i)}$. We call such an f an enumerating function for φ .

Proposition 1. $RE_{SVT} \in [\mathcal{F}^{ENUM}].$

Proposition 2. $[\mathcal{F}^{ENUM}] \subsetneq [\mathcal{F}].$

Corollary 1. $\left[\mathcal{F}^{ENUM} \cap \mathcal{F}^{REC}\right] \subsetneq \left[\mathcal{F}^{REC}\right].$

Proposition 3. Let $\mathcal{L} \in RE_{SVT}$ be r.e. indexable. Then $\mathcal{L} \in [\mathcal{F}^{ENUM} \cap \mathcal{F}^{REC}]$.