PROJECT: ENUMERATORS

ALGORITHMIC LEARNING THEORY, SUMMER 2014

1. Introduction

Imagine a learner that, instead of trying to learn a language (i.e., a set) is trying to learn a function. This is something that scientists often do when they are trying to find a model to describe the behavior of some system. Moreover, scientists often have some idea of what kind of model they're looking for (an ordinary differential equation, a linear system, etc.) and are, in a sense, just trying to choose the right one from a "list" of all possible models. Learners choosing from a list of possible answers like this are called enumerators, and in this project you'll investigate the ability of these learners to learn sets and functions.

2. Computability theory: Lemmas and exercises

Exercise 1. Let $L_{n}\{x \mid x \geq n\}$. Find a computable function $h: \mathbb{N} \rightarrow \mathbb{N}$ such that $h(n)$ is an index for L_{n} (i.e., $W_{h(n)}=L_{n}$).

3. Learning Theory I: Identification, lemmas and exercises

Lemma 1. Let $L_{n}=\{x \mid x \geq n\}$ and $\mathcal{L}=\left\{L_{n} \mid n \in \mathbb{N}\right\}$. Then \mathcal{L} is identifiable. Moreover, \mathcal{L} is recursively identifiable.
Lemma 2. If $\varphi \in \mathcal{F}^{R E C}$ identifies $R E_{S V T}$ and

$$
\sigma=\left\langle 0, x_{0}\right\rangle,\left\langle 1, x_{1}\right\rangle,\left\langle 2, x_{2}\right\rangle, \ldots,\left\langle n, x_{n}\right\rangle
$$

then there are natural numbers j and k so that if

$$
\begin{aligned}
& \tau=\sigma^{\wedge}\langle n+1,0\rangle, \ldots,\langle n+j, 0\rangle \\
& \tau^{\prime}=\tau^{\wedge}\langle n+j+1\rangle, \ldots,\langle n+j+k, 1\rangle
\end{aligned}
$$

then $\varphi(\tau) \neq \varphi\left(\tau^{\prime}\right)$.

4. Learning Theory II: Limitations

Definition 1. A learning function $\varphi \in \mathcal{F}$ is called an enumerator if there is a total function $f \in \mathcal{F}$ such that for all $\sigma \in S E Q, \varphi(\sigma)=f(i)$, where i is the least natural number for which $r n g(\sigma) \subset W_{f(i)}$. We call such an f an enumerating function for φ.
Proposition 1. $R E_{S V T} \in\left[\mathcal{F}^{E N U M}\right]$.
Proposition 2. $\left[\mathcal{F}^{E N U M}\right] \subsetneq[\mathcal{F}]$.
Corollary 1. $\left[\mathcal{F}^{E N U M} \cap \mathcal{F}^{R E C}\right] \subsetneq\left[\mathcal{F}^{R E C}\right]$.
Proposition 3. Let $\mathcal{L} \in R E_{S V T}$ be r.e. indexable. Then $\mathcal{L} \in\left[\mathcal{F}^{E N U M} \cap \mathcal{F}^{R E C}\right]$.

