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Abstract
This paper describes ST (StringTemplate), a domain-specific func-
tional language for generating structured text from internal data
structures that has the flavor of an output grammar. ST’s feature set
is driven by solving real problems encountered in complicated sys-
tems such as ANTLR version 3’s retargetable code generator. Fea-
tures include template group inheritance, template polymorphism,
lazy evaluation, recursion, output auto-indentation, and the new no-
tions of group interfaces and template regions. Experience shows
that ST is easy to learn and satisfying to use.

ST’s primary contribution is the clear identification and imple-
mentation of a tightly-bracketed solution to the problem of render-
ing data structures to text, as dictated by the nature of generation
and the critical goal of strictly separating the generation logic from
the output templates. First, the very nature of code generation sug-
gests the use of a generational grammar. Next, enforcing separation
of the generation logic from the output templates restricts the tem-
plate language syntactically and semantically in such way that tem-
plates are easily shown to be equivalent to a grammar. Finally, the
rules of separation, such as side-effect free expressions, coincide
with the fundamentals of pure, functional programming.

1. Introduction
The growth of the web has led to the proliferation of programs that
generate structured text documents. Similarly, the difficulty of writ-
ing large software systems has led to an increased interest in gener-
ative programming where one program writes another program. In
both cases, programs are generating text from internal data struc-
tures and, unfortunately, many of them are unstructured blobs of
generation logic interspersed with print statements. The formal sys-
tems that do exist, often referred to as template engines, still sup-
port entangling generation logic with output templates, thereby, se-
riously degrading their effectiveness and making it essentially im-
possible to build a retargetable generator.

Consider the four target language code generators for version 2
of the ANTLR recursive-descent parser generator [1]. The gener-
ators represent 39% of the total lines and are roughly 4000 lines
of entangled logic and print statements for each language target.
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Building a new language target amounts to copying the entire Java
file (thereby duplicating the generator logic code) and tweaking the
print statements. The primary reason for this is the lack of suit-
able tools and formalisms. The proper formalism is that of a gram-
mar because the output is not a sequence of random characters–the
output is a sentence conforming to a particular language. Using a
grammar to generate output is analogous to describing the structure
of input sentences with a grammar. Rather than building a parser by
hand, most programmers would use a parser generator. Similarly
we need some form of unparser generator to generate text.

The most convenient manifestation of an output grammar is a
template engine like StringTemplate (ST), the subject of this pa-
per, that has a grammar-like flavor, supporting mutually-referential
templates and simple embedded data value references. To see the
duality relationship between templates and grammars, consider the
following grammar that specifies the syntax of a class and instance
variable definitions.

class : ’class’ ID ’{’ decl* ’}’ ;
decl : ’public’ TYPE ID ’;’ ;

Conversely, a group of ST templates is an inverted grammar where
template and value references are escaped instead of escaping liter-
als such as ’public’:

class(ID,decl) ::= "class <ID> { <decl> }"
decl(TYPE,ID) ::= "public <TYPE> <ID>;"

There is a clear relationship between a template containment tree
and a parse or derivation tree. Just as rule class invokes rule decl,
an instance of template class will embed an instance of template
decl. The only difference with a template is that an external pro-
gram must create template instances and build the graph according
to some generation logic rather than according to an input stream
as with a grammar.

Templates are essentially exemplars of the desired output with
“holes” where the programmer may stick values called attributes
or other template instances. Compare the clarity of these exemplars
with the task of imagining the emergent behavior of a series of print
statements, possibly tangled up with logic.

Using the Java version of ST, the following code fragment gen-
erates “public int i;” using an instance of the decl template.

// load group containing templates class, decl
StringTemplateGroup templates = ... ;
StringTemplate d = templates.getInstanceOf("decl");
d.setAttribute("TYPE", "int");
d.setAttribute("ID", "i");
String code = d.toString(); // render

In the parlance of the model-view-controller (MVC) pattern, the
templates represent the view and the code fragment represents both
model (fixed ID and TYPE strings) and controller (code that injects
attributes, implicitly building the template containment graph).
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There are obvious benefits to a generator that has its view com-
pletely encapsulated in templates and its logic completely encapsu-
lated in a model and controller:

1. The templates specify and document the generated code struc-
ture concisely and clearly, improving development and mainte-
nance costs.

2. The output can be independently and radically altered simply
by changing the view–all without touching or even recompiling
the model.

3. The model provides a single point of change for all logic.
4. A single model-controller pair may feed multiple template

groups, thus, supporting multiple target languages.
5. Templates can be reused with generators of similar applications

that target the same language.

All of these benefits derive from the single important principle
of strict model-view separation, which carries with it restrictions
such as disallowing computation and logic based upon attribute val-
ues within the template and requiring side-effect free attribute ex-
pressions. Surprisingly such restricted templates are easily shown
to generate the context-free languages and beyond into the context-
sensitive [18]. By limiting expressions to be simple side-effect free
attribute references, one may equate attribute expressions to token
references and nested templates to nested rule invocations. Strict
model-view separation then suggests that the general structure of a
generator should be equivalent to an output grammar as does just
the very idea that we are generating structured text.

This still leaves open, however, the question of template expres-
sion syntax and style. Interestingly, the model-view separation rules
for code generation also coincide with the essentials of a pure func-
tional language. Pure functional languages have side-effect free ex-
pressions and yield a result computed from the, possibly recursive,
application of functions to data. ST’s restrictions echo John Backus
[2] sentiments in his 1978 Turing Award paper when making a
plea for functional languages: “... with unrestricted freedom comes
chaos.”

In practice, strict model-view separation amounts to a guarantee
of retargetability as all generation logic is confined to the model-
controller pair and all literals are confined to the view. In light
of the hideous, entangled code generators of ANTLR version 2, a
primary goal during the construction of version 3 was that adding a
new language target should be possible purely by adding templates.
Except for a few details like character literal encodings, ANTLR
version 3 has achieved this goal through the use of ST. The code
generation logic is now target language agnostic and only 4000
lines (8% of the total down from 39%). The introduction of each
new language target has a marginal cost of another 2000 lines, a
50% reduction over version 2. The key difference is that targets are
described purely with templates not code, making it much easier
and faster to build a robust target.

The very nature of code generation suggests the use of a
grammar-like language. The worthy goal of strict model-view sep-
aration again suggests the use of grammars because of the dual-
ity between grammars and restricted templates. And, finally, the
primary rule of separation, side-effect free expressions, is the fun-
damental idea behind pure, functional programming. The primary
contribution of this research, therefore, is the clear identification
of a tightly-bracketed solution to the problem of rendering data
structures to text, as dictated by the nature of the problem and good
programming practices. ST is a domain-specific language with a
functional programming flavor for generating structured text that
embodies this solution. Experience building ANTLR version 3 val-
idates that ST and the approach espoused by this paper are effective
for building a complex, retargetable code generator.

The remainder of the paper describes the ST language in detail
(Section 2), provides an example retargetable code generator for
finite automata (Section 3), and compares ST to other template
engines and academic research (Section 4).

2. The ST Language
An ST “program” is a group of template definitions and a controller
written in Java, C#, or Python that injects untyped data attributes
as template arguments and instantiates template instances. The con-
troller ultimately issues a render-to-text command to the top-level
template instance to obtain the program output. An attribute is ei-
ther a controller program object such as a string or VarSymbol ob-
ject, a template instance, or sequence of attributes including other
sequences. To enforce model-view separation, templates may not
test nor compute with attribute values and, consequently, attributes
have no need for type information. Templates may, however, know
the data is structured in a particular manner such as a tree structure.

Templates are loaded into a StringTemplateGroup instance
from a group file with the following general syntax:

group groupname;
template1(a1, a2, ..., an) ::= "..."
...

The collection of mutually-referential output templates serves as a
kind of library of output constructs for the controller.

Templates are “compiled” to instances of type StringTemplate
that act as prototypes for further instances. Each template instance
contains an attribute table specific to the instance with attribute
name-value pairs (the template arguments) and an abstract syntax
tree (AST) structure shared by all instances that represents the liter-
als and expressions. The AST is suitable for speedy interpretation
of the template during program execution. The set of attributes in
the attribute table is limited to the formal argument list, ai.

A template is a function that maps an attribute or attributes to
another attribute and is specified via an alternating list of output
literals, ti, and expressions, ei, that are functions of ai:

F (a1, a2, ..., am) ::= “t0e0...tieiti+1...tntene ”

where ti may be the empty string and ei is restricted computation-
ally and syntactically to enforce strict model-view separation. The
ei are distinguished from the surrounding literals via angle brackets
<...>. If there are no ei then the template is just a single literal,
t0. The invisible concatenation operator applies to any adjacent el-
ements. Evaluating a template amounts to traversing and concate-
nating all ti and ei expression results. Evaluation is triggered by
the controller via a call to the toString() method of the template.

Attribute expressions are functional forms combining canonical
operations that are limited to operate on the surrounding template’s
attribute table or, using dynamic scoping, to operate on any enclos-
ing template instance’s attributes. All expressions are side-effect
free and, thus, there are no variable assignments. Further, expres-
sions may not affect prior computations nor the surrounding tem-
plate. The four canonical attribute expression operations are:

• attribute reference <name>
• template include <supportcode()>
• conditional include
<if(trace)>print("enter function");<endif>

• template application (i.e., map operation) <vars:decl()>

Expressions are evaluated lazily in the sense that the controller
may create and assemble even highly-nested template structures
as necessary without concern for the attributes they reference nor
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the order in which template expressions will be rendered to text.
In other words, templates may be instantiated and used by other
templates long before the associated attribute arguments are avail-
able. The only restriction is that all attributes needed by all tem-
plates must be injected by the controller prior to final rendering via
toString(). Such delayed evaluation is critical to decoupling the
order of template computation, often dictated by the internal data
structures, from the output language constructs’ order specified by
the target language. The model and controller must drive the order
of computation rather than the template attribute reference order.

ST encourages the wholesale reuse of template groups by sup-
porting group inheritance whereby a subgroup may override or aug-
ment templates from a supergroup. The mechanism exactly mim-
ics the behavior of class inheritance in object-oriented program-
ming languages. When generating code for similar languages, a
programmer can factor out common templates into a supergroup.
The subgroups need only specify additional or different function-
ality for the various targets. Template polymorphism ensures that
the template appropriate for the associated group is instantiated.
Group inheritance also proves extremely useful when a code gen-
erator must emit variations of the same code such as normal code
versus code instrumented with debugging information. The main
template group is not cluttered up with “if debug” conditionals and
all debugging code is neatly encapsulated in a subgroup.

ST introduces a finer-grained alternative to template inheri-
tance, dubbed regions, that allow a programmer to give regions
(fragments) of a template a name that may be overridden in a sub-
group. While regions are syntactic sugar on top of template in-
heritance, the improvement in simplicity and clarity over normal
coarser-grained inheritance is substantial.

To promote retargetable code generators, ST supports interface
implementation à la Java interfaces where a template group that im-
plements an interface must implement all templates in the interface
and with the proper argument lists. The interface is the published,
executable documentation for building back-ends for the code gen-
erator and has proven to be an excellent way to inform program-
mers responsible for the various targets of changes to the require-
ments. The alternative is to leave all “missing template” or “invalid
template attribute” errors to dynamic detection, leaving plenty of
invalid expressions in untested templates.

The following sections explore each of these main concepts in
more detail, explaining their significance to code generation.

2.1 Templates
Templates are defined very much like functions or methods with a
name, formal untyped argument list, and a body:

name(a0, a1, ..., ana) ::= "..."

The body is a template represented by a double-quoted string or
a double-angle-bracket <<...>> section for multi-line templates.
Each template is an alternating list of output literals and attribute
expressions whose results are concatenated to produce a result. In
functional terms, the result is an implicit reduce operation over the
elements using the concatenate operator. Consider a template called
decl that generates simple variable definitions given access, type,
and variable name attributes:

decl(access,type,ID) ::= "<access> <type> <ID>;"

Template decl has three attribute arguments, three literals, and
three simple attribute reference expressions: a0=access, a1=type,
a2=ID, e0=access, t0=“ ”, e1=type, t1=“ ”, e2=ID, and t2=“;”.

The formal argument list, ai, specifies the complete set of at-
tributes that a controller may set for any instance of this template
just like a function argument list. The only difference is that a con-

troller or other template need not set every ai attribute. For exam-
ple, omitting the setAttribute() call for attribute access would
result in “ int i;”.

Templates employ dynamic scoping in that expressions may
reference the attributes of enclosing templates. Contrast that with
the lexical scoping of C variants that limits parameter access to the
immediately surrounding function. In the following code fragment,
function f invokes g and, while parameter i is still physically
available on the stack above, function g may not access i.

void f(int i) { g(); }// C example
void g() { int k=i; } // cannot see enclosing scope

Naturally, f could pass i through to g as a parameter, but when
constructing templates, it is easier to directly access attributes from
any enclosing template instance. This is analogous to Java methods
being able to access inherited instance variables. For example, you
might want all templates used to build output for a method to have
access to the method name in order to mangle variable names:

method(type,name,decls,stats) ::= <<
<type> <name>() {

<decls>
<stats>

>>
decl(type,ID) ::= "<type> <name>_<ID>;"

Template method’s name attribute is visible to template decl for
use as a prefix. Here, presumably, the controller creates decl in-
stances and injects them into a method instance.

To avoid confusion in the large, heavily-nested template tree
structures common to code generators, formal arguments hide any
attribute value with that name in any enclosing instance. This pre-
vents a nested template from inadvertently using an attribute from
an enclosing scope that could lead to infinite recursion, via cyclic
attribute references, and other surprises. If decl had name in its
formal argument list, expressions within decl would not be able to
see the name attribute of method. Experience building a large dy-
namic web site (jGuru.com) and ANTLR version 3 with ST attests
that ST’s form of dynamic scoping is a big advantage and does not
cause confusion or unexpected results.

ST generates exceptions at run-time if a controller or template
invocation tries to set an attribute not in the template’s formal ar-
gument list. Conversely, an exception is also generated when an
expression references an attribute not formally defined in any tem-
plate on the path to the root template. The attribute may have a
null value, but it must be formally defined in an enclosing scope.
Together these exceptions provide an important safeguard against
attribute name mismatches, from typos or otherwise, between con-
troller and template definitions. In practice, the exceptions reduce
the number of mysterious cases where required constructs are ab-
sent from the output.

2.2 Template Expressions
Expressions embedded within templates are limited to functional
forms, delimited by angle brackets <...>, comprised of four
canonical operations described in the following sections.

2.2.1 Attribute references
The most common expression is a simple reference to an attribute,
such as <name>, that will ultimately be converted to text via the
toString() method of the object associated with name. Refer-
ences to missing or null attributes evaluate to the empty string.
These referenced attributes may be atomic elements from the con-
troller’s application language like String or Symbol but may
also be (embedded) templates. Calling toString() on a template
forces it to evaluate to flat text just like an atomic element. At-
tributes set to null or without values result in the empty string.

3 2006/5/13



Attributes are most often aggregate data types so ST allows
access to an object’s fields. For example, if the controller injects
a Symbol object into a template as attribute s, an expression may
reference s.name or any other field visible via reflection (run-time
type information). ST uses method getName() if available else it
tries to directly access field name. The one special case relates to
dictionary attributes. The field is treated as a key and the result of
the expression is the associated mapped value rather than a field of
the dictionary object itself. For example, <types.int> would look
up the value for string key "int" in the map identified by types,
perhaps translating it to a type name in the target language.

If an attribute is multi-valued (a list or some other iteratable
data structure), the attribute’s value is the concatenation of calling
toString() on all the elements. For example, <vars> where
vars is a list with string attributes x, y, and z would evaluate to
“xyz”. To provide a separator between elements in a multi-valued
attribute, expressions use the separator option with an arbitrary
string or template expression; <vars; separator=", "> results
in “x, y, z”.

It is worth reinforcing here that attribute expressions reference
values that may not be available until later, when the controller
injects them, and attributes are always just values computed by
the controller from the model and pushed into the template(s).
An expression may not invoke arbitrary code in the model nor
controller. The only code execution initiated by a template is the
implicit invocation of toString() methods during evaluation.

2.2.2 Template include
ST encourages programmers to factor templates into small, reusable
chunks, which also reduces the amount of duplicated template
code. Providing a single-point-of-change for all output constructs
is an important design principle. The following method template
factors out a bit of support code tracing.

method(type,name,decls,stats) ::= <<
<type> <name>() {

<preamble()>
<decls>
<stats>

}
>>
preamble() ::= <<
System.out.println("Enter method");
>>

Factored templates yield a nested template containment tree. For
example, a constructor template, though similar to a method,
should avoid duplication by referencing template instead of
cutting-n-pasting the template and changing the name:

constructor(name,decls,stats) ::= <<
<method(...)>
>>

where the “...” argument is a special symbol that says, “al-
low invoked template method to see all of the invoking template
constructor’s attributes.” To ensure that an unwanted type at-
tribute did not flow through to method, attribute type could be
set explicitly: <method(type="", ...)> where again “...” is
literally the second argument.

2.2.3 Conditional include
Similar templates should be factored to avoid duplication, but
sometimes the difference between templates depends on the pres-
ence or absence of an attribute and the programmer cannot simply
carve out the common fragment. For example, a template for Java
class definitions needs to emit the “extends” keyword, but only if
a superclass has a value in the attributes table. Rather than have two

different nearly identical versions of a class template, introducing
duplication, it is better to have a single template with a conditional
include that tests for the presence of a superclass:

class(name,sup,methods) ::= <<
class <name> <if(sup)>extends <sup><endif> {

<methods>
}
>>

ST restricts conditionals to attr-name, testing attribute presence,
and !attr-name, testing attribute absence. Arbitrary expressions
are disallowed to ensure all logic is done outside the view. The
result of complicated arbitrary computations may be pushed into
the template, but the template itself may not do the computation to
enforce strict separation rules. The one exception is that attributes
with boolean values are treated as such to avoid confusion; early
versions of ST were annoying because attributes with false values
evaluated to true because they had non-null values.

Useful examples of conditionals abound in code generation;
e.g., optional variable initialization values:

<type> <name> <if(init)>= <init><endif>;

and return type generation:

<if(type)><type><else>void<endif> <name>() {<body>}

2.2.4 Template application
The most important ST language construct is template application
because, along with with template recursion, it obviates the need for
any explicit imperative-style looping constructs such as for loops.
The ability to apply a template to an attribute or the elements of
a multi-valued attribute distinguishes ST’s character from all other
template engines more clearly than any other construct.

The simplest form is <attr-name:template-name()> and means,
“apply template-name to each element of attr-name by repeatedly
invoking template-name with its sole attribute argument set to the
ith attribute element. Reduce values to a string with concatenate.”
A template applied to an attribute is another attribute. A template
applied to a multi-valued attribute is another multi-valued attribute.
For example, if attribute args is a list of Symbol objects, then
<args:arg()> will apply template arg to each of those objects,
yielding a new, multi-valued attribute. Template arg must be de-
fined with a single element:

arg(a) ::= "<a.type> <a.name>"

In this case, attribute a will be an object of type Symbol. If the
definition of template arg were missing a formal argument, then
ST would set a default attribute, it:

arg() ::= "<it.type> <it.name>"

For template applications with very simple templates, an anony-
mous inline template (analogous to a lambda function) is often eas-
ier to build and more clear. The form replaces the template name
with a curly-brace enclosed fragment:

<attr-name:{arg-name | template-fragment}>

Consider generating enumerated types of the form:

int Monday = 1;
int Tuesday = 2;
...

If attribute enumNames has a list of names, then the following
expression will generate the appropriate integer definitions.
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<enumNames:{e | int <e> = <i>;}>

where i is an implicitly set attribute that is the iteration number
from 1..n for n values in an attribute. i0 is a zero-based index.

If the enumeration values are in a second multi-valued attribute,
enumValues, then those values may be used instead of 1..n by
applying the fragment to the lists in parallel:

<enumNames,enumValues:{e,v | int <e> = <v>;}>

Anonymous templates may naturally contain other anonymous
template fragments. The following expression accepts an attribute
containing at least one declaration object with properties type and
vars where vars is also a possibly multi-valued attribute contain-
ing variable names. Given a single declaration object correspond-
ing to “int x,y;”, the following nested expression yields “int
foo x; int foo y;” where attribute name is foo.

<decls:{d | <d.vars:{v | <d.type> <name>_<v>;}>}>

The type name, int, is repeated for each variable name because it
is referenced within the nested template application (iteration).

ST supports repeated function application for situations when
multiple templates must be applied to an attribute. For example,
if an enumeration name must be mangled in some way before its
integer type is generated, the programmer may combine two or
more template applications:

<enumNames:mangle():{e | int <e> = <i>;}>

or

<enumNames:{e|<name>_e}:{e | int <e> = <i>;}>

Such repeated template application supports reusability because
variations of existing templates may be achieved without modifying
them simply by combining different templates (though ST does
not have an explicit template composition operator). HTML text
generation make this more clear: <names:bold():italics()>,
which first bolds and then italicizes a set of names without having
to create a combined boldItalics template. <a:f():g()> is the
same as the concatenation of nested function g(f(ai)) results for
each element ai of attribute a.

ST also supports recursive templates to handle nested output
structures naturally. For example, the following template does a
preorder tree traversal, generating the text property for each node.

preorder(t) ::= "<t.text> <t.children:preorder()>"

The next section shows how templates may be grouped together
and selectively overridden through group inheritance.

2.3 Group Inheritance
Each code generator target typically uses a separate group of tem-
plates to specify output constructs for that target language. For ex-
ample, if a code generator must emit both C and Java, each target
should implement a common set of templates used by the genera-
tion logic. On the other hand, what happens when each target has
multiple variations? Perhaps a single C target must support both
gcc and ANSI C or a Java target must support both 1.4 and 1.5
versions (1.5 added generics and enums, for example). How are
multiple versions encoded?

Group inheritance provides an appropriate model whereby a
variation on a code generation target may be defined by describing
how it differs from a previously defined target. Addressing the Java
1.4 versus 1.5 issue, a Java1 5 group could specify how to alter
the main Java (1.4) group templates in order to use generics and
enumerated types.

Consider the code generator for a parser generator that needs to
define integer constants for the token types associated with token
references in a grammar:

public static final int ID = 1;
public static final int KEY_WHILE = 2;
...

The following partial Java group factors the token type definition
code to a constants template from the parser template where
token types need to be generated in order to allow a subgroup to
override the behavior.

group Java;

parser(name,tokens,rules) ::= <<
class <name> extends Parser {

<constants(names=tokens, type="int")>
<rules:rule()>

}
>>
constants(names, type) ::= <<
<names:{n | public static final <type> <n>=<i>;}>
>>

Java 1.5 has an explicit enum construct that the Java1 5 target
should take advantage of. To do so, the subgroup merely overrides
template constants:

group Java1_5 : Java; // derive from Java

constants(names, type) ::= <<
public enum TokenType { <names; separator=", "> }
>>

Templates with the same name in a subgroup override templates
in a supergroup just as in class inheritance. ST does not support
overloaded templates so group inheritance does not take formal
arguments into consideration.

Group inheritance would not yield its full potential without
template polymorphism. A parser template instantiated via the
Java1 5 group should always look for templates in Java1 5 rather
than the Java supergroup even though parser is lexically defined
within group Java.

When adding more output variations, a proper separation of
concerns can make generating multiple targets even more compli-
cated. For example, adding a debugging variation means adding
another group of templates derived from the 1.4 and 1.5 templates
to isolate all debugging code fragments in one group. Obfuscat-
ing the main templates with debugging code is not a good idea, but
the resulting number of group combinations can grow very quickly.
There are two primary scenarios.

In the first case, each output variation needs a special group of
debugging templates. Each variation must then have a subgroup
called perhaps DbgJava and DbgJava1 5 that statically derive
from the Java and Java1 5 supergroups, respectively.

In the second case, a single template group, Dbg, is sufficient
to alter any Java variation, but because ST only supports single
inheritance, the controller must dynamically instruct the Dbg group
to derive from either Java or Java1 5.

Without dynamic inheritance, multiple copies of Dbg would
be required, one for each output variation. The following Java
fragment demonstrates how to dynamically derive a “subgroup”:

StringTemplateGroup java = ..., dbg = ... ;
dbg.setSuperGroup(java);

When originally confronted with this explosion in target varia-
tion combinations, a form of template group composition (involv-
ing repeated template application) was considered in a manner sim-
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ilar to descriptional composition [5], but rejected to avoid introduc-
ing an extra language concept that was so similar to the existing
dynamic inheritance mechanism.

2.4 Template regions
During the implementation of the first few ANTLR v3 targets,
a weakness appeared in the inheritance mechanism. Inheritance
proved a very blunt instrument for overriding and inserting tiny
snippets of output text. First, tiny snippets had to be factored out
of their natural home in a larger template and defined as full blown
templates elsewhere, which reduced the clarity of the larger tem-
plate and exploded the number of template definitions. Second, be-
cause target variant subgroups needed to insert little bits of code
where the supergroup had none, the supergroup had to invoke and
define templates with blank implementations. Subgroups overrode
the blank templates, effectively inserting code into the supergroup
templates. To ameliorate the situation, ST introduced the notion of
a template region (similar to the idea of a block in Django [9]) that
either marks a section of a template or leaves a “hole” that sub-
groups may alter.

To illustrate how and why templates mark regions for alteration
by subgroups, consider ANTLR’s validating semantic predicates,
{p}?, that act like assert statements. The Java target must generate:

if ( !(p) ) throw new Exception("failed {p}?");

When debugging grammars, however, the conditional must be al-
tered to trigger a “predicate validation” event:

if ( !dbgValidatePred(<p>) ) throw ...;

There are three approaches to encoding the two variations. First,
a conditional can gate the debugging code in and out.

validatePred(p) ::= <<
if ( <if(debug)>!dbgValidatePred(<p>)<else>

!(<p>)<endif> ) throw ..;
>>

There are two things wrong with the conditional; it makes the
template hard to read and it merges the main templates with the
debugging templates, a poor separation of concerns.

The second solution factors out the predicate expression:

validatePred(p) ::= <<
if ( !(<p:evalPredExpr()>) ) throw ...;
>>
evalPredExpr(e) ::= "<e>"

evalPredExpr is overridden in the Dbg subgroup to include the
debugging call to dbgValidatePred(). The validatePred tem-
plate is a little easier to read, but the benefit is mitigated by the cost
of the additional template definition. When just looking at these
two dislocated templates, evalPredExpr cries out to be inlined
into validatePred, which leads to the best solution.

The final solution provides both clarity and separation of con-
cerns. The idea is to build the template and then mark the snippets
that will likely need to change:

validatePred(p) ::= <<
if ( !(<@eval><p><@end>) ) throw ..;
>>

where <@r>...<@end> marks a region called r. A Dbg subgroup
may then override the template in a manner similar to familiar
template overriding:

@validatePred.eval() ::= "dbgValidatePred(<p>)"

Regions are like subtemplates scoped within a template, hence, the
fully-qualified name of a region is @t.r() where t is the enclosing

template. In an overridden region, @super.r() refers to the super-
group template’s original region contents.

Turning to the second weakness of normal group inheritance,
how can a subgroup insert a snippet into a template defined in
the supergroup? Again, normal group inheritance provides a viable
but extremely heavy solution. For every insertion point, define an
empty template and then reference the templates at the insertion
points among the real templates. In the main ANTLR Java target
group, this approach would mean adding 30 more (empty) tem-
plates to the group of 124 real templates.

The best solution is to leave a named “hole,” without having to
define a blank template, that subgroups may fill in by defining a
template in a subgroup. For example, consider generating code for
a grammar rule with a name and list of productions:

rule(name,productions) ::= <<
public void <name>() {

<@preamble()>
<productions:production()>
<@postamble()>

}
>>

Not only is the structure of template rule still clear even with
the insertion points, preamble and postamble, but superfluous
templates need not be defined. The Dbg subgroup may, in effect,
insert code into template rule by simply overriding the region as
before with the inline regions:

@rule.preamble() ::= <<enterRule("<name>");>>

Regions support template clarity and separation of concern
among groups in a fine-grained, lightweight, and unobtrusive man-
ner. By leveraging the familiar inheritance paradigm, ST avoids
introducing yet another key concept to learn. The implementation
of regions also leverages the existing inheritance infrastructure for
a clean, modest augmentation of the code.

2.5 Interface Implementation
The developers of the ANTLR code generation targets always have
the same two questions: Initially they ask, “What is the set of tem-
plates I have to define for my target?” and then, during develop-
ment, they ask, “Has a change to the code generation logic forced
any changes to the requirements of my template library?”

Originally, the answer to the first question involved abstracting
the list of templates and their formal arguments from the existing
Java target. The answer to the second question involved using a
difference tool to point out changes in the Java target from reposi-
tory check-in to check-in. Without a way to formally notify target
developers and to automatically catch logic-template mismatches,
bugs creep in that become apparent only when the stale template
definitions are exercised by the code generator. This situation is
analogous to programs in dynamically typed languages like Python
where method signature changes can leave landmines in unexer-
cised code. In short, there were no good answers.

ST now supports group interfaces that describe a collection
of template signatures, names and formal arguments, in a manner
analogous to Java interfaces. Interfaces clearly identify the set of
all templates that a target must define as well as the attributes
they operate on. The first question regarding the required set of
templates now has a good answer.

Interfaces also provide a form of type safety whereby a target
is examined upon code generator startup to see that it satisfies the
interface. Here is a piece of the ANTLR main target interface:

interface ANTLRCore;
parser(name, scopes, tokens, tokenNames, rules,

numRules, cyclicDFAs, bitsets, ASTLabelType,
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superClass, labelType, members);
rule(ruleName, ruleDescriptor, block, emptyRule,

description, exceptions);
/** What file extension to use; e.g., ".java" */
codeFileExtension();

All of the various targets then implement the interface; e.g.,

group Java implements ANTLRCore;

The code generator, which loads target templates, notifies devel-
opers of any inconsistencies immediately upon startup effectively
answering the second question regarding notification of template li-
brary changes. Group interfaces provide excellent documentation,
promote consistency, and reduce hidden bugs.

2.6 Lazy Evaluation
There is usually an order mismatch between convenient, efficient
computation of data attributes and the order in which the results
must be emitted according to the output language. The developer’s
choice of controller and data structures has extensive design ram-
ifications. If the developer decides to have the templates embody
both view and controller, then the order of the output constructs
drives output generation. This implies that the order of attribute ai

references in the view dictates the order in which the model must
compute those values, which may or may not be convenient. If
the output language requires that n attributes be emitted in order
a0..an−1, a single forward computation dependency, ai = f(aj)
for i < j, represents a hazard. Each ai computation must manually
trigger computations for each attribute upon which it is dependent.
A simple change in the attribute reference order in the output tem-
plates can introduce new dependencies and unforeseen side-effects
that will cause bad output or even generator crashes. This approach
of having the templates drive generation by triggering computa-
tions and pulling attributes from the model is not only dangerous
but may also make the computations inconvenient and inefficient.

Decoupling the order of attribute computations from the order
in which the results must be emitted is critical to avoiding depen-
dency hazards–the controller must be separated from the view. A
controller freed from the artificial ordering constraints of the out-
put language may trigger computations in the order convenient to
the internal data structures of the code generator. This choice im-
plies that all attributes are computed a priori and merely pushed
into the view for formatting. Driving attribute computation off the
model is very natural, but computation results must be buffered up
and tracked for later use by the view.

If the actual view (code emitter) is just a blob of print state-
ments, the developer must build a special data structure just to hold
the attributes temporarily whereas templates have built-in attribute
tables where the controller can store attributes as they are created.
The template then must know to delay evaluation until all attributes
have been injected, effectively requiring a form of lazy evaluation.
Because the controller computes all attributes a priori, however,
ST can simply wait to evaluate templates until the controller ex-
plicitly invokes toString() on the root template instance. This
invocation performs a bottom-up recursive evaluation of all tem-
plates contained in t followed by template t itself.

A simple, but real example of this problem arises when generat-
ing C code. All C functions must be declared before they are called
as in the following example:

extern float g(int);
void f() { g(3); }
float g(int) { ... }

Driving the output from the view means that the list of forward
references must be computed and emitted before walking the list of
functions. In contrast, driving the output from the list of functions

(the internal data structure) is much easier because, as functions
are encountered, their names can simply be added to a list of
forward declarations. ST supports a particularly satisfying solution
that does not even require a separate data structure. The list of
function templates can be walked twice by the output template–
once for the forward declarations and once to actually generate
the functions. Because the functions attribute is a list of function
templates and has not been converted to text, attribute expressions
like <f.type> may access the template instance’s attribute table to
get the function’s type:

CFile(globals,functions) ::= <<
<globals>
<functions:{f | extern <f.type> <f.name>(<f.args>);}>
<functions>
>>
function(type,name,args) :: = "..."

In practice, delayed evaluation means that templates may be cre-
ated and assembled as necessary without concern for the attributes
they reference nor the order in which templates will be rendered
to text. This convenience and safety has proven extremely valuable
for complicated generators like that of ANTLR version 3.

2.7 Miscellaneous
This section introduces a number of the smaller but very interesting
features of ST.

2.7.1 Auto-indentation
Properly-indented text is a very desirable generation outcome, but it
is often difficult to achieve–particularly when the programmer must
do this manually. ST automatically and naturally indents output
by tracking the nesting level of all attribute expression evaluations
and associated whitespace prefixes. For example, in the following
slist template, all output generated from the <statements> ex-
pression will be indented by two spaces because the expression it-
self is indented.

slist(statements) ::= <<{
<statements>

}
>>

If one of the statement attributes is itself an slist then those en-
closed statements will be indented four spaces. The auto-indentation
mechanism is actually an implementation of an output filter that
programmers may override to tweak text right before it is written.

2.7.2 Maps and lists
There are situations where the generator must map one string to
another such as when generating the initialization values for various
types. To avoid having to put literals in the controller or model, ST
supports maps directly in the group file format:

typeInitMap ::= [
"int":"0",
"float":"0.0"]

For example, <typeInitMap.int> returns ”0”. If the type name
is an attribute not a constant like int, ST provides an indirect field
access: <typeInitMap.(typeName)>.

ST provides a list construction mechanism useful for applying
a single template across multiple attributes such as the following.

<[locals,parameters]:initialize()>

The familiar functional programming operations first, rest, and
last may be used. The following template fragment generates
code to sum a set of numbers, only declaring the accumulator
variable sum once.
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<first(numbers):{ n | int sum = <n>;}>
<rest(numbers):{ n | sum += <n>;}>

2.7.3 Debugging
ST provides functionality to help debug complicated template
structures. First, ST (as of version 2.3) can generate template de-
pendence graphs in Graphviz DOT [11] format. These graphs il-
lustrate which templates contain other templates and are analogous
to a function call graph diagram. Next, ST can detect when cycles
exist in a tree of template instances (yielding a cyclic graph). Self-
referential, hence infinitely-recursive, structures can occur through
programming error and are nasty bugs to track down. Turning on
“lint mode” makes ST look for cases where a template instance is
being evaluated during the evaluation of itself.

2.7.4 Renderers
A simple reference to an attribute of type Integer such as <n>
yields the string computed from invoking Integer’s toString()
method. This implicit invocation is the only code execution initi-
ated by a template, however, the developer may register renderer
objects (per template group or per template instance) that alter the
default rendering to text. The primary application of this is web
page localization for objects such as dates [19].

3. Example
This section presents an example illustrating ST at work generating
both a state machine diagram in Graphviz DOT [11] format and a
state machine simulator generated in Java. The two key points of
interest are (i) that the same program is able to generate both the
visual representation and the source code without modification and
(ii) that, surprisingly, the templates themselves do no processing
and simply specify how each element of the state machine is gen-
erated as text.

s0 s1
a

b

c

Figure 1. DFA for (a|b)c∗

Consider the deterministic finite automaton (DFA) shown in
Figure 1, which is just a directed graph composed of two states
and three labeled-edges. The image was created with the following
Graphviz digraph definition.

digraph DFA {
rankdir=LR;
# define states
node [shape = circle]; s0
node [shape = doublecircle]; s1
# define edges for states
s0 -> s1 [fontname="Courier", label = "a"];
s0 -> s1 [fontname="Courier", label = "b"];
s1 -> s1 [fontname="Courier", label = "c"];

}

This DFA can easily be built in memory using simple class
definitions such as State (with fields int state, boolean
accept, Edge[] edges) and Edge (with fields char label and
State target). The following code creates the states and links
them up with edges.

// build (a|b)c*
State s0 = new State(0);
State s1 = new State(1);
s1.accept = true;
s0.edges = new Edge[]

{new Edge(’a’,s1), new Edge(’b’,s1)};
s1.edges = new Edge[] {new Edge(’c’,s1)};

The controller then loads a group file, gets an instance of the
template called dfa, injects a list of states, and finally renders the
template to text:

FileReader fr = new FileReader(groupFileName);
StringTemplateGroup lib=new StringTemplateGroup(fr);
StringTemplate dfaST = lib.getInstanceOf("dfa");
dfaST.setAttribute("states", new State[] {s0,s1});
System.out.println(dfaST);

Each target language template group must, therefore, have at
least a template called dfa that accepts a list of states. That is the
only requirement placed upon the templates by the controller, but
of course the templates are inescapably sensitive to the structure
of the model’s data. Once the controller acquires an appropriately
refined and processed data structure from the model, it injects the
data as an attribute into a template which can then traverse the data
structure rendering it to text.

3.1 Generating DOT
Generating DOT format files using ST is straightforward. The main
template, dfa, generates the overall framework and delegates the
generation of states to template state. Template state in turn
relies on template edges for state. The following group file
comprises the complete set of templates necessary to generate any
DFA given the data structure prepared by the controller code above.

group DOT;
dfa(states) ::= <<
digraph DFA {

rankdir=LR;
<states:state()> <! walk state templates twice !>
<states:edges_for_state()>

}
>>

state(s) ::= <<
node [shape = <if(s.accept)>double<endif>circle];

s<s.state><\n>
>>

edges_for_state(src) ::= <<
<src.edges:{e |
s<src.state> -> s<e.target.state>

[fontname="Courier", label = "<e.label>"];
}>
>>

3.2 Generating Java
Without modification, the controller above can generate Java code
that simulates a DFA. The overall structure of the DFA simula-
tion is a switch-on-state statement and then a switch-on-character
statement for each state to compute the next state based upon edge
labels. The following code fragment represents the essential state
transition component of a DFA simulation.

loop:
while (true) {

switch (state) {
case 0: // state 0

switch (c) {
case ’a’ : state = 1; consume(); break;
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case ’b’ : state = 1; consume(); break;
default :

error(c);
}
break;

case 1: // state 1
switch (c) {

case ’c’ : state = 1; consume(); break;
default :

break loop; // accept
}
break;

}
}

To generate this Java code instead of a DOT description the
controller loads a different template group containing templates
associated with generating Java. As before, the group’s interface
to the controller is a template called dfa. The structure of these
Java templates is slightly different than the DOT templates in that
the main template does not split apart the generation of states and
the edges.

group Java;
dfa(states) ::= <<
while (true) {

switch (state) {
<states:state()>

}
}
>>

state(s) ::= <<
case <s.state>: // state <s.state>

switch (c) {
<s.edges:edge()>
default :
<if(s.accept)>break loop;<else>error(c);<endif>

}
break;

>>

edge(e) ::= <<
case ’<e.label>’ :

state = <e.target.state>; consume(); break;
>>

This example demonstrates that enforcing the independence of
the controller and view does not conflict with flexibility, legibility,
and expressiveness.

4. Related Work and Discussion
ST is specifically concerned with generating text as opposed to at-
tribute grammar [14] derivatives and the sophisticated transforma-
tion systems such as Stratego [23], TXL [6], and DMS [3] that are
concerned with rewriting text. These systems are declarative in na-
ture and aspire to create language independent translation solutions
that hide implementation details. Some declarative systems entan-
gle pattern recognition, rewrite rules, and output rules, making it
difficult to change targets. In practice, programmers are often un-
comfortable with purely declarative “black boxes” systems because
of the very fact that they do not expose internal data structures.
Consequently, programmers use a hybrid approach employing a
mix of imperative programming and declarative tools (parser gener-
ators, code generators, and tree walkers) to glue a system together.
Each phase of the translation is exposed and programmers may
choose their own data structures. There is also a very large market
for text generation tools unrelated to text translation such dynamic
web page generation from databases, email message generartion,

and code generation from UML diagrams. ST is aimed directly
at both hybrid-approach translation systems and direct data-to-text
generation systems.

The idea of a template engine for text generation is not new and
a few systems have been around for many years such as PTG, a
component of Eli [12]. Indeed, the idea of “mail merge” for replac-
ing addresses in form letters has been around for decades. With the
explosion of dynamically-generated web sites came the prolifera-
tion of template engines, PHP and JSP being two of the earliest
players. Today, dozens of engines are in use such as Jostraca [13],
Velocity [24], FreeMarker [10], Tea [22], XMLC [26], Smarty [20],
and Django [9]. All but XMLC are essentially Turing-complete
languages or allow arbitrary calls to the model, violating model-
separation in that templates can then embed “business logic” or
alter the model from within the template. Django’s template lan-
guage’s philosophy is the closest to that of ST (though it is encum-
bered by a web framework), but unfortunately supports arbitrary
method calls to the model. XMLC, on the other hand, is so restric-
tive that HTML output literals must often be pushed into the tem-
plate from the controller, another violation. While providing dan-
gerous features, most engines miss the key elements, lazy evalua-
tion and recursion being the most egregious omissions. Ironically,
most of the reference manuals for template engines either espouse
or claim to enforce model-view separation.

ST distinguishes itself by its strict enforcement of model-view
separation, which it achieves primarily through disallowing side-
effects and computations within the template. The normal impera-
tive programming language features like assignment, loops, arith-
metic expressions, and arbitrary method calls into the model are
not only unnecessary, but they are very specifically what cannot
be allowed if an engine is to enforce model-view separation [18].
Restricting a language so is tantamount to requiring a functional
language.

ST is remarkably similar to Backus’ FP functional language
proposal [2] right down to having single and multi-valued attributes
(what Backus calls atoms and sequences). Both FP and ST use the
“:” operator for function/template application, albeit with the func-
tion and operand reversed: FP’s f:x versus ST’s x:f(). ST uses “:”
for both apply and apply-to-all where FP used f : x and αf : x.
That is, ST’s x:f():g() means g(f(x)) when x is single-valued
and [g(f(x0)), ..., g(f(xn−1))] when x is multi-valued. ST does
not have a composition operator, but ST templates would compose
easily because templates operate on other templates routinely. One
advantage of template composition such as x:(f . g)() would
be a reduction in intermediate, temporary data structure generation.
ST has no explicit reduce/fold operation but template elements, ti

and ei, are implicitly reduced using concatenate to form a result. ST
and FP both share conditionals and sequence construction notation
([a,b,c]) as well as first and remainder sequence operations.

Most template engines are built by industrial programmers be-
cause the construction of web sites is not usually within the purview
of academics (dynamic page generation is the source of the recent
template engine proliferation). As such, there is very little academic
work published specifically on stand-alone, general purpose tem-
plate engines. Most academic work focuses on the applications of
code generation such as implementing domain-specific languages
(DSL) [17], using multi-stage programming to enhance general-
ity [21], automating code-reuse through “software system families”
[7], interactively manipulating programs [4], generating test cases
[15], and automating the assembly of software components [8]. Re-
search work is more concerned with what to generate and how that
information is computed rather than the final text generation phase
per se. ST could be used as a component of this work.

The reader may question why we need ST when many func-
tional languages already exist. There are two important reasons: (i)
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ST is a domain-specific language whose syntax and semantics are
tuned to text generation and (ii) attribute expressions must be re-
stricted to enforce strict model-view separation. There have been
several interesting functional language based pretty printing sys-
tems in Haskell [25] [16] but these systems are not meant to in-
tegrate with commonly-used programming languages such as Java
and Python. Moreover, in comparison to ST, they are cumbersome
and not particularly readable, though they have more features.

ST is a general purpose text generation engine with a functional
language that strikes a balance between power and enforcement of
model-view separation. ST supports features unavailable in other
actively-used engines such as template recursion, template poly-
morphism, group interfaces, and lazy attribute evaluation.

5. Future
ST is currently interpreted and, although it is very fast, signifi-
cant speed improvements might come from generating Java code
directly and executing the compiled code. This would be very sim-
ilar to the way JSP files are translated to Java code, compiled, and
then executed by a web server.

A valid concern regarding ST is that it does not verify that gen-
erated text conforms to a language. Because the templates together
are essentially equivalent to a grammar, it might be worth exploring
whether or not there is a reasonable way to guarantee correctness
or at least conformity. In principle, one could restrict template ar-
guments to be members of a set of template names (assuming the
arguments are templates):

body(stats in (statement|vardef)) ::= "{ <stats> }"

The cardinality of attributes (single-valued, zero-or-more, etc...)
could also be specified and verified. Template coverage analysis
could also prove useful.

6. Conclusions
ST is a domain-specific language for generating structured text
from internal data structures. It distinguishes itself by strictly en-
forcing separation of generation logic (model/controller) and out-
put format (view). Separation is a key component of a generator
because it makes generators easier to build, understand, modify,
and retarget.

The very nature of generating sentences in an output language
and the enforcement of separation dictate the general form of the
solution. The rules for separation restrict template expressions in
such a way that their capabilities coincide with the fundamentals
of a pure functional language and that of an output grammar. ST
embodies this solution and focuses on conceptual integrity, robust-
ness, regularity, and efficiency (ST is fast and its binary is 165k).
ST’s feature set is driven by solving real problems encountered
in complicated systems such as ANTLR version 3’s retargetable
code generator; features include group inheritance, polymorphism,
lazy evaluation, recursion, auto-indentation, and the new notions of
group interfaces and regions. Experience shows that ST is easy to
learn and satisfying to use.

ST is available under the BSD license at stringtemplate.org
for Java, C#, and Python.
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