

 1

Linked Lists

Example

• We would like to keep a list of inventory
records – but only as many as we need

• An array is a fixed size

• Instead – use a linked list
• What are the disadvantages of using a

linked list?

Linked List

• Node – one element of the linked list
– Object – data stored in the node – examples?
– next – a reference to the next node in the list

• last node points to NULL

Object

next Ø

Object

next

Object

next

Linked List

• head keeps track of the head of the list
• tail keeps track of the last node in the list

– tail not always used

Object

next Ø

Object

next

Object

next

head

tail

Insertion at Head
Object1

next Ø
head

Object2
next

Object3

next
Insert here

new_node
tail

Insertion at Head

• Create new_node
– store object in new_node

• Point new_node next to the node head points to

Object1
next Ø

head
Object2

next

Object3

next

new_node
tail

 2

Insertion at Head

• Create new_node
– store object in new_node

• Point new_node next to the node head points to
• Point head to new_node

Object1
next Ø

head
Object2

next

Object3

next

new_node
tail

Insertion at Head

• Does this algorithm work for the list below?

Object1
next Ø

head
Object2

next
Object3

next

Øhead

Object3
next

new_node

tail

tail

Insertion at Head

• Create new_node
– store object in new_node

• Point new_node next to the node head
points to

• Point head to new_node
• If tail points to NULL

– point tail to new_node

Insertion at Head

• Create new_node
– store object in new_node

• Point new_node next to the node head points to
• Point head to new_node
• If tail points to NULL

– point tail to new_node

Øhead

Object3

next

new_node tail

Insertion at Tail

Øhead

Object3

next

new_node tail

Object1

next Ø
head

Object2

next

Object3

next
Insert here

tail

new_node

Find

• find(3)

• find(16) - always remember to deal with special
cases

5

next Ø

3

next

12

next

head

tail

 3

Deletion

• Deletion of head
– Complexity?

• Deletion of tail
– Complexity?

Object1
next Ø

head
Object2

next
Object3

next

tail

Insertion/Deletion in Middle

• Insert between Object1 and Object2
• Delete Object1

Object1
next Ø

head
Object2

next
Object3

next

tail

Doubly Linked Lists

• Each node keeps a pointer to the next node and
to the previous node
– Makes some operations (such as insertion at end)

more efficient
– Costs?

• At the beginning and end of the list are sentinel
nodes
– Simplify insertion/deletion algorithm

Object3
prev

next trailer

Object2
prev

next

Object1
prev

next
header

Doubly Linked Lists

• Insertion and deletion at beginning/end

• Insertion and deletion in middle

Object3
prev

next trailer

Object2
prev

next

Object1
prev

next
header

trailerheader

Doubly Linked Lists

• Insertion

Object3
prev

next trailer

Object2
prev

next

Object1
prev

next
header

Object4

prev

next
insert here

new_node

Doubly Linked Lists

• Insertion at head
1. Set next of new_node to point to what header’s next points to
2. Set prev of node that header’s next points to to point to

new_node
3. Set prev of new_node to point to header
4. Set header’s next to point to new_node

• Number 1 must come before number 4
• Insertion at trailer?
• Deletion?

Object3
prev

next trailer

Object2
prev

next

Object1
prev

next
header

Object4

prev

next
insert here

new_node

