Linked Lists

Example

+ We would like to keep a list of inventory
records — but only as many as we need

* An array is a fixed size

* Instead — use a linked list
* What are the disadvantages of using a

Linked List

Object Object Object

next next

Ly next

* Node - one element of the linked list
— Object — data stored in the node — examples?
— next — a reference to the next node in the list
« last node points to NULL

=0

linked list?
Linked List
tail
head —» Object Object Object
next next N next — 10

» head keeps track of the head of the list

« tail keeps track of the last node in the list
— tail not always used

Insertion at Head

tail

newﬁno{i o ’W‘ ’W‘/
‘ next H next ‘F’ 2
Object3

Insert here
next

Insertion at Head

tail

Object1 Object2 ~

\ head ‘ next H next +, o
Object3 /

next

new_node

» Create new_node
— store object in new_node
* Point new_node next to the node head points to

Insertion at Head

tail
new_node

N

/ next next o
Object3
next

» Create new_node

— store object in new_node
* Point new_node next to the node head points to
* Point head to new_node

Insertion at Head

tail

| object3 | | objectt | [Objectz |

" next H next H next +. o

head

» Does this algorithm work for the list below?

new_node tail
\ head—s B&~
Object3

Insertion at Head

* Create new_node
— store object in new_node

+ Point new_node next to the node head
points to

Point head to new_node

If tail points to NULL
— point tail to new_node

Insertion at Head

new_node tail
\ head—» 8«
Object3

» Create new_node
— store object in new_node
* Point new_node next to the node head points to
* Point head to new_node
« If tail points to NULL
— point tail to new_node

Insertion at Tail
tail

hoad Objectt Object2 -~
eal
next ﬂ—.‘ next ﬂ—. o

new_node — Object3 Insert here
- -next

new_node tail

\ head—» B+~

Find

tail

head ——»| 5 12 3

next next

| next

=0

. find(3)

« find(16) - always remember to deal with special
cases

Deletion

tail

| object3 | | Objectt | [Object2 |

head next H next H next

(4]

» Deletion of head
— Complexity?

+ Deletion of tail
— Complexity?

Insertion/Deletion in Middle

tail

| object3 | [Objectt | [Object2 |

head next H next H next

(%)

* Insert between Object1 and Object2
» Delete Object1

Doubly Linked Lists

Object1 Object2 Object3
7 prev <«f-prev l«—{-prev
next Lo T e 7

» Each node keeps a pointer to the next node and
to the previous node

— Makes some operations (such as insertion at end)
more efficient

— Costs?

+ At the beginning and end of the list are sentinel
nodes

— Simplify insertion/deletion algorithm

Doubly Linked Lists

Object1 Object2 Object3
7 prev <«f-prev l«—{-prev
next > [ned T e 7

* Insertion and deletion at beginning/end

* Insertion and deletion in middle

new_node
Objectd H H
= \Doubly Linked Lists
insert here
next
/ Object1 Object2 Object3
7 prev <« prev l«—t-prev
next —— | next —»| next —
Insertion

new_node
Object4 H H
= \Doubly Linked Lists
insert here
next
/ Object1 Object2 Object3
7 prev «—prev l«—prev
next —» | next »| next 7

* Insertion at head

1. Set next of new_node to point to what header’s next points to

2. Set prev of node that header’s next points to to point to
new_node

3. Set prev of new_node to point to header
4. Set header’s next to point to new_node
* Number 1 must come before number 4
* Insertion at trailer?
* Deletion?

