Linked Lists

Example

+  We would like to keep a list of inventory
records — but only as many as we need

* An array is a fixed size

* Instead — use a linked list
* What are the disadvantages of using a
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* Node - one element of the linked list
— Object — data stored in the node — examples?
— next — a reference to the next node in the list
« last node points to NULL
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» head keeps track of the head of the list

« tail keeps track of the last node in the list
— tail not always used

Insertion at Head

tail

newﬁno{i o ’W‘ ’W‘/
‘ next H next ‘F’ 2
Object3

Insert here
next

Insertion at Head

tail

Object1 Object2 ~

\ head ‘ next H next +, o
Object3 /

next

new_node

» Create new_node
— store object in new_node
* Point new_node next to the node head points to




Insertion at Head
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» Create new_node

— store object in new_node
* Point new_node next to the node head points to
* Point head to new_node

Insertion at Head
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» Does this algorithm work for the list below?
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Insertion at Head

* Create new_node
— store object in new_node

+ Point new_node next to the node head
points to

Point head to new_node

If tail points to NULL
— point tail to new_node

Insertion at Head
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» Create new_node
— store object in new_node
* Point new_node next to the node head points to
* Point head to new_node
« If tail points to NULL
— point tail to new_node

Insertion at Tail
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. find(3)

« find(16) - always remember to deal with special
cases




Deletion

tail
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» Deletion of head
— Complexity?

+ Deletion of tail
— Complexity?

Insertion/Deletion in Middle
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* Insert between Object1 and Object2
» Delete Object1

Doubly Linked Lists
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» Each node keeps a pointer to the next node and
to the previous node

— Makes some operations (such as insertion at end)
more efficient

— Costs?

+ At the beginning and end of the list are sentinel
nodes

— Simplify insertion/deletion algorithm

Doubly Linked Lists
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* Insertion and deletion at beginning/end

* Insertion and deletion in middle
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* Insertion at head

1. Set next of new_node to point to what header’s next points to

2. Set prev of node that header’s next points to to point to
new_node

3. Set prev of new_node to point to header
4. Set header’s next to point to new_node
*  Number 1 must come before number 4
* Insertion at trailer?
* Deletion?




