
An Overview of Peer-to-Peer

Sami Rollins



Outline

• P2P Overview
– What is a peer?
– Example applications
– Benefits of P2P
– Is this just distributed computing?

• P2P Challenges
• Distributed Hash Tables (DHTs)



What is Peer-to-Peer (P2P)?

• Napster?
• Gnutella?
• Most people think of P2P as music sharing



What is a peer?

• Contrasted with
Client-Server model

• Servers are centrally
maintained and
administered

• Client has fewer
resources than a
server



What is a peer?
• A peer’s resources are

similar to the resources of
the other participants

• P2P – peers
communicating directly
with other peers and
sharing resources

• Often administered by
different entities
– Compare with DNS



P2P Application Taxonomy

P2P Systems

Distributed Computing
SETI@home

File Sharing
Gnutella

Collaboration
Jabber

Platforms
JXTA



Distributed Computing



Collaboration

sendMessage receiveMessage sendMessage receiveMessage



Collaboration

sendMessage receiveMessage sendMessage receiveMessage



Platforms

Find Peers … Send Messages

Gnutella Instant Messaging



P2P Goals/Benefits

• Cost sharing
• Resource aggregation
• Improved scalability/reliability
• Increased autonomy
• Anonymity/privacy
• Dynamism
• Ad-hoc communication



P2P File Sharing
• Centralized

– Napster
• Decentralized

– Gnutella
• Hierarchical

– Kazaa
• Incentivized

– BitTorrent
• Distributed Hash Tables

– Chord, CAN, Tapestry, Pastry



Challenges

• Peer discovery
• Group management
• Search
• Download
• Incentives



Metrics

• Per-node state
• Bandwidth usage
• Search time
• Fault tolerance/resiliency



Centralized
• Napster model

– Server contacted during search
– Peers directly exchange content

• Benefits:
– Efficient search
– Limited bandwidth usage
– No per-node state

• Drawbacks:
– Central point of failure
– Limited scale

Bob Alice

JaneJudy



Decentralized (Flooding)
• Gnutella model

– Search is flooded to neighbors
– Neighbors are determined

randomly
• Benefits:

– No central point of failure
– Limited per-node state

• Drawbacks:
– Slow searches
– Bandwidth intensive

Bob

Alice

Jane

Judy

Carl



Hierarchical
• Kazaa/new Gnutella model

– Nodes with high bandwidth/long uptime
become supernodes/ultrapeers

– Search requests sent to supernode
– Supernode caches info about attached leaf

nodes
– Supernodes connect to eachother (32 in

Limewire)
• Benefits:

– Search faster than flooding
• Drawbacks:

– Many of the same problems as
decentralized

– Reconfiguration when supernode fails

SuperBob

Andy

Jane

Judy
Carl

SuperFred

SuperTed

Alex

Alice



BitTorrent

Source

.torrent server

seed

tracker

1. Download torrent

2. Get list of
peers and seeds
(the swarm)

3. Exchange vector 
of content downloaded 
with peers
4. Exchange content w/
peers
 

5. Update w/
progress



BitTorrent
• Key Ideas

– Break large files into small blocks and download blocks
individually

– Provide incentives for uploading content
• Allow download from peers that provide best upload rate

• Benefits
– Incentives
– Centralized search
– No neighbor state (except the peers in your swarm)

• Drawbacks
– “Centralized” search

• No central repository



Distributed Hash Tables (DHT)
• Chord, CAN, Tapestry, Pastry

model
– AKA Structured P2P networks
– Provide performance guarantees
– If content exists, it will be found

• Benefits:
– More efficient searching
– Limited per-node state

• Drawbacks:
– Limited fault-tolerance vs

redundancy

001 012

212

305

332

212 ?
212 ?



DHTs: Overview

• Goal: Map key to value
• Decentralized with bounded number of neighbors
• Provide guaranteed performance for search

– If content is in network, it will be found
– Number of messages required for search is bounded

• Provide guaranteed performance for join/leave
– Minimal number of nodes affected

• Suitable for applications like file systems that
require guaranteed performance



Comparing DHTs

• Neighbor state
• Search performance
• Join algorithm
• Failure recovery



CAN
• Associate to each node and item a unique id in an

d-dimensional space
• Goals

– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

• Properties
– Routing table size O(d)
– Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Space divided between nodes
• All nodes cover the entire

space
• Each node covers either a

square or a rectangular area of
ratios 1:2 or 2:1

• Example:
– Node n1:(1, 2) first node that

joins  cover the entire space
1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Node n2:(4, 2) joins
• n2 contacts n1
• n1 splits its area and assigns

half to n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Nodes n3:(3, 5) n4:(5, 5) and n5:(6,6) join
• Each new node sends JOIN request to an existing

node chosen randomly
• New node gets neighbor table from existing node
• New and existing nodes update neighbor tables and

neighbors accordingly
– before n5 joins, n4 has neighbors n2 and n3
– n5 adds n4 and n2 to neighborlist
– n2 updated to include n5 in neighborlist

• Only O(2d) nodes are affected

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Bootstrapping - assume CAN has an associated
DNS domain and domain resolves to IP of one or
more bootstrap nodes

• Optimizations - landmark routing
– Ping a landmark server(s) and choose an

existing node based on distance to landmark

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

• Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Each item is stored by the
node who owns its mapping
in the space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id (Euclidean distance)

• Example: assume n1 queries
f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id

• Example: assume n1 queries
f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id

• Example: assume n1 queries
f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



CAN: Query Example
• Content guaranteed to be

found in d*n1/d hops
– Each dimension has n1/d nodes

• Increasing the number of
dimensions reduces path
length but increases number
of neighbors

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



Node Failure Recovery
• Detection

– Nodes periodically send refresh messages to neighbors
• Simple failures

– neighbor’s neighbors are cached
– when a node fails, one of its neighbors takes over its zone

• when a node fails to receive a refresh from neighbor, it sets a
timer

• many neighbors may simultaneously set their timers
• when a node’s timer goes off, it sends a TAKEOVER to the

failed node’s neighbors
•  when a node receives a TAKEOVER it either (a) cancels its

timer if the zone volume of the sender is smaller than its own
or (b) replies with a TAKEOVER

Slide modified from another presentation



Chord
• Each node has m-bit id that is a

SHA-1 hash of its IP address
• Nodes are arranged in a circle

modulo m
• Data is hashed to an id in the same

id space
• Node n stores data with id between

n and n’s predecessor
– 0 stores 4-0
– 1 stores 1
– 3 stores 2-3

0

2

4

6

17

35



Chord
• Simple query algorithm:

– Node maintains successor
– To find data with id i, query

successor until successor > i
found

• Running time?

0

2

4

6

17

35



Chord
• In reality, nodes maintain a finger

table with more routing
information
– For a node n, the ith entry in its

finger table is the first node
that succeeds n by at least 2i-1

• Size of finger table?

0

2

4

6

17

35

04

32

11

05

33

32

07

05

04



Chord
• In reality, nodes maintain a finger

table with more routing
information
– For a node n, the ith entry in its

finger table is the first node
that succeeds n by at least 2i-1

• Size of finger table?
• O(log N)

0

2

4

6

17

35

04

32

11

05

33

32

07

05

04



Chord
query:
  hash key to get id
  if id == node id - data found
  else if id in finger table - data found
  else
      p = find_predecessor(id)
      n = find_successor(p)

find_predecessor(id):
  choose n in finger table closest to id
  if n < id < find_successor(n)
      return n
  else
      ask n for finger entry closest to id and

recurse

0

2

4

6

17

35

04

32

11

05

33

32

07

05

04



Chord

• Running time of
query algorithm?
– Problem size is

halved at each
iteration

0

2

4

6

17

35

04

32

11

05

33

32

07

05

04



Chord

• Running time of
query algorithm?
– O(log N)

0

2

4

6

17

35

04

32

11

05

33

32

07

05

04



Chord

• Join
– initialize

predecessor and
fingers

– update fingers and
predecessors of
existing nodes

– transfer data

0

2

4

6

17

35

64

32

11

65

33

32

07

65

64

32

00

07



Chord
• Initialize predecessor and finger of

new node n*
– n* contacts existing node in

network n
– n does a lookup of

predecessor of n*
– for each entry in finger table,

look up successor
• Running time - O(mlogN)
• Optimization - initialize n* with

finger table of successor
– with high probability, reduces

running time to O(log N)

0

2

4

6

17

35

64

32

11

65

33

32

07

65

64

32

00

07



Chord
• Update existing nodes

– n* becomes ith finger of a node
p if

• p precedes n by at least 2i-1

• the ith finger of p succeeds n
– start at predecessor of n* and

walk backwards
– for i=1 to 3:

• find predecessor of n*-2i-1

• update table and recurse
• Running time O(log2N)

0

2

4

6

17

35

64

32

11

65

33

32

07

65

64

32

00

07



Chord
• Stabilization

– Goal: handle concurrent joins
– Periodically, ask successor for

its predecessor
– If your successor’s

predecessor isn’t you, update
– Periodically, refresh finger

tables
• Failures

– keep list of r successors
– if successor fails, replace with

next in the list
– finger tables will be corrected

by stabilization algorithm

0

2

4

6

17

35

64

32

11

65

33

32

07

65

64

32

00

07



DHTs – Tapestry/Pastry

• Global mesh
• Suffix-based routing
• Uses underlying network

distance in constructing
mesh

13FE

ABFE

1290
239E

73FE

9990

F990

993E

04FE

43FE



Comparing Guarantees

logbNNeighbor
map

Pastry

b logbNlogbNGlobal MeshTapestry

2ddN1/dMulti-
dimensional

CAN

log Nlog NUni-
dimensional

Chord

StateSearchModel

b logbN + b



Remaining Problems?

• Hard to handle highly dynamic
environments

• Usable services
• Methods don’t consider peer characteristics



Measurement Studies

• “Free Riding on Gnutella”
• Most studies focus on Gnutella
• Want to determine how users behave
• Recommendations for the best way to

design systems



Free Riding Results

• Who is sharing what?
• August 2000

70%2,182,0871,667 hosts (5%)

37%1,142,645333 hosts (1%)

87%2,692,0823,334 hosts (10%)

99%3,082,5728,333 hosts (25%)
98%3,037,2326,667 hosts (20%)
94%2,928,9055,000 hosts (15%)

As percent of wholeShareThe top



Saroiu et al Study

• How many peers are server-like…client-
like?
– Bandwidth, latency

• Connectivity
• Who is sharing what?



Saroiu et al Study

• May 2001
• Napster crawl

– query index server and keep track of results
– query about returned peers
– don’t capture users sharing unpopular content

• Gnutella crawl
– send out ping messages with large TTL



Results Overview

• Lots of heterogeneity between peers
– Systems should consider peer capabilities

• Peers lie
– Systems must be able to verify reported peer

capabilities or measure true capabilities



Measured Bandwidth



Reported Bandwidth



Measured Latency



Measured Uptime



Number of Shared Files



Connectivity



Points of Discussion

• Is it all hype?
• Should P2P be a research area?
• Do P2P applications/systems have common

research questions?
• What are the “killer apps” for P2P systems?



Conclusion

• P2P is an interesting and useful model
• There are lots of technical challenges to be

solved


