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What is Peer-to-Peer (P2P)?

• Napster?
• Gnutella?
• Most people think of P2P as music sharing



What is a peer?

• Contrasted with
Client-Server model

• Servers are centrally
maintained and
administered

• Client has fewer
resources than a
server



What is a peer?
• A peer’s resources are

similar to the resources of
the other participants

• P2P – peers
communicating directly
with other peers and
sharing resources

• Often administered by
different entities
– Compare with DNS



P2P Application Taxonomy

P2P Systems

Distributed Computing
SETI@home

File Sharing
Gnutella

Collaboration
Jabber

Platforms
JXTA



Distributed Computing



Collaboration

sendMessage receiveMessage sendMessage receiveMessage



Collaboration

sendMessage receiveMessage sendMessage receiveMessage



Platforms

Find Peers … Send Messages

Gnutella Instant Messaging



P2P Goals/Benefits

• Cost sharing
• Resource aggregation
• Improved scalability/reliability
• Increased autonomy
• Anonymity/privacy
• Dynamism
• Ad-hoc communication



P2P File Sharing
• Centralized

– Napster
• Decentralized

– Gnutella
• Hierarchical

– Kazaa
• Incentivized

– BitTorrent
• Distributed Hash Tables

– Chord, CAN, Tapestry, Pastry



Challenges

• Peer discovery
• Group management
• Search
• Download
• Incentives



Metrics

• Per-node state
• Bandwidth usage
• Search time
• Fault tolerance/resiliency



Centralized
• Napster model

– Server contacted during search
– Peers directly exchange content

• Benefits:
– Efficient search
– Limited bandwidth usage
– No per-node state

• Drawbacks:
– Central point of failure
– Limited scale
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Decentralized (Flooding)
• Gnutella model

– Search is flooded to neighbors
– Neighbors are determined

randomly
• Benefits:

– No central point of failure
– Limited per-node state

• Drawbacks:
– Slow searches
– Bandwidth intensive
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Hierarchical
• Kazaa/new Gnutella model

– Nodes with high bandwidth/long uptime
become supernodes/ultrapeers

– Search requests sent to supernode
– Supernode caches info about attached leaf

nodes
– Supernodes connect to eachother (32 in

Limewire)
• Benefits:

– Search faster than flooding
• Drawbacks:

– Many of the same problems as
decentralized

– Reconfiguration when supernode fails
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BitTorrent

Source

.torrent server

seed

tracker

1. Download torrent

2. Get list of
peers and seeds
(the swarm)

3. Exchange vector 
of content downloaded 
with peers
4. Exchange content w/
peers
 

5. Update w/
progress



BitTorrent
• Key Ideas

– Break large files into small blocks and download blocks
individually

– Provide incentives for uploading content
• Allow download from peers that provide best upload rate

• Benefits
– Incentives
– Centralized search
– No neighbor state (except the peers in your swarm)

• Drawbacks
– “Centralized” search

• No central repository



Distributed Hash Tables (DHT)
• Chord, CAN, Tapestry, Pastry

model
– AKA Structured P2P networks
– Provide performance guarantees
– If content exists, it will be found

• Benefits:
– More efficient searching
– Limited per-node state

• Drawbacks:
– Limited fault-tolerance vs

redundancy
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DHTs: Overview

• Goal: Map key to value
• Decentralized with bounded number of neighbors
• Provide guaranteed performance for search

– If content is in network, it will be found
– Number of messages required for search is bounded

• Provide guaranteed performance for join/leave
– Minimal number of nodes affected

• Suitable for applications like file systems that
require guaranteed performance



Comparing DHTs

• Neighbor state
• Search performance
• Join algorithm
• Failure recovery



CAN
• Associate to each node and item a unique id in an

d-dimensional space
• Goals

– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

• Properties
– Routing table size O(d)
– Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes

Slide modified from another presentation



CAN Example: Two
Dimensional Space

• Space divided between nodes
• All nodes cover the entire

space
• Each node covers either a

square or a rectangular area of
ratios 1:2 or 2:1

• Example:
– Node n1:(1, 2) first node that

joins  cover the entire space
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CAN Example: Two
Dimensional Space

• Node n2:(4, 2) joins
• n2 contacts n1
• n1 splits its area and assigns

half to n2
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CAN Example: Two
Dimensional Space

• Nodes n3:(3, 5) n4:(5, 5) and n5:(6,6) join
• Each new node sends JOIN request to an existing

node chosen randomly
• New node gets neighbor table from existing node
• New and existing nodes update neighbor tables and

neighbors accordingly
– before n5 joins, n4 has neighbors n2 and n3
– n5 adds n4 and n2 to neighborlist
– n2 updated to include n5 in neighborlist

• Only O(2d) nodes are affected
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CAN Example: Two
Dimensional Space

• Bootstrapping - assume CAN has an associated
DNS domain and domain resolves to IP of one or
more bootstrap nodes

• Optimizations - landmark routing
– Ping a landmark server(s) and choose an

existing node based on distance to landmark
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CAN Example: Two
Dimensional Space

• Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

• Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);
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CAN Example: Two
Dimensional Space

• Each item is stored by the
node who owns its mapping
in the space
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CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id (Euclidean distance)

• Example: assume n1 queries
f4
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CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id

• Example: assume n1 queries
f4
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CAN: Query Example

• Forward query to the
neighbor that is closest to the
query id

• Example: assume n1 queries
f4
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CAN: Query Example
• Content guaranteed to be

found in d*n1/d hops
– Each dimension has n1/d nodes

• Increasing the number of
dimensions reduces path
length but increases number
of neighbors

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Slide modified from another presentation



Node Failure Recovery
• Detection

– Nodes periodically send refresh messages to neighbors
• Simple failures

– neighbor’s neighbors are cached
– when a node fails, one of its neighbors takes over its zone

• when a node fails to receive a refresh from neighbor, it sets a
timer

• many neighbors may simultaneously set their timers
• when a node’s timer goes off, it sends a TAKEOVER to the

failed node’s neighbors
•  when a node receives a TAKEOVER it either (a) cancels its

timer if the zone volume of the sender is smaller than its own
or (b) replies with a TAKEOVER

Slide modified from another presentation



Chord
• Each node has m-bit id that is a

SHA-1 hash of its IP address
• Nodes are arranged in a circle

modulo m
• Data is hashed to an id in the same

id space
• Node n stores data with id between

n and n’s predecessor
– 0 stores 4-0
– 1 stores 1
– 3 stores 2-3
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Chord
• Simple query algorithm:

– Node maintains successor
– To find data with id i, query

successor until successor > i
found

• Running time?
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Chord
• In reality, nodes maintain a finger

table with more routing
information
– For a node n, the ith entry in its

finger table is the first node
that succeeds n by at least 2i-1

• Size of finger table?
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Chord
• In reality, nodes maintain a finger

table with more routing
information
– For a node n, the ith entry in its

finger table is the first node
that succeeds n by at least 2i-1

• Size of finger table?
• O(log N)
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Chord
query:
  hash key to get id
  if id == node id - data found
  else if id in finger table - data found
  else
      p = find_predecessor(id)
      n = find_successor(p)

find_predecessor(id):
  choose n in finger table closest to id
  if n < id < find_successor(n)
      return n
  else
      ask n for finger entry closest to id and

recurse
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Chord

• Running time of
query algorithm?
– Problem size is

halved at each
iteration
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Chord

• Running time of
query algorithm?
– O(log N)
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Chord

• Join
– initialize

predecessor and
fingers

– update fingers and
predecessors of
existing nodes

– transfer data
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Chord
• Initialize predecessor and finger of

new node n*
– n* contacts existing node in

network n
– n does a lookup of

predecessor of n*
– for each entry in finger table,

look up successor
• Running time - O(mlogN)
• Optimization - initialize n* with

finger table of successor
– with high probability, reduces

running time to O(log N)
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Chord
• Update existing nodes

– n* becomes ith finger of a node
p if

• p precedes n by at least 2i-1

• the ith finger of p succeeds n
– start at predecessor of n* and

walk backwards
– for i=1 to 3:

• find predecessor of n*-2i-1

• update table and recurse
• Running time O(log2N)
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Chord
• Stabilization

– Goal: handle concurrent joins
– Periodically, ask successor for

its predecessor
– If your successor’s

predecessor isn’t you, update
– Periodically, refresh finger

tables
• Failures

– keep list of r successors
– if successor fails, replace with

next in the list
– finger tables will be corrected

by stabilization algorithm
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DHTs – Tapestry/Pastry

• Global mesh
• Suffix-based routing
• Uses underlying network

distance in constructing
mesh
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Comparing Guarantees

logbNNeighbor
map

Pastry

b logbNlogbNGlobal MeshTapestry

2ddN1/dMulti-
dimensional

CAN

log Nlog NUni-
dimensional

Chord

StateSearchModel

b logbN + b



Remaining Problems?

• Hard to handle highly dynamic
environments

• Usable services
• Methods don’t consider peer characteristics



Measurement Studies

• “Free Riding on Gnutella”
• Most studies focus on Gnutella
• Want to determine how users behave
• Recommendations for the best way to

design systems



Free Riding Results

• Who is sharing what?
• August 2000

70%2,182,0871,667 hosts (5%)

37%1,142,645333 hosts (1%)

87%2,692,0823,334 hosts (10%)

99%3,082,5728,333 hosts (25%)
98%3,037,2326,667 hosts (20%)
94%2,928,9055,000 hosts (15%)

As percent of wholeShareThe top



Saroiu et al Study

• How many peers are server-like…client-
like?
– Bandwidth, latency

• Connectivity
• Who is sharing what?



Saroiu et al Study

• May 2001
• Napster crawl

– query index server and keep track of results
– query about returned peers
– don’t capture users sharing unpopular content

• Gnutella crawl
– send out ping messages with large TTL



Results Overview

• Lots of heterogeneity between peers
– Systems should consider peer capabilities

• Peers lie
– Systems must be able to verify reported peer

capabilities or measure true capabilities



Measured Bandwidth



Reported Bandwidth



Measured Latency



Measured Uptime



Number of Shared Files



Connectivity



Points of Discussion

• Is it all hype?
• Should P2P be a research area?
• Do P2P applications/systems have common

research questions?
• What are the “killer apps” for P2P systems?



Conclusion

• P2P is an interesting and useful model
• There are lots of technical challenges to be

solved


