An Overview of Peer-to-Peer

Sami1 Rollins

Outline

* P2P Overview
— What 1s a peer?
— Example applications
— Benefits of P2P
— Is this just distributed computing?

« P2P Challenges
e Distributed Hash Tables (DHTS)

What 1s Peer-to-Peer (P2P)?

* Napster?
* Gnutella?
* Most people think of P2P as music sharing

What 1s a peer?

 (Contrasted with
Client-Server model

* Servers are centrally
maintained and
administered

e Client has fewer
resources than a
server

What 1s a peer?

e A peer’s resources are
similar to the resources of
the other participants

 P2P —peers
communicating directly
with other peers and
sharing resources

e Often administered by
different entities
— Compare with DNS

P2P Application Taxonomy

P2P Systems

N

Distributed Computing File Sharing Collaboration Platforms
SETI(@home Gnutella Jabber JXTA

Distributed Computmg

o =
NN -
4 =

1
1
| ot
|
B

ooy ——=-
=
AREEE O

pEy — ==
NN =
l‘ X ‘ Q

| <4’} 4

Collaboration

sendMessage J

I receiveMessage

sendMessageJ

I receiveMessage

Collaboration

sendMessage receiveMessage sendMessage receiveMessage

Platforms

Gnutella Instant Messaging

Find Peers . Send Messages

P2P Goals/Benetits

Cost sharing
Resource aggregation
Improved scalability/reliability

Increased autonomy
Anonymity/privacy
Dynamism

Ad-hoc communication

P2P File Sharing

Centralized
— Napster

Decentralized
— QGnutella

Hierarchical
— Kazaa

Incentivized
— BitTorrent

Distributed Hash Tables
— Chord, CAN, Tapestry, Pastry

Challenges

Peer discovery
Group management
Search

Download

Incentives

Metrics

Per-node state
Bandwidth usage
Search time

Fault tolerance/resiliency

Centralized

Bob Alice
 Napster model “--)
— Server contacted during search

— Efficient search

— Peers directly exchange content
* Benefits: =

— Limited bandwidth usage
— No per-node state

e Drawbacks:
— Central point of failure

— Limited scale

Decentralized (Flooding)

Carl Jane
Gnutella model
— Search is flooded to neighbors

— Neighbors are determined
randomly

Benefits: ‘
— No central point of failure w

— Limited per-node state

Drawbacks:

— Slow searches

— Bandwidth intensive

Hierarchical .

 Kazaa/new Gnutella model

— Nodes with high bandwidth/long uptime
become supernodes/ultrapeers

— Search requests sent to supernode
— Supernode caches info about attached leaf

nodes
— Supernodes connect to eachother (32 in
Limewire)
* Benefits: - ‘
— Search faster than flooding «— @

SuperTed

* Drawbacks:
— Many of the same problems as

decentralized SuperBob SuperFred
— Reconfiguration when supernode fails i

‘ Al?ce Aqdy

Carl
Judy

BitTorrent

.torrent server
1. Download torrent

\

2. Get list of
peers and seeds
(the swarm)

\

3. Exchange vector

of content downloaded

with peers
4. Exchange content w/
peers

seed

5. Update w/
progress

trdcker

BitTorrent

« Key Ideas

— Break large files into small blocks and download blocks
individually

— Provide incentives for uploading content
* Allow download from peers that provide best upload rate
* Benefits
— Incentives
— Centralized search
— No neighbor state (except the peers in your swarm)

 Drawbacks

— “Centralized” search
* No central repository

Distributed Hash Tables (DHT)

001 012
Chord, CAN, Tapestry, Pastry

model
— AKA Structured P2P networks
— Provide performance guarantees

— If content exists, it will be found

Benefits:
— More efficient searching

— Limited per-node state

Drawbacks:

— Limited fault-tolerance vs
redundancy

DHTs: Overview

Goal: Map key to value
Decentralized with bounded number of neighbors

Provide guaranteed performance for search
— If content 1s 1n network, 1t will be found
— Number of messages required for search 1s bounded

Provide guaranteed performance for join/leave
— Minimal number of nodes affected

Suitable for applications like file systems that
require guaranteed performance

Comparing DHT's

Neighbor state
Search performance
Join algorithm

Failure recovery

CAN

* Associate to each node and item a unique id in an
d-dimensional space

* Goals
— Scales to hundreds of thousands of nodes
— Handles rapid arrival and failure of nodes
* Properties
— Routing table size O(d)

— Guarantees that a file is found in at most d*n!/d steps,
where #n 1s the total number of nodes

CAN Example: Two
Dimensional Space

Space divided between nodes

7
All nodes cover the entire .
space

5

Each node covers either a
square or a rectangular area of 4
ratios 1:2 or 2:1 3

Example: ?

— Node nl:(1, 2) first node that 1
joins =2 cover the entire space o

———

———

CAN Example: Two
Dimensional Space

* Node n2:(4, 2) joins
* n2 contacts nl

* nl splits its area and assigns
half to n2

7

6

———————————————————————

———————————————————————

——————————————————————

——————————————————————

CAN Example: Two
Dimensional Space

Nodes n3:(3, 5) n4:(5, 5) and n5:(6,6) join

Each new node sends JOIN request to an existing
node chosen randomly

New node gets neighbor table from existing node

New and existing nodes update neighbor tables and
neighbors accordingly

— Dbefore n$5 joins, n4 has neighbors n2 and n3

— 15 adds n4 and n2 to neighborlist

— n2 updated to include n5 in neighborlist

Only O(2d) nodes are affected

7

"""
A L
i i

S [, St
| | | o | | |

0 1 2 3 4 5 6 7

Two
1 Space

1MeEnsiona

CAN Example
D

[

e e e, e e e d e -

o R —

Bootstrapping - assume CAN has an associated

DNS domain and domain resolves to IP of one or

more bootstrap nodes

Optimizations - landmark routing

— Ping a landmark server(s) and choose an
existing node based on distance to landmark

CAN Example: Two
Dimensional Space

* Nodes: nl:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

e Ttems: 1:(2,3); £2:(5,1);
3:(2,1); 4:(7,5);

7

----------- E————-I—————-————-I—-———-——;—-E—-———
| n5 |
! n3 n4 O
| . ¢ 4
o ! |
O n2 i
1 : . : 1
----------- :_F?;---r----------:-----r-----l-----
"0 | |
_________________________ 5_51:2_;""

CAN Example: Two

Dimensional Space

* Each item 1is stored by the 1] :
node who owns its mapping i e B
in the space R SR R N S |5

__

CAN: Query Example

* Forward query to the 4 R S S A N N
neighbor that is closesttothe 6| | | | | N
query id (Euclidean distance) ;| | | inj| i"e| O

 Example: assume nl queries ,| | | | 1=
t4 3 EHQ

"""" n 1"':"'":""""n'Z':""""""""
2 L
1 "o | s
N E..(_)_f_z_ ___________

CAN: Query Example

* Forward query to the

7

neighbor that 1s closest to the

query id
« Example: assume nl queries
f4

"""""" AR R N A S
I I n5 -
! n3 e ' O
1 [] 1 . :f4
o |]
Y n2v o r T
1 : . : 1
----------- :_F?;---r-------u--:-----r-----l-----
MO :
_________________________ 551:_2_ [T

CAN: Query Example

* Forward query to the

7

neighbor that 1s closest to the

query id
« Example: assume nl queries
f4

"""""" A B R
I I n5
: n3 e O
1 [) 1 . :f4
o | T
O e n2 i
1 : ‘ : 1
----------- :_F?;---r-------u--:-----r-----l-----
O :
_________________________ 551:_2_ I TR

CAN: Query Example

« Content guaranteed to be

found in d*n'dhops A T e
— Each dimension has n'dnodes 6| | | | 4'5‘ _____
* Increasing the number of 5 n%n'f“O
dimensions reduces path J IRV

length but increases number 3| il fO: | & ¢ i
of neighbors 2 m‘f3 _______ n- 2 ________________
(T) O N T

0 Esz

Node Failure Recovery

* Detection
— Nodes periodically send refresh messages to neighbors

e Simple failures
— neighbor’s neighbors are cached
— when a node fails, one of its neighbors takes over its zone

« when a node fails to receive a refresh from neighbor, it sets a
timer

* many neighbors may simultaneously set their timers

« when a node’s timer goes off, it sends a TAKEOVER to the
failed node’s neighbors

* when a node receives a TAKEOVER it either (a) cancels its

timer 1f the zone volume of the sender 1s smaller than its own
or (b) replies with a TAKEOVER

Chord

Each node has m-bit 1d that is a
SHA-1 hash of its IP address

Nodes are arranged in a circle
modulo m

Data 1s hashed to an i1d in the same
id space
Node 7 stores data with id between
n and n’s predecessor

— 0 stores 4-0

— 1 stores 1

— 3 stores 2-3

Chord

« Simple query algorithm:
— Node maintains successor

— To find data with id i, query
successor until successor > i
found

* Running time?

Chord

In reality, nodes maintain a finger
table with more routing
information

— For a node n, the i entry in its
finger table is the first node
that succeeds n by at least 2!

Size of finger table?

Chord

In reality, nodes maintain a finger
table with more routing
information

— For a node n, the i entry in its
finger table is the first node
that succeeds n by at least 2!

Size of finger table?
O(log N)

Chord

query:
hash key to get id
if 1d == node id - data found
else if id in finger table - data found
else
p = find_predecessor(id)
n = find_successor(p)

find predecessor(id):
choose n in finger table closest to i1d
if n <1id < find successor(n)
return n
else

ask n for finger entry closest to 1d and
recurse

Chord

* Running time of
guery algorithm?
— Problem size is

halved at each
iteration

Chord

* Running time of
guery algorithm?
— O(log N)

» Join
— initialize ;
predecessor and 2
fingers

— update fingers and
predecessors of
existing nodes

— transfer data

Chord

Initialize predecessor and finger of

new node n*
— n*contacts existing node in

network n

— ndoes a lookup of
predecessor of n*

— for each entry in finger table,
look up successor

Running time - O(mlogN)
Optimization - initialize n* with
finger table of successor

— with high probability, reduces
running time to O(log N)

Chord

- Update existing nodes

— n* becomes ith finger of a node

p if 5

* p precedes n by at least 21

- the ith finger of p succeeds n

— start at predecessor of n* and
walk backwards

— fori=11to 3:
- find predecessor of n*-2'
« update table and recurse

* Running time O(log®N)

Chord

« Stabilization

— Goal: handle concurrent joins

— Periodically, ask successor for

its predecessor

— If your successor’s
predecessor isn’t you, update

— Periodically, refresh finger
tables

 Failures

— keep list of rsuccessors

— if successor fails, replace with
next in the list

— finger tables will be corrected
by stabilization algorithm

DHTs — Tapestry/Pastry

 (Global mesh ‘

* Suffix-based routing

.
@

e Uses underlying network
distance 1n constructing

mesh r

‘\“\‘

Comparing Guarantees

Model Search State
Chord Uni- log N log N
dimensional
CAN Multi- i 2d
dimensional
Tapestry Global Mesh | log,N b log N
Pastry Neighbor log, N b log N +b

map

Remaining Problems?

* Hard to handle highly dynamic
environments

« Usable services
* Methods don’t consider peer characteristics

Measurement Studies

“Free Riding on Gnutella”

Most studies focus on Gnutella

Want to determine how users behave

Recommendations for the best way to
design systems

Free Riding Results

* Who 1s sharing what?

* August 2000

The top Share As percent of whole
333 hosts (1%) 1,142,645 37%
1,667 hosts (5%) 2,182,087 70%
3,334 hosts (10%) 2,692,082 87%
5,000 hosts (15%) 2,928,905 94%
6,667 hosts (20%) 3,037,232 98%
8,333 hosts (25%) 3,082,572 99%

Saro1u et al Study

 How many peers are server-like...client-
like?

— Bandwidth, latency
* Connectivity

* Who 1s sharing what?

Saro1u et al Study

 May 2001

* Napster crawl
— query 1ndex server and keep track of results
— query about returned peers

— don’t capture users sharing unpopular content

 Gnutella crawl

— send out ping messages with large TTL

Results Overview

* Lots of heterogeneity between peers
— Systems should consider peer capabilities
* Peers lie

— Systems must be able to verify reported peer
capabilities or measure true capabilities

Measured Bandwidth

CDF of Downstream and Upstream Bottleneck Bandwidths CDF of Downstream Bottleneck Bandwidths
(Gnutella)
100 -
100 -
80
80 3
% Upstroa\m/ § Napster /
60
5 60 e
M g Gnutella
o Downstream &
3 40 c 40 -
c a
[} 13}
o o
& * 20
0 1 0 T T
1 10 100 1,000 10,000 100,000 1,000,000 1 10 100 1,000 10,000 100,000 1,000,000
Kbps Kbps

Figure 3. Left: CDFs of upstream and downstream bottleneck bandwidths for Gnutella peers; Right:
CDFs of downstream bottleneck bandwidths for Napster and Gnutella peers.

Reported Bandwidth

Napster Reported Bandwidths Reported Bandwidths for Napster Excluding Reported Unknowns
073 T3 14.4Kbps 58 8Kbps
pLA T 2% 4% 19,
mT
5%
= Unknown 33.6Kbps
mDSL 229, I Unknown DSL 1% % 14.4Kbps
14%, . B 14.4Kbps .
N —28.8Kbps 14% . 5BKbps = 28.8Kbpe
. H14.4Kbps : / 23% 33.6Kbps
\ [133.6Kbps \
3% 56.7Kb \ 156Kbps
V : et ' B 64Kbps
|‘ _[128.8Kbps = 64Kbps I = 128Kbos
\ 1% ® 128Kbps 64K P
\ _ . ps M Cable
[133.6Kbps I Cable 3% 1 DSL
19 |
[Cabl . i ®DsL 128Kbps mT1
ao e — I567Kbps BT 3% T3
33% ~ 15%, T3 Cable
™ 128Kbps | H64Kbps 44%
3% 2%

Figure 4. Left: Reported bandwidths For Napster peers; Right: Reported bandwidths for Napster
peers, excluding peers that reported “unknown”.

Measured Latency

CDF of Measured Latencies (Gnutella) Gnutella Downstream Bottleneck Bandwidth vs. Latency
100 /-—'— 100,000
80 10,000
2
7]
o)
I 60 T 1,000
o [*]
L]
8 §
T 40 = 100
§ =
0
o
20 - 10
0 - T T 1 1 T 1 !
0 1 10 100 1000 10,000 100,000 1 10 100 1,000 10,000 100,000 1,000,000

Milliseconds Kbps

Figure 5. Left: Measured latencies to Gnutella peers; Right: Correlation between Gnutella peers’
downstream bottleneck bandwidth and latency.

Measured Uptime

CDFs of Host Uptimes CDFs of Session Duration

100 100%
Gnutella Host Uptime o —————
90% - i

80 | -
@ Napster Host Uptime o 80% -
7 c
g .g 70% -
- 60 b4
& & 60% ¢
g © 50% -
c 40 v
8 Internet Host Uptime g 40% -
&J (Gnutella) E

20 | 0 30% -+

Internet Host Uptime . 20% -

(Napster) - Napster Sessions

T 10% - .
Gnutella Sessions
0 20 40 80 8]0 100 0%, \

1 I

Host Uptime 0 60 120 180 240 300 360 420 480 540 600 660 720
Session Duration (Minutes)

Figure 6. IP-level uptime of peers (“Internet
Host Uptime”), and application-level uptime
of peers (“Gnutella/Napster Host Uptime”) in
both Napster and Gnutella, as measured by
the percentage of time the peers are reach-
able.

Figure 7. The distribution of Napster/Gnutella
session durations.

Number of Shared Files

CDF of Number of Shared Files (Gnutella) CDFs of Number of Shared Files Excluding Hosts Sharing No
Files
100 |
/ 100
@ o 80
e - Napster /
I 60 2 T~
o] uo- 60 /
g o Gnutell
8 nutella
Q (7]
o o
o 7]
20 o 29
’/
0 . 0 — . ; .
0 1 10 100 1,000 10,000 100,000 1 10 100 1,000 10,000 100,000
Number of Files Number of Shared Files

Figure 8. Left: The number of shared files for Gnutella peers; Right: The number of shared files for
Napster and Gnutella peers (peers with no files to share are excluded).

Connectivity

(@) (b) (c)

Figure 15. Left: Topology of the Gnutella network as of February 16, 2001 (1771 peers); Middle:
Topology of the Gnutella network after a random 30% of the nodes are removed; Right: Topology of
the Gnutella network after the highest-degree 4% of the nodes are removed.

Points of Discussion

Is 1t all hype?

Should P2P be a research area?

Do P2P applications/systems have common
research questions?

What are the “killer apps™ for P2P systems?

Conclusion

« P2P is an interesting and useful model

* There are lots of technical challenges to be
solved

