An Overview of Peer-to-Peer

Sami Rollins

Outline

- P2P Overview
 - What is a peer?
 - Example applications
 - Benefits of P2P
 - Is this just distributed computing?
- P2P Challenges
- Distributed Hash Tables (DHTs)

What is Peer-to-Peer (P2P)?

- Napster?
- Gnutella?
- Most people think of P2P as music sharing

What is a peer?

- Contrasted with Client-Server model
- Servers are centrally maintained and administered
- Client has fewer resources than a server

What is a peer?

- A peer's resources are similar to the resources of the other participants
- P2P peers communicating directly with other peers and sharing resources
- Often administered by different entities
 - Compare with DNS

P2P Application Taxonomy

Distributed Computing

Collaboration

Collaboration

Platforms

Gnutella		Instant Messaging	
Find Peers			Send Messages

P2P Goals/Benefits

- Cost sharing
- Resource aggregation
- Improved scalability/reliability
- Increased autonomy
- Anonymity/privacy
- Dynamism
- Ad-hoc communication

P2P File Sharing

- Centralized
 - Napster
- Decentralized
 - Gnutella
- Hierarchical
 - Kazaa
- Incentivized
 - BitTorrent
- Distributed Hash Tables
 - Chord, CAN, Tapestry, Pastry

Challenges

- Peer discovery
- Group management
- Search
- Download
- Incentives

Metrics

- Per-node state
- Bandwidth usage
- Search time
- Fault tolerance/resiliency

Centralized

- Napster model
 - Server contacted during search
 - Peers directly exchange content
- Benefits:
 - Efficient search
 - Limited bandwidth usage
 - No per-node state
- Drawbacks:
 - Central point of failure
 - Limited scale

Decentralized (Flooding)

- Gnutella model
 - Search is flooded to neighbors
 - Neighbors are determined randomly
- Benefits:
 - No central point of failure
 - Limited per-node state
- Drawbacks:
 - Slow searches
 - Bandwidth intensive

Hierarchical

- Kazaa/new Gnutella model
 - Nodes with high bandwidth/long uptime become supernodes/ultrapeers
 - Search requests sent to supernode
 - Supernode caches info about attached leaf nodes
 - Supernodes connect to eachother (32 in Limewire)
- Benefits:
 - Search faster than flooding
- Drawbacks:
 - Many of the same problems as decentralized
 - Reconfiguration when supernode fails

Jane

Alex

BitTorrent

BitTorrent

Key Ideas

- Break large files into small blocks and download blocks individually
- Provide incentives for uploading content
 - Allow download from peers that provide best upload rate

Benefits

- Incentives
- Centralized search
- No neighbor state (except the peers in your swarm)

Drawbacks

- "Centralized" search
 - No central repository

Distributed Hash Tables (DHT)

- Chord, CAN, Tapestry, Pastry model
 - AKA Structured P2P networks
 - Provide performance guarantees
 - If content exists, it will be found
- Benefits:
 - More efficient searching
 - Limited per-node state
- Drawbacks:
 - Limited fault-tolerance vs redundancy

DHTs: Overview

- Goal: Map key to value
- Decentralized with bounded number of neighbors
- Provide guaranteed performance for search
 - If content is in network, it will be found
 - Number of messages required for search is bounded
- Provide guaranteed performance for join/leave
 - Minimal number of nodes affected
- Suitable for applications like file systems that require guaranteed performance

Comparing DHTs

- Neighbor state
- Search performance
- Join algorithm
- Failure recovery

CAN

- Associate to each node and item a unique *id* in an *d*-dimensional space
- Goals
 - Scales to hundreds of thousands of nodes
 - Handles rapid arrival and failure of nodes
- Properties
 - Routing table size O(d)
 - Guarantees that a file is found in at most $d*n^{1/d}$ steps, where n is the total number of nodes

- Space divided between nodes
- All nodes cover the entire space
- Each node covers either a square or a rectangular area of ⁴ ratios 1:2 or 2:1
- Example:
 - Node n1:(1, 2) first node that joins → cover the entire space

- Node n2:(4, 2) joins
- n2 contacts n1
- n1 splits its area and assigns half to n2

- Nodes n3:(3, 5) n4:(5, 5) and n5:(6,6) join
- Each new node sends JOIN request to an existing node chosen randomly
- New node gets neighbor table from existing node
- New and existing nodes update neighbor tables and neighbors accordingly
 - before n5 joins, n4 has neighbors n2 and n3
 - n5 adds n4 and n2 to neighborlist
 - n2 updated to include n5 in neighborlist
- Only O(2d) nodes are affected

- Bootstrapping assume CAN has an associated DNS domain and domain resolves to IP of one or more bootstrap nodes
- Optimizations landmark routing
 - Ping a landmark server(s) and choose an existing node based on distance to landmark

- Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5); n4:(5,5);n5:(6,6)
- Items: f1:(2,3); f2:(5,1); f3:(2,1); f4:(7,5);

• Each item is stored by the node who owns its mapping in the space

- Forward query to the neighbor that is closest to the query *id* (Euclidean distance) 5
- Example: assume n1 queries f4

- Forward query to the neighbor that is closest to the query *id*
- Example: assume n1 queries f4

- Forward query to the neighbor that is closest to the query *id*
- Example: assume n1 queries f4

- Content guaranteed to be found in $d*n^{1/d}$ hops
 - Each dimension has $n^{1/d}$ nodes
- Increasing the number of dimensions reduces path length but increases number of neighbors

Node Failure Recovery

- Detection
 - Nodes periodically send refresh messages to neighbors
- Simple failures
 - neighbor's neighbors are cached
 - when a node fails, one of its neighbors takes over its zone
 - when a node fails to receive a refresh from neighbor, it sets a timer
 - many neighbors may simultaneously set their timers
 - when a node's timer goes off, it sends a TAKEOVER to the failed node's neighbors
 - when a node receives a TAKEOVER it either (a) cancels its timer if the zone volume of the sender is smaller than its own or (b) replies with a TAKEOVER

Chord

- Each node has m-bit id that is a SHA-1 hash of its IP address
- Nodes are arranged in a circle modulo m
- Data is hashed to an id in the same id space
- Node *n* stores data with id between *n* and *n*'s *predecessor*
 - 0 stores 4-0
 - 1 stores 1
 - 3 stores 2-3

Chord

- Simple query algorithm:
 - Node maintains successor
 - To find data with id *i*, query successor until successor > *i* found
- Running time?

- In reality, nodes maintain a *finger* table with more routing information
 - For a node n, the i^{th} entry in its finger table is the first node that succeeds n by at least 2^{i-1}
- Size of finger table?

- In reality, nodes maintain a *finger* table with more routing information
 - For a node n, the i^{th} entry in its finger table is the first node that succeeds n by at least 2^{i-1}
- Size of finger table?
- $O(\log N)$


```
query:
 hash key to get id
 if id == node id - data found
 else if id in finger table - data found
 else
   p = find_predecessor(id)
    n = find\_successor(p)
find_predecessor(id):
 choose n in finger table closest to id
 if n < id < find\_successor(n)
   return n
 else
    ask n for finger entry closest to id and
    recurse
```


- Running time of query algorithm?
 - Problem size is halved at each iteration

- Running time of query algorithm?
 - -O(log N)

- Join
 - initializepredecessor and fingers
 - update fingers and predecessors of existing nodes
 - transfer data

- Initialize predecessor and finger of new node n*
 - n* contacts existing node in network n
 - n does a lookup of predecessor of n*
 - for each entry in finger table, look up successor
- Running time O(mlogN)
- Optimization initialize n* with finger table of successor
 - with high probability, reduces running time to O(log N)

- Update existing nodes
 - n* becomes ith finger of a node p if
 - p precedes n by at least 2i-1
 - the ith finger of p succeeds n
 - start at predecessor of n* and walk backwards
 - for i=1 to 3:
 - find predecessor of n*-2ⁱ⁻¹
 - update table and recurse
- Running time O(log²N)

Stabilization

- Goal: handle concurrent joins
- Periodically, ask successor for its predecessor
- If your successor's predecessor isn't you, update
- Periodically, refresh finger tables

Failures

- keep list of r successors
- if successor fails, replace with next in the list
- finger tables will be corrected by stabilization algorithm

DHTs – Tapestry/Pastry

13FE

- Global mesh
- Suffix-based routing
- Uses underlying network distance in constructing mesh

Comparing Guarantees

	Model	Search	State
Chord	Uni- dimensional	log N	log N
CAN	Multi- dimensional	dN ^{1/d}	2d
Tapestry	Global Mesh	log_bN	b log _b N
Pastry	Neighbor map	log _b N	b log _b N + b

Remaining Problems?

- Hard to handle highly dynamic environments
- Usable services
- Methods don't consider peer characteristics

Measurement Studies

- "Free Riding on Gnutella"
- Most studies focus on Gnutella
- Want to determine how users behave
- Recommendations for the best way to design systems

Free Riding Results

- Who is sharing what?
- August 2000

The top	Share	As percent of whole
333 hosts (1%)	1,142,645	37%
1,667 hosts (5%)	2,182,087	70%
3,334 hosts (10%)	2,692,082	87%
5,000 hosts (15%)	2,928,905	94%
6,667 hosts (20%)	3,037,232	98%
8,333 hosts (25%)	3,082,572	99%

Saroiu et al Study

- How many peers are server-like...client-like?
 - Bandwidth, latency
- Connectivity
- Who is sharing what?

Saroiu et al Study

- May 2001
- Napster crawl
 - query index server and keep track of results
 - query about returned peers
 - don't capture users sharing unpopular content
- Gnutella crawl
 - send out ping messages with large TTL

Results Overview

- Lots of heterogeneity between *peers*
 - Systems should consider peer capabilities
- Peers lie
 - Systems must be able to verify reported peer capabilities or measure true capabilities

Measured Bandwidth

Figure 3. Left: CDFs of upstream and downstream bottleneck bandwidths for Gnutella peers; Right: CDFs of downstream bottleneck bandwidths for Napster and Gnutella peers.

Reported Bandwidth

Figure 4. Left: Reported bandwidths For Napster peers; Right: Reported bandwidths for Napster peers, excluding peers that reported "unknown".

Measured Latency

Figure 5. Left: Measured latencies to Gnutella peers; Right: Correlation between Gnutella peers' downstream bottleneck bandwidth and latency.

Measured Uptime

Figure 6. IP-level uptime of peers ("Internet Host Uptime"), and application-level uptime of peers ("Gnutella/Napster Host Uptime") in both Napster and Gnutella, as measured by the percentage of time the peers are reachable.

Figure 7. The distribution of Napster/Gnutella session durations.

Number of Shared Files

Figure 8. Left: The number of shared files for Gnutella peers; Right: The number of shared files for Napster and Gnutella peers (peers with no files to share are excluded).

Connectivity

Figure 15. Left: Topology of the Gnutella network as of February 16, 2001 (1771 peers); Middle: Topology of the Gnutella network after a random 30% of the nodes are removed; Right: Topology of the Gnutella network after the highest-degree 4% of the nodes are removed.

Points of Discussion

- Is it all hype?
- Should P2P be a research area?
- Do P2P applications/systems have common research questions?
- What are the "killer apps" for P2P systems?

Conclusion

- P2P is an interesting and useful model
- There are lots of technical challenges to be solved