Computer Science 411
 Homework 1: Sets Due Friday, September 4th, 2015

1. (9 points) Enumerate each of the following sets (that is, write our all elements of each of the following sets). Careful - some of these are a bit tricky!:
(a) $\{a, b, c,\{a, b, c\},\{\{a, b, c\}\}\}-\{a, b\}$
(b) $\{a, b, c,\{a, b, c\},\{\{a, b, c\}\}\}-\{\{a, b, c\}\}$
(c) $\{a, b, c,\{a, b, c\},\{\{a, b, c\}\}\}-\{\{a, b\}\}$
(d) $\{x: x \subseteq\{a, b, c\} \wedge|x|=2\}$
(e) $2^{2\{ \}}$
(f) $2^{2^{2\{ \}}}$
(g) $2^{\{a, b, c, d\}}-2^{\{b, c, d\}}$
(h) $\{a\} \times\{a, b\} \times\{a, b, c\}$
(i) $\} \times\{a\} \times\{a, b\}$
2. (2 points) Give a set S such that $\left|S \cap 2^{S}\right|>1$. Also, give $S \cap 2^{S}$
3. (2 points) Let $R=\{(a, b),(b, c),(c, a)\}$. Give the transitive closure of R.
4. (2 points) Under what conditions is the symmetric, transitive closure of a relation R over a set S not reflexive?
5. Fun with sets of functions:
(a) (1 point) How many different functions are there from set $\{a\}$ to the set $\{0,1\}$?
(b) (1 point) How many different functions are there from set $\{a, b\}$ to the set $\{0,1\}$?
(c) (1 point) How many different functions are there from the set A (where $|A|=n$) to the set $\{0,1\}$?
(d) (1 point) How many different functions are there from the set A (where $|A|=n$) to the set B (whiere $|B|=n$)?
(e) (3 points) Let $\{0,1\}^{A}$ be the set of all functions from the set A to the set $\{0,1\}$ (So, $\{0,1\}^{\{a, b\}}$ would be: $\{\{(a, 0),(b, 0)\},\{(a, 0),(b, 1)\},\{(a, 1),(b, 0)\} \ldots\}$. Give a bijection between the elements of $\{0,1\}^{A}$ and 2^{A}.
