Computer Science 411 Homework 5: Regular Language Closure, CFG Fall 2014 Due Friday, October 2nd, 2015

- 1. Let L_R be some regular language, and let L_{NR} be some non-regular language. Prove or disprove each of the following statements (use a counter-example to disprove):
 - (a) (3 points) If $L \subseteq L_R$, then L must be regular.
 - (b) (3 points) If $L \subseteq L_{NR}$, then L cannot be regular.
 - (c) (3 points) If $L \subseteq L_{NR} \cap L_R$, then L must be regular.
 - (d) (3 points) If $L \subseteq L_{NR} \cap L_R$, then L cannot be regular.
 - (e) (3 points) If $L = \overline{L_{NR}}$ (that is, L is the complement of L_{NR}), then L cannot be regular.
 - (f) (3 points) If L_1 is regular, then the language $L_2 = \{xy : x \in L_1 \text{ and } y \notin L_1\}$ is also regular.
- 2. For each of the following languages, give a context-free grammar
 - (a) (4 points) $\{a^{2n}b^{3n}: n > 0\}$
 - (b) (4 points) $\{a^n x : n \ge 0, x \in (a+b)^*, |x|=n\}$
 - (c) (4 points) $L = \{a^i b^j c^k : k \neq i+j\}$
- 3. Give a Regular Expression equivalent to each of the following CFGs. Think carefully about the language described by the CFG, and create an equivalent regular expression.
 - (a) (3 points)
 - $S \rightarrow ABA$ $A \rightarrow aA$ $A \rightarrow \epsilon$ $B \rightarrow bb$ (b) (3 points) $S \rightarrow AB$ $A \rightarrow aAa|bAb|a|b$ $B \rightarrow aB|bB|\epsilon$ (c) (3 points) $S \rightarrow AA$ $A \rightarrow AAA$ $A \rightarrow a$