Automata Theory
 CS411 \& CS675 2015F-01
 Set Theory \& Proof Techniques

David Galles

Department of Computer Science University of San Francisco

01-0: Syllabus

- Office Hours
- Course Text
- Prerequisites
- Test Dates \& Testing Policies
- Check dates now!
- Grading Policies

01-1: How to Succeed

- Come to class. Pay attention. Ask questions.

01-2: How to Succeed

- Come to class. Pay attention. Ask questions.
- A question as vague as "I don't get it" is perfectly acceptable.
- If you're confused, at least 2 other people are, too.

01-3: How to Succeed

- Come to class. Pay attention. Ask questions.
- A question as vague as "I don't get it" is perfectly acceptable.
- If you're confused, at least 2 other people are, too.
- Come by my office
- I am very available to students.

01-4: How to Succeed

- Come to class. Pay attention. Ask questions.
- A question as vague as "I don't get it" is perfectly acceptable.
- If you're confused, at least 2 other people are, too.
- Come by my office
- I am very available to students.
- Start the homework assignments early
- Homework in this class requires "thinking time"

01-5: How to Succeed

- Come to class. Pay attention. Ask questions.
- A question as vague as "I don't get it" is perfectly acceptable.
- If you're confused, at least 2 other people are, too.
- Come by my office
- I am very available to students.
- Start the homework assignments early
- Homework in this class requires "thinking time"
- Read the textbook.
- Ask Questions! The textbook can be hard to follow -reading a dense, technical work is a "learning outcome" for this class

01-6: Class Goals

- Prove that there are some problems that cannot be solved
- Show that there are some problems that (are believed to) require an exponential amount of time to solve (NP-Complete)
- Examine some strategies for dealing with these problems
- Along the way, learn how to model computation mathematically, and pick up some useful formalisms \& techniques
- DFA, regular expressions, CFGs, etc.

01-7: Review of the Basics

- Most (but perhaps not all) of the following material is review from discrete mathematics
- I will go fairly fast, assuming it is review
- Ask me to slow down if you have any questions!

01-8: Sets - Definition

- A set is an unordered collection of objects
- $S=\{a, b, c\}$
- a, b, c are elements or members of the set S

01-9: Sets - Definition

- A set is an unordered collection of objects
- $S=\{a, b, c\}$
- a, b, c are elements or members of the set S
- Elements in a set need have no relation to each other
- $S_{1}=\{1,2,3\}$
- $S_{2}=\{$ red, farmhouse, $\pi,-32\}$

01-10: Sets - Definition

- Sets can contain other sets as elements
- $S_{1}=\{3,\{3,4\},\{4,\{5,6\}\}\}$
- $S_{2}=\{\{1,2\},\{\{4\}\}\}$
- Sets do not contain duplicates
- NotASet = \{4, 2, 4, 5\}

01-11: Sets - Cardinality

- Cardinality of a set is the number of elements in the set
- $|\{a, b, c\}|=3$
- $|\{\{a, b\}, c\}|=$?

01-12: Sets - Cardinality

- Cardinality of a set is the number of elements in the set
- $|\{a, b, c\}|=3$
- $|\{\{a, b\}, c\}|=2$
($\{a, b\}$ and c)

01-13: Sets - Empty, Singleton

- Empty Set: $\}$ or $\emptyset,|\{ \}|=|\emptyset|=0$
- Singleton set - set with one element
- \{1\}
- \{4\}
- \{\} ?
- $\{\}\}$?
- $\{\{3,1,2\}\}$?

01-14: Sets - Empty, Singleton

- Empty Set: $\}$ or $\emptyset,|\{ \}|=|\emptyset|=0$
- Singleton set - set with one element
- \{1\} Singleton
- \{4\} Singleton
- \{\} Not a Singleton (empty)
- \{\{\}\} Singleton
- \{\{3, 1, 2\}\} Singleton

01-15: Sets - Membership

- Set membership: $x \in S$
- $3 \in\{1,3,5\}$
- $a \notin\{b, c, d\}$
- $3 \in\{1,\{2,3\}\}$?
- $\} \in\{1,2,3\}$?
- $\} \in\{1,\{ \}, 4\}$?

01-16: Sets - Membership

- Set membership: $x \in S$
- $3 \in\{1,3,5\}$
- $a \notin\{b, c, d\}$
- $3 \notin\{1,\{2,3\}\}$
- $\} \notin\{1,2,3\}$
- $\} \in\{1,\{ \}, 4\}$

01-17: Sets - Describing

- Referring to sets
- List all members
- $\{3,4,5\}$,
$\{0,1,2,3, \ldots\}$
- $S=\{x: x$ has a certain property $\}$
$S=\{x \mid x$ has a certain property $\}$
- $S=\{x: x \in \mathbf{N} \wedge x<10\}$

N is the set of natural numbers $\{0,1,2, \ldots\}$

- $S=\{x: x$ is prime $\}$
- $A \cup B=\{x: x \in A \vee x \in B\}$
- $A \cap B=\{x: x \in A \wedge x \in B\}$
- $A-B=\{x: x \in A \wedge x \notin B\}$

01-18: Sets $-\cup, \cap$

- More Union \& Intersection
- A and B are disjoint if $A \cap B=\{ \}$
- S is a collection of sets (set of sets)
$\bigcup S=\{x: x \in A$ for some $A \in S\}$
- $\bigcup\{\{1,2\},\{2,3\}\}=\{1,2,3\}$
$\bigcap S=\{x: x \in A$ for all $A \in S\}$
- $\cap\{\{1,2\},\{2,3\}\}=\{2\}$

01-19: Sets - Subset

- Subsets \& Supersets
- A is a subset of $B, A \subseteq B$ if:
- $\forall x, x \in A \Longrightarrow x \in B$
- $\forall(x \in A), x \in B$
- A is a proper subset of $B, A \subset B$ if:
- $A \subseteq B \wedge(\exists x, x \in B \wedge x \notin A)$
- $\}$ is a subset of any set (including itself)
- $\}$ is the only set that does not have a proper subset

01-20: Sets - Power Set

- Power set: Set of all subsets
- $2^{S}=\{x: x \subseteq S\}$
- $2^{\{a, b\}}=$?
- $2^{\{ \}}=$?
- $\left|2^{S}\right|=$?

01-21: Sets - Power Set

- Power set: Set of all subsets
- $2^{S}=\{x: x \subseteq S\}$
- $2^{\{a, b\}}=\{\{ \},\{a\},\{b\},\{a, b\}\}$
- $2^{\{ \}}=\{\{ \}\}$
- $\left|2^{S}\right|=2^{|S|}$

01-22: Sets - Partition

Π is a partition of S if:

- $\Pi \subset 2^{S}$
- $\} \notin \Pi$
- $\forall(X, Y \in \Pi), X \neq Y \Longrightarrow X \cap Y=\{ \}$
- $\bigcup \Pi=S$
$\{\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}, \mathrm{e}\},\{\mathrm{f}\}\}$ is a partition of $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ $\{\{a, b, c, d, e, f\}\}$ is a partition of $\{a, b, c, d, e, f\}$ $\{\{a, b, c\},\{d, e, f\}\}$ is a partition of $\{a, b, c, d, e, f\}$

01-23: Sets - Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

- All the partitions of the set $\{a, b, c\}$?

01-24: Sets - Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

- All the partitions of the set $\{a, b, c\}$?
- $\{\{a, b, c\}\},\{\{a, b\},\{c\}\},\{\{a, c\},\{b\}\},\{\{a\},\{b, c\}\}$, $\{\{a\},\{b\},\{c\}\}$

01-25: Ordered Pair

- (x, y) is an ordered pair
- Order matters - $(x, y) \neq(y, x)$ if $x \neq y$
- hence ordered
- x and y are the components of the ordered pair (x, y)

01-26: Cartesian Product

$$
\begin{aligned}
A & \times B=\{(x, y): x \in A \wedge y \in B\} \\
& \{1,2\} \times\{3,4\}=\{(1,3),(1,4),(2,3),(2,4)\} \\
& \{1,2\} \times\{1,2\}=? \\
& 2^{\{a\} \times\{b\}}=? \\
& 2^{\{a\}} \times 2^{\{b\}}=?
\end{aligned}
$$

01-27: Cartesian Product

$$
\begin{aligned}
A \times & \times=\{(x, y): x \in A \wedge y \in B\} \\
\bullet & \{1,2\} \times\{3,4\}=\{(1,3),(1,4),(2,3),(2,4)\} \\
\bullet & \{1,2\} \times\{1,2\}=\{(1,1),(1,2),(2,1),(2,2)\} \\
\bullet & 2^{\{a\} \times\{b\}}=\{\{(a, b)\},\{ \}\} \\
\bullet & 2^{\{a\}} \times 2^{\{b\}}= \\
& \{(\{a\},\{b\}),(\{a\},\{ \}),(\{ \},\{b\}),(\{ \},\{ \})\}
\end{aligned}
$$

01-28: Cartesian Product

Which of the following is true:

- $\forall(A, B) \quad A \times B=B \times A$
- $\forall(A, B) \quad A \times B \neq B \times A$
- None of the above

01-29: Cartesian Product

Which of the following is true:

- $\forall(A, B) \quad A \times B=B \times A$
- If and only if $A=B$
- $\forall(A, B) \quad A \times B \neq B \times A$
- If and only if $A \neq B$

01-30: Cartesian Product

- Why "Cartesian"?
- Think "Cartesian Coordinates" (standard coordinate system)
- $\mathbf{R} \times \mathbf{R}$ is the real plane
- Set of all points (x, y) where $x, y \in \mathbf{R}$
- \mathbf{R} is the set of real numbers (think "floats" if you're CS)

01-31: Cartesian Product

- Can take the Cartesian product of >2 sets.
- $A \times B \times C=\{(x, y, z): x \in A, y \in B, z \in C\}$
- $\{a\} \times\{b, c\} \times\{d\}=\{(a, b, d),(a, c, d)\}$
- (Techinally, $A \times B \times C=(A \times B) \times C)$
- $\{a\} \times\{b, c\} \times\{d\}=\{((a, b), d),((a, c), d)\}$
- Often drop the extra parentheses for readability

01-32: Relations

- A relation R is a set of ordered pairs
- For example the relation < over the Natural Numbers is the set:
(0,1), (0,2), (0,3), ...
$(1,2),(1,3),(1,4), \ldots$
$(2,3),(2,4),(2,5), \ldots$
$\}$

01-33: Relations

- Often, relations are over the same set
- that is, a subset of $A \times A$ for some set A
- Not all relations are over the same set, however
- Relation describing prices of computer components \{(Hard dive, \$55), (WAP, \$49), (2G DDR, \$44), ...\}

01-34: Functions

- A function is a special kind of relation (all functions are relations, but not all relations are functions)
- A relation $R \subseteq A \times B$ is a function if:
- For each $a \in A$, there is exactly one ordered pair in R with the first component a

01-35: Functions

- A function f that is a subset of $A \times B$ is written: $f: A \mapsto B$
- $(a, b) \in f$ is written $f(a)=b$
- A is the domain of the function
- if $A^{\prime} \subseteq A, f\left(A^{\prime}\right)=\left\{b: a \in A^{\prime} \wedge f(a)=b\right\}$ is the image of A^{\prime}
- The range of a function is the image of its domain

01-36: Functions

A function $f: A \mapsto B$ is:

- one-to-one if no two elements in A match to the same element in B
- onto Each element in B is mapped to by at least one element in A
- a bijection if it is both one-to-one and onto

The inverse of a binary relation $R \subset A \times B$ is denoted R^{-1}, and defined to be $\{(b, a):(a, b) \in R\}$

- A function only has an inverse if ...

01-37: Functions

A function $f: A \mapsto B$ is:

- one-to-one if no two elements in A match to the same element in B
- onto Each element in B is mapped to by at least one element in A
- a bijection if it is both one-to-one and onto

The inverse of a binary relation $R \subset A \times B$ is denoted R^{-1}, and defined to be $\{(b, a):(a, b) \in R\}$

- A function only has an inverse if it is a bijection

01-38: Functions

- What if we want to take the inverse of a function that is not a bijection - what can we do?
- Want to preserve full information about the original function
- Resulting inverse must be an actual function

01-39: Functions

- What if we want to take the inverse of a function that is not a bijection - what can we do?
- Want to preserve full information about the original function
- Resulting inverse must be an actual function
- How can we have an element map to 0, 1, or more elements, and still have a function? HINT: If we modified the range ...

01-40: Functions

- What if we want to take the inverse of a function that is not a bijection - what can we do?
- Want to preserve full information about the original function
- Resulting inverse must be an actual function
- $f: A \mapsto B \quad f^{-1}: B \mapsto 2^{A}$
(example on chalkboard)

01-41: Relations

- Q and R are two relations
- The composition of Q and $R, Q \circ R$ is: $\{(a, b):(a, c) \in Q,(c, b) \in R$ for some $c\}$
$Q=\{(a, c),(b, d),(c, a)\}$
$R=\{(a, c),(b, c),(c, a)\}$
$Q \circ R=\{(a, a),(c, c)\}$
$Q \circ Q ?$
$(Q \circ R) \circ Q ?$

01-42: Relation Graph

- Each element is a node in the graph
- if $(a, b) \in R$, then there is an edge from a to b in the graph

$$
\begin{aligned}
& R=\{(a, b),(a, c),(c, a),(b, b),(b, d)\} \\
& \longrightarrow \mathrm{c} \\
& \mathrm{a}
\end{aligned}
$$

01-43: Relation Types

- A relation $R \subseteq A \times A$ is reflexive if
- $(a, a) \in R$ for each $a \in A$
- $\forall(a \in A),(a, a) \in R$
- Each node has a self loop

Reflexive

Not Reflexive

01-44: Relation Types

- A relation $R \subseteq A \times A$ is symmetric if
- $(a, b) \in R$ whenever $(b, a) \in R$
- $(a, b) \in R \Longrightarrow(b, a) \in R$
- Every edge goes "both ways"

Symmetric

Not Symmeteric

01-45: Relation Types

- A relation $R \subseteq A \times A$ is antisymmetric if
- whenever $(a, b) \in R, a, b$ are distinct $(b, a) \notin R$
- $(a, b) \in R \wedge a \neq b \Longrightarrow(b, a) \notin R$
- No edge goes "both ways"

Antisymmetric

Not Antisymmeteric

- Can a relation be neither symmetric nor antisymmetric?

01-46: Relation Types

- A relation $R \subseteq A \times A$ is antisymmetric if
- whenever $(a, b) \in R, a, b$ are distinct $(b, a) \notin R$
- $(a, b) \in R \wedge a \neq b \Longrightarrow(b, a) \notin R$
- No edge goes "both ways"

Antisymmetric

Not Antisymmeteric

- Can a relation be both symmetric and antisymmetric?

01-47: Relation Types

- A relation $R \subseteq A \times A$ is transitive if
- whenever $(a, b) \in R$, and $(b, c) \in R,(a, c) \in R$
- $(a, b) \in R \wedge(b, c) \in R \Longrightarrow(a, c) \in R$
- Every path of length 2 has a direct edge

Transitive

Not Transitive

01-48: Closure

- A set $A \subseteq B$ is closed under a relation
$R \subseteq((B \times B) \times B)$ if:
- $a_{1}, a_{2} \in A \wedge\left(\left(a_{1}, a_{2}\right), c\right) \in R \Longrightarrow c \in A$
- That is, if a_{1} and a_{2} are both in A, and $\left(\left(a_{1}, a_{2}\right), c\right)$ is in the relation, then c is also in A
- \mathbf{N} is closed under addtion
- \mathbf{N} is not closed under subtraction or division

01-49: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!

01-50: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!
- Example:
- $R \subseteq A \times A$
- $R^{\prime}=\{(((a, b),(b, c)),(a, c)): a, b, c \in A\}$
- If R is closed under R^{\prime}, then ...

01-51: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!
- Example:
- $R \subseteq A \times A$
- $R^{\prime}=\{(((a, b),(b, c)),(a, c)): a, b, c \in A\}$
- If R is closed under R^{\prime}, then R is transitive!

01-52: Closure

- Reflexive closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is reflexive
- Add self-loop to every node in relation
- Add (a,a) to R for every $a \in A$
- Transitive Closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is transitive
- Add direct link for every path of length 2.
- $\forall(a, b, c \in A)$ if $(a, b) \in R \wedge(b, c) \in R$ add (a, c) to R.
(examples on board)

01-53: Relation Types

- Equivalence Relation
- Symmetric, Transitive, Reflexive
- Examples:
- Equality (=)
- A is the set of English words, $\left(w_{1}, w_{2}\right) \in R$ if w_{1} and w_{2} start with the same letter
(example graphs)

01-54: Relation Types

- Equivalence Relation
- Symmetric, Transitive, Reflexive
- Separates set into equivalence classes (all words that start with a , for example
- If $a \in A$, then $[a]$ represents equivalence class that contains a.

01-55: Relation Types

- Partial Order
- Antisymmetric, Transitive, Reflexive
- Examples:
- \leq for integers
A is the set of integers, $(a, b) \in R$ if $a \leq b$
- Ancestor

$$
\begin{aligned}
& R \subseteq A \times A=\{(x, y): x \text { is an ancestor of } y \text {, } \\
& \text { or } x=y\}
\end{aligned}
$$

(example graphs)

01-56: Relation Types

- Total Order
- $R \subseteq A \times A$ is a total order if:
- R is a partial order
- For all $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$
- Is \leq a total order?
- Is Ancestor a total order?
(example graphs)

01-57: Cardinality

- How can we tell if two sets A and B have the same cardinality?

01-58: Cardinality

- How can we tell if two sets A and B have the same cardinality?
- Calculate $|A|$ and $|B|$, make sure numbers are the same
- Match each element in A to an element in B
- Create a bijection $f: A \mapsto B$ (or $f: B \mapsto A$)

01-59: Cardinality

- What about infinite sets? Are they all equinumerous (that is, have the same cardinality)?
- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.

01-60: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Even elements of \mathbf{N} ?

01-61: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Even elements of N ?
- $f(x)=2 x$

01-62: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Integers (Z)?

01-63: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Integers (Z)?
- $f(x)=\left\lceil\frac{x}{2}\right\rceil *(-1)^{x}$
$\begin{array}{lllllllll}-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\end{array}$

01-64: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Union of 3 (disjoint) countable sets A, B, C?

01-65: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Union of 3 (disjoint) countable sets A, B, C?
$a_{0} a_{1} a_{2} a_{3} a_{4} \ldots$
$\begin{array}{llllllll}b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & \ldots\end{array}$
$\begin{array}{llllll}\mathbf{C}_{0} & \mathbf{C}_{1} & \mathbf{C}_{2} & \mathbf{C}_{3} & \mathbf{C}_{4} & \ldots\end{array}$

$$
\text { - } f(x)= \begin{cases}a_{\frac{x}{3}} & \text { if } \mathrm{x} \bmod 3=0 \\ b_{\frac{x-1}{3}} & \text { if } \mathrm{x} \bmod 3=1 \\ c_{\frac{x-2}{3}} & \text { if } \mathrm{x} \bmod 3=2\end{cases}
$$

01-66: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N .
- $\mathbf{N} \times \mathbf{N}$?
$(0,0) \quad(0,1) \quad(0,2) \quad(0,3) \quad(0,4) \quad .$.
$(1,0) \quad(1,1) \quad(1,2) \quad(1,3) \quad(1,4) \quad .$.
$(2,0) \quad(2,1) \quad(2,2) \quad(2,3) \quad(2,4) \quad .$.
$(3,0) \quad(3,1) \quad(3,2) \quad(3,3) \quad(3,4) \quad .$.
$(4,0) \quad(4,1) \quad(4,2) \quad(4,3) \quad(4,4) \quad .$.
$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots$

01-67: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N .
- $\mathbf{N} \times \mathbf{N}$?
$(0,0) \quad(0,1) \quad(\Theta, 2) \quad(0,3) \quad(0,4) \quad \ldots$
$(1,0) \quad(1,1) \quad(1,2) \quad(1,3) \quad(1,4) \quad .$.
$(2, \mathbf{j}) \quad(2, \mathrm{~J}, \quad(2,2) \quad(2,3) \quad(2,4) \quad .$.
$(3,0) \quad(3,1) \quad(3,2) \quad(3,3) \quad(3,4) \quad .$.
$(4,0) \quad(4,1) \quad(4,2) \quad(4,3) \quad(4,4) \quad .$.
- $f((x, y))=\frac{(x+y) *(x+y+1)}{2}+x$

01-68: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Real numbers between 0 and 1 (exclusive)?

01-69: Uncountable R

- Proof by contradiction
- Assume that R between 0 and 1 (exclusive) is countable
- (that is, assume that there is some bijection from N to R between 0 and 1)
- Show that this leads to a contradiction
- Find some element of R between 0 and 1 that is not mapped to by any element in \mathbf{N}

01-70: Uncountable R

- Assume that there is some bijection from \mathbf{N} to \mathbf{R} between 0 and 1

0	$0.3412315569 \ldots$
1	$0.0123506541 \ldots$
2	$0.1143216751 \ldots$
3	$0.2839143215 \ldots$
4	$0.2311459412 \ldots$
5	$0.8381441234 \ldots$
6	$0.7415296413 \ldots$

01-71: Uncountable R

- Assume that there is some bijection from \mathbf{N} to \mathbf{R} between 0 and 1

	0
1	$0.3412315569 \ldots$
2	$0.0123506541 \ldots$
3	$0.1142216751 \ldots 143215 \ldots$
4	$0.2311459412 \ldots$
5	$0.8381441234 \ldots$
6	$0.7415296413 \ldots$
\vdots	\vdots

Consider: 0.425055...

01-72: Proof Techniques

- Three basic proof techniques used in this class
- Induction
- Diagonalization
- Pigeonhole Principle

01-73: Induction

Can create exact postage for any amount $\geq \$ 0.08$ using only 3 cent and 5 cent stamps

01-74: Induction

Can create exact postage for any amount $\geq \$ 0.08$ using only 3 cent and 5 cent stamps

- Base case

Can create postage for 0.08 using one 5 -cent and one 3-cent stamp

01-75: Induction

Can create exact postage for any amount $\geq \$ 0.08$ using only 3 cent and 5 cent stamps

- Inductive case
- To show: if we can create exact postage for $\$ \mathrm{x}$ using only 3 -cent and 5 -cent stamps, we can create exact postage for $\$ \mathrm{x}+\$ 0.01$ using 3-cent and 5-cent stamps
- Two cases:
- Exact postage for $\$ \times$ uses at least one 5 -cent stamp
- Exact postage for \$x uses no 5-cent stamps

01-76: Induction

- To show: if we can create exact postage for $\$ x$ using only 3 -cent and 5 -cent stamps, we can create exact postage for $\$ x+\$ 0.01$ using 3-cent and 5-cent stamps
- Exact postage for $\$ x$ uses at least one 5 -cent stamp
- Replace a 5-cent stamp with two 3-cent stamps to get $\$ x+\$ 0.01$
- Exact postage for $\$ x$ uses no 5 -cent stamps
- Replace three 3 -cent stamps with two 5-cent stamps to get \$ + \$0.01

01-77: Pigeonhole Principle

- A, B are finite sets, with $|A|>|B|$, then there is no one-to-one function from A to B
- If you have n pigeonholes, and $>n$ pigeons, and every pigeon is in a pigeonhole, there must be at least one hole with > 1 pigeon.

01-78: Pigeonhole Principle

- Show that in a relation R over a set A, if there is a path from a_{i} to a_{j} in R, then there is a path from a to b whose length is at most $|A|$.

01-79: Pigeonhole Principle

Proof by Contradiction

- Assume that there exists some shortest path from a_{i} to a_{j} of length $>|A|$.
- By pigeonhole principle, some element must repeat:
- $\left\{a_{i}, \ldots, a_{k}, \ldots, a_{k} \ldots a_{J}\right\}$
- We can create a shorter path by removing elements between a_{k} s.
- We've just found a shorter path from a_{i} to $a_{j}-\mathrm{a}$ contradiction

