01-0: Syllabus

- Office Hours
- Course Text
- Prerequisites
- Test Dates & Testing Policies
 - Check dates now!
- Grading Policies

01-1: How to Succeed

• Come to class. Pay attention. Ask questions.

01-2: How to Succeed

- Come to class. Pay attention. Ask questions.
 - A question as vague as "I don't get it" is perfectly acceptable.
 - If you're confused, at least 2 other people are, too.

01-3: How to Succeed

- Come to class. Pay attention. Ask questions.
 - A question as vague as "I don't get it" is perfectly acceptable.
 - If you're confused, at least 2 other people are, too.
- Come by my office
 - I am very available to students.

01-4: How to Succeed

- Come to class. Pay attention. Ask questions.
 - A question as vague as "I don't get it" is perfectly acceptable.
 - If you're confused, at least 2 other people are, too.
- Come by my office
 - I am very available to students.
- Start the homework assignments early
 - Homework in this class requires "thinking time"

01-5: How to Succeed

- Come to class. Pay attention. Ask questions.
 - A question as vague as "I don't get it" is perfectly acceptable.
 - If you're confused, *at least* 2 other people are, too.
- Come by my office

CS411 & CS675 2015F-01

- I am very available to students.
- Start the homework assignments early
 - Homework in this class requires "thinking time"
- Read the textbook.
 - Ask Questions! The textbook can be hard to follow –reading a dense, technical work is a "learning outcome" for this class

01-6: Class Goals

- Prove that there are some problems that *cannot be solved*
- Show that there are some problems that (are believed to) require an exponential amount of time to solve (NP-Complete)
 - Examine some strategies for dealing with these problems
- Along the way, learn how to model computation mathematically, and pick up some useful formalisms & techniques
 - DFA, regular expressions, CFGs, etc.

01-7: Review of the Basics

- Most (but perhaps not all) of the following material is review from discrete mathematics
- I will go fairly fast, assuming it is review
 - Ask me to slow down if you have any questions!

01-8: Sets – Definition

- A set is an unordered collection of objects
- $S = \{a, b, c\}$
 - *a*, *b*, *c* are **elements** or **members** of the set *S*

01-9: Sets – Definition

- A set is an unordered collection of objects
- $S = \{a, b, c\}$
 - *a*, *b*, *c* are **elements** or **members** of the set *S*
- Elements in a set need have no relation to each other
 - $S_1 = \{1, 2, 3\}$
 - $S_2 = \{ \text{ red, farmhouse, } \pi, -32 \}$

01-10: Sets – Definition

- Sets can contain other sets as elements
 - $S_1 = \{3, \{3, 4\}, \{4, \{5, 6\}\}\}$

- $S_2 = \{\{1, 2\}, \{\{4\}\}\}$
- Sets do not contain duplicates
 - NotASet = $\{4, 2, 4, 5\}$

01-11: Sets – Cardinality

- Cardinality of a set is the number of elements in the set
 - $|\{a, b, c\}| = 3$
 - $|\{\{a,b\},c\}| = ?$

01-12: Sets – Cardinality

- Cardinality of a set is the number of elements in the set
 - $|\{a, b, c\}| = 3$
 - $|\{\{a,b\},c\}| = 2$ ({a,b} and c)

01-13: Sets – Empty, Singleton

- **Empty Set**: {} or \emptyset , |{}| = $|\emptyset| = 0$
- Singleton set set with one element
 - {1}
 - {4}
 - {}?
 - {{}}?
 - $\{\{3, 1, 2\}\}$?

01-14: Sets - Empty, Singleton

- **Empty Set**: {} or \emptyset , $|{}| = |\emptyset| = 0$
- **Singleton** set set with one element
 - {1} Singleton
 - {4} Singleton
 - {} Not a Singleton (empty)
 - {{}} Singleton
 - {{3, 1, 2}} Singleton

01-15: Sets – Membership

- Set membership: $x \in S$
 - $3 \in \{1, 3, 5\}$
 - $a \notin \{b, c, d\}$
 - $3 \in \{1, \{2, 3\}\}$?
 - $\{\} \in \{1, 2, 3\}$?
 - $\{\} \in \{1, \{\}, 4\}$?

01-16: Sets – Membership

- Set membership: $x \in S$
 - $3 \in \{1, 3, 5\}$
 - $a \notin \{b, c, d\}$
 - $3 \notin \{1, \{2, 3\}\}$
 - $\{\} \notin \{1, 2, 3\}$
 - $\{\} \in \{1, \{\}, 4\}$

01-17: Sets – Describing

- Referring to sets
 - List all members
 - $\{3, 4, 5\}, \{0, 1, 2, 3, ...\}$
 - $S = \{x : x \text{ has a certain property}\}$
 - $S = \{x \mid x \text{ has a certain property}\}$
 - S = {x : x ∈ N ∧ x < 10}
 N is the set of natural numbers {0, 1, 2, ... }
 - $S = \{x : x \text{ is prime }\}$
 - $A \cup B = \{x : x \in A \lor x \in B\}$
 - $A \cap B = \{x : x \in A \land x \in B\}$
 - $A B = \{x : x \in A \land x \notin B\}$

01-18: Sets – \cup , \cap

- More Union & Intersection
 - A and B are **disjoint** if $A \cap B = \{\}$
 - *S* is a collection of sets (set of sets)
 - $\bigcup S = \{x : x \in A \text{ for some } A \in S\}$
 - \bigcup {{1,2}, {2,3}} = {1,2,3}
 - $\bigcap S = \{x : x \in A \text{ for all } A \in S\}$
 - \bigcap {{1,2}, {2,3}} = {2}

01-19: Sets – Subset

- Subsets & Supersets
 - A is a subset of $B, A \subseteq B$ if:
 - $\forall x, x \in A \implies x \in B$
 - $\forall (x \in A), x \in B$
 - A is a proper subset of $B, A \subset B$ if:
 - $A \subseteq B \land (\exists x, x \in B \land x \notin A)$
 - {} is a subset of any set (including itself)
 - {} is the only set that does not have a proper subset

01-20: Sets – Power Set

• Power set: Set of all subsets

•
$$2^S = \{x : x \subseteq S\}$$

- $2^{\{a,b\}} = ?$
- $2^{\{\}} = ?$

•
$$|2^S| = ?$$

01-21: Sets – Power Set

• Power set: Set of all subsets

•
$$2^S = \{x : x \subseteq S\}$$

- $2^{\{a,b\}} = \{\{\}, \{a\}, \{b\}, \{a,b\}\}$
- $2^{\{\}} = \{\{\}\}$
- $|2^S| = 2^{|S|}$

01-22: Sets – Partition

 Π is a **partition** of *S* if:

- $\Pi \subset 2^S$
- $\{\} \notin \Pi$
- $\forall (X, Y \in \Pi), X \neq Y \implies X \cap Y = \{\}$
- $\bigcup \Pi = S$

 $\{\{a, c\}, \{b, d, e\}, \{f\}\}\$ is a partition of $\{a, b, c, d, e, f\}$ $\{\{a, b, c, d, e, f\}\}$ is a partition of $\{a, b, c, d, e, f\}$ $\{\{a, b, c\}, \{d, e, f\}\}$ is a partition of $\{a, b, c, d, e, f\}$ 01-23: **Sets – Partition**

In other words, a **partition** of a set S is just a division of the elements of S into 1 or more groups.

• All the partitions of the set {a, b, c}?

01-24: Sets – Partition

In other words, a **partition** of a set S is just a division of the elements of S into 1 or more groups.

- All the partitions of the set {a, b, c}?
 - $\{\{a, b, c\}\}, \{\{a, b\}, \{c\}\}, \{\{a, c\}, \{b\}\}, \{\{a\}, \{b, c\}\}, \{\{a\}, \{b\}, \{c\}\}\}$

01-25: Ordered Pair

- (x, y) is an ordered pair
- Order matters $(x, y) \neq (y, x)$ if $x \neq y$
 - hence ordered
- x and y are the **components** of the ordered pair (x, y)

01-26: Cartesian Product

- $A\times B=\{(x,y):x\in A\wedge y\in B\}$
- $\{1,2\} \times \{3,4\} = \{(1,3), (1,4), (2,3), (2,4)\}$
- $\{1,2\} \times \{1,2\} = ?$
- $2^{\{a\} \times \{b\}} = ?$
- $2^{\{a\}} \times 2^{\{b\}} = ?$

01-27: Cartesian Product

- $A \times B = \{(x, y) : x \in A \land y \in B\}$
- $\{1,2\} \times \{3,4\} = \{(1,3), (1,4), (2,3), (2,4)\}$
- $\{1,2\} \times \{1,2\} = \{(1,1), (1,2), (2,1), (2,2)\}$
- $2^{\{a\} \times \{b\}} = \{\{(a, b)\}, \{\}\}$
- $2^{\{a\}} \times 2^{\{b\}} = \{(\{a\}, \{b\}), (\{a\}, \{\}), (\{\}, \{b\}), (\{\}, \{\})\}$

01-28: Cartesian Product

Which of the following is true:

- $\forall (A, B) \quad A \times B = B \times A$
- $\forall (A, B) \quad A \times B \neq B \times A$
- None of the above

01-29: Cartesian Product

Which of the following is true:

- $\forall (A, B) \quad A \times B = B \times A$
 - If and only if A = B
- $\forall (A, B) \quad A \times B \neq B \times A$
 - If and only if $A \neq B$

01-30: Cartesian Product

- Why "Cartesian"?
 - Think "Cartesian Coordinates" (standard coordinate system)
 - $\mathbf{R} \times \mathbf{R}$ is the real plane
 - Set of all points (x, y) where $x, y \in \mathbf{R}$
 - **R** is the set of real numbers (think "floats" if you're CS)

01-31: Cartesian Product

- Can take the Cartesian product of > 2 sets.
- $A \times B \times C = \{(x, y, z) : x \in A, y \in B, z \in C\}$

- $\{a\} \times \{b,c\} \times \{d\} = \{(a,b,d), (a,c,d)\}$
- (Techinally, $A \times B \times C = (A \times B) \times C$)
 - $\{a\} \times \{b, c\} \times \{d\} = \{((a, b), d), ((a, c), d)\}$
 - Often drop the extra parentheses for readability

01-32: Relations

- A relation R is a set of ordered pairs
- For example the relation < over the Natural Numbers is the set:

$$\{ \begin{array}{cc} (0,1), (0,2), (0,3), \dots \\ (1,2), (1,3), (1,4), \dots \\ (2,3), (2,4), (2,5), \dots \end{array} \}$$

01-33: Relations

- Often, relations are over the same set
 - that is, a subset of $A \times A$ for some set A

}

- Not all relations are over the same set, however
 - Relation describing prices of computer components {(Hard dive, \$55), (WAP, \$49), (2G DDR, \$44), ...}

01-34: Functions

- A function is a special kind of relation (all functions are relations, but not all relations are functions)
- A relation $R \subseteq A \times B$ is a function if:
 - For each $a \in A$, there is exactly one ordered pair in R with the first component a

01-35: Functions

- A function f that is a subset of $A \times B$ is written: $f : A \mapsto B$
 - $(a,b) \in f$ is written f(a) = b
 - *A* is the domain of the function
 - if $A' \subseteq A$, $f(A') = \{b : a \in A' \land f(a) = b\}$ is the **image** of A'
 - The range of a function is the image of its domain

01-36: Functions

A function $f : A \mapsto B$ is:

- one-to-one if no two elements in A match to the same element in B
- onto Each element in B is mapped to by at least one element in A
- a **bijection** if it is both one-to-one and onto

The **inverse** of a binary relation $R \subset A \times B$ is denoted R^{-1} , and defined to be $\{(b, a) : (a, b) \in R\}$

• A function only has an inverse if ...

01-37: Functions

A function $f : A \mapsto B$ is:

- one-to-one if no two elements in A match to the same element in B
- onto Each element in B is mapped to by at least one element in A
- a bijection if it is both one-to-one and onto

The **inverse** of a binary relation $R \subset A \times B$ is denoted R^{-1} , and defined to be $\{(b, a) : (a, b) \in R\}$

• A function only has an inverse if it is a bijection

01-38: Functions

- What if we want to take the inverse of a function that is not a bijection what can we do?
 - Want to preserve full information about the original function
 - Resulting inverse must be an actual function

01-39: Functions

- What if we want to take the inverse of a function that is not a bijection what can we do?
 - Want to preserve full information about the original function
 - Resulting inverse must be an actual function
- How can we have an element map to 0, 1, or more elements, and still have a function? *HINT: If we modified the range ...*

01-40: Functions

- What if we want to take the inverse of a function that is not a bijection what can we do?
 - Want to preserve full information about the original function
 - Resulting inverse must be an actual function

•
$$f: A \mapsto B$$
 $f^{-1}: B \mapsto 2^A$

(example on chalkboard) 01-41: Relations

- Q and R are two relations
- The composition of Q and R, $Q \circ R$ is: $\{(a,b): (a,c) \in Q, (c,b) \in R \text{ for some } c\}$

$Q = \{(a, c), (b, d), (c, a)\}$ $R = \{(a, c), (b, c), (c, a)\}$

 $Q \circ R = \{(a,a), (c,c)\}$

- Each element is a node in the graph
- if $(a, b) \in R$, then there is an edge from a to b in the graph

01-43: Relation Types

- A relation $R \subseteq A \times A$ is **reflexive** if
 - $(a, a) \in R$ for each $a \in A$
 - $\forall (a \in A), (a, a) \in R$
 - Each node has a self loop

Not Reflexive

01-44: Relation Types

- A relation $R \subseteq A \times A$ is symmetric if
 - $(a,b) \in R$ whenever $(b,a) \in R$
 - $(a,b) \in R \implies (b,a) \in R$
 - Every edge goes "both ways"

Symmetric

Not Symmeteric

01-45: Relation Types

- A relation $R \subseteq A \times A$ is **antisymmetric** if
 - whenever $(a, b) \in R$, a, b are distinct $(b, a) \notin R$

•
$$(a,b) \in R \land a \neq b \implies (b,a) \notin R$$

• No edge goes "both ways"

Not Antisymmeteric

• Can a relation be neither symmetric nor antisymmetric?

01-46: Relation Types

- A relation $R \subseteq A \times A$ is **antisymmetric** if
 - whenever $(a, b) \in R$, a, b are distinct $(b, a) \notin R$
 - $(a,b) \in R \land a \neq b \implies (b,a) \notin R$
 - No edge goes "both ways"

Antisymmetric Not Antisymmeteric

• Can a relation be both symmetric and antisymmetric?

01-47: Relation Types

- A relation $R \subseteq A \times A$ is **transitive** if
 - whenever $(a, b) \in R$, and $(b, c) \in R$, $(a, c) \in R$
 - $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$
 - Every path of length 2 has a direct edge

Transitive

Not Transitive

01-48: Closure

- A set $A \subseteq B$ is closed under a relation $R \subseteq ((B \times B) \times B)$ if:
 - $a_1, a_2 \in A \land ((a_1, a_2), c) \in R \implies c \in A$
 - That is, if a_1 and a_2 are both in A, and $((a_1, a_2), c)$ is in the relation, then c is also in A
- N is closed under additon
- N is not closed under subtraction or division

01-49: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R'
 - Each element of R' is an ordered triple of ordered pairs!

01-50: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R'
 - Each element of R' is an ordered triple of ordered pairs!
- Example:
 - $R \subseteq A \times A$
 - $R' = \{(((a, b), (b, c)), (a, c)) : a, b, c \in A\}$
 - If R is closed under R', then ...

01-51: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R'
 - Each element of R' is an ordered triple of ordered pairs!
- Example:
 - $\bullet \ R \subseteq A \times A$
 - $R' = \{(((a, b), (b, c)), (a, c)) : a, b, c \in A\}$
 - If R is closed under R', then R is transitive!

01-52: Closure

- Reflexive closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is reflexive
 - Add self-loop to every node in relation
 - Add (a,a) to R for every $a \in A$
- Transitive Closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is transitive
 - Add direct link for every path of length 2.
 - $\forall (a, b, c \in A)$ if $(a, b) \in R \land (b, c) \in R$ add (a, c) to R.

(examples on board) 01-53: Relation Types

- Equivalence Relation
 - Symmetric, Transitive, Reflexive
- Examples:
 - Equality (=)
 - A is the set of English words, $(w_1, w_2) \in R$ if w_1 and w_2 start with the same letter

(example graphs) 01-54: Relation Types

- Equivalence Relation
 - Symmetric, Transitive, Reflexive
- Separates set into equivalence classes (all words that start with a, for example

• If $a \in A$, then [a] represents equivalence class that contains a.

01-55: Relation Types

- Partial Order
 - Antisymmetric, Transitive, Reflexive
- Examples:
 - $\bullet \leq \text{for integers}$
 - A is the set of integers, $(a, b) \in R$ if $a \leq b$
 - Ancestor
 - $R \subseteq A \times A = \{(x, y) : x \text{ is an ancestor of } y, \text{ or } x = y\}$

(example graphs) 01-56: Relation Types

- Total Order
 - $R \subseteq A \times A$ is a total order if:
 - R is a partial order
 - For all $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$
 - Is \leq a total order?
 - Is Ancestor a total order?

(example graphs) 01-57: Cardinality

• How can we tell if two sets A and B have the same cardinality?

01-58: Cardinality

- How can we tell if two sets A and B have the same cardinality?
 - Calculate |A| and |B|, make sure numbers are the same
 - Match each element in A to an element in B
 - Create a bijection $f : A \mapsto B$ (or $f : B \mapsto A$)

01-59: Cardinality

- What about infinite sets? Are they all equinumerous (that is, have the same cardinality)?
- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.

01-60: Countable Sets

- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.
 - Even elements of N?

01-61: Countable Sets

• A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.

• Even elements of N?

• f(x) = 2x

- 01-62: Countable Sets
 - A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.
 - Integers (Z)?

01-63: Countable Sets

- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.
 - Integers (**Z**)?

•
$$f(x) = \left\lceil \frac{x}{2} \right\rceil * (-1)^x$$

01-64: Countable Sets

- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.
 - Union of 3 (disjoint) countable sets A, B, C?

01-65: Countable Sets

- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.
 - Union of 3 (disjoint) countable sets A, B, C?

01-66: Countable Sets

- A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.

01-67: Countable Sets

• A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.

• N × N?
(0,0) (9,1) (9,2) (0,3) (0,4) ...
(1,0) (1,1) (1,2) (1,3) (1,4) ...
(2,0) (2,1) (2,2) (2,3) (2,4) ...
(3,0) (3,1) (3,2) (3,3) (3,4) ...
(4,0) (4,1) (4,2) (4,3) (4,4) ...
: : : : : : : ·.
•
$$f((x,y)) = \frac{(x+y)*(x+y+1)}{2} + \frac{1}{2}$$

01-68: Countable Sets

• A set is **countable infinite** (or just **countable**) if it is equinumerous with **N**.

x

• Real numbers between 0 and 1 (exclusive)?

01-69: Uncountable R

- Proof by contradiction
 - Assume that R between 0 and 1 (exclusive) is countable
 - (that is, assume that there is some bijection from N to R between 0 and 1)
 - Show that this leads to a contradiction
 - Find some element of **R** between 0 and 1 that is not mapped to by any element in **N**

01-70: Uncountable R

• Assume that there is some bijection from N to R between 0 and 1

```
0
    0.3412315569...
```

- 0.0123506541... 1
- $\mathbf{2}$ 0.1143216751...
- 3 0.2839143215...
- 4 0.2311459412...
- 0.8381441234... 5 0.7415296413... 6
- ÷
- ÷

01-71: **Uncountable** R

• Assume that there is some bijection from N to R between 0 and 1

```
0,34,12315569...
0
      0.0123506541...
1
      0.1 43216751...
\mathbf{2}
     0.2839143215...
3
     0.2311459412...
0.8381441234...
4
5
6
      0.7415296413...
÷
```

Consider: 0.425055... 01-72: **Proof Techniques**

- Three basic proof techniques used in this class
 - Induction
 - Diagonalization
 - Pigeonhole Principle

01-73: Induction

Can create exact postage for any amount \geq \$0.08 using only 3 cent and 5 cent stamps 01-74: **Induction**

J1-74. Induction

Can create exact postage for any amount \geq \$0.08 using only 3 cent and 5 cent stamps

• Base case

Can create postage for 0.08 using one 5-cent and one 3-cent stamp

01-75: Induction

Can create exact postage for any amount \geq \$0.08 using only 3 cent and 5 cent stamps

- Inductive case
 - To show: if we can create exact postage for \$x using only 3-cent and 5-cent stamps, we can create exact postage for \$x + \$0.01 using 3-cent and 5-cent stamps
 - Two cases:
 - Exact postage for \$x uses at least one 5-cent stamp
 - Exact postage for \$x uses no 5-cent stamps

01-76: Induction

- To show: if we can create exact postage for \$x using only 3-cent and 5-cent stamps, we can create exact postage for \$x + \$0.01 using 3-cent and 5-cent stamps
 - Exact postage for \$x uses at least one 5-cent stamp
 - Replace a 5-cent stamp with two 3-cent stamps to get \$x + \$0.01
 - Exact postage for \$x uses no 5-cent stamps
 - Replace three 3-cent stamps with two 5-cent stamps to get \$ + \$0.01

01-77: Pigeonhole Principle

- A, B are finite sets, with |A| > |B|, then there is no one-to-one function from A to B
- If you have n pigeonholes, and > n pigeons, and every pigeon is in a pigeonhole, there must be at least one hole with > 1 pigeon.

01-78: Pigeonhole Principle

• Show that in a relation R over a set A, if there is a path from a_i to a_j in R, then there is a path from a to b whose length is at most |A|.

01-79: Pigeonhole Principle

Proof by Contradiction

- Assume that there exists some shortest path from a_i to a_j of length > |A|.
- By pigeonhole principle, some element must repeat:
 - $\{a_i,\ldots,a_k,\ldots,a_k\ldots a_J\}$
- We can create a shorter path by removing elements between a_k s.
- We've just found a shorter path from a_i to a_j a contradiction