Automata Theory CS411-2015F-10

Non-Context-Free Langauges Closure Properties of Context-Free Languages

David Galles

Department of Computer Science
University of San Francisco

10-0: Fun with CFGs

- Create a CFG for the language:
- $L=\left\{0^{n} 1^{n} 2^{n}: n>0\right\}$
- $\{012,001122,000111222,000011112222, \ldots\}$

10-1: Fun with CFGs

- $L=\left\{0^{n} 1^{n} 2^{n}: n>0\right\}$ is not context-free!
- Why?
- Need to keep track of how many 0's there are, and match 1's - and match 2's
- Only one stack

10-2: Non-Context-Free Languages

- We will use a similar idea to the pumping lemma for regular languages to prove a language is not context-free
- Regular Languages: if a string is long enough, there must be some state q that is repeated in the computation
- Context-Free Languages: if a string is long enough, there must be some non-terminal A that is used twice in a derivation

10-3: Repeating Non-Terminals

If w is long enough, parse tree for w will have some non-terminal that repeats along a path from the root to some leaf

- Let $\phi(G)$ be the "fan out" of the grammar - the longest string that appears on the right-hand side of some rule
- Let height of a parse tree be the longest path from root to some leaf
- Longest possible string produced by a grammar G with height h is:

10-4: Repeating Non-Terminals

If w is long enough, parse tree for w will have some non-terminal that repeats along a path from the root to some leaf

- Let $\phi(G)$ be the "fan out" of the grammar - the longest string that appears on the right-hand side of some rule
- Let height of a parse tree be the longest path from root to some leaf
- Longest possible string produced by a grammar G with height h is: $\phi(G)^{h}$
- Smallest possible height for a parse tree produced by grammar G for a string of length n is:

10-5: Repeating Non-Terminals

If w is long enough, parse tree for w will have some non-terminal that repeats along a path from the root to some leaf

- Let $\phi(G)$ be the "fan out" of the grammar - the longest string that appears on the right-hand side of some rule
- Let height of a parse tree be the longest path from root to some leaf
- Longest possible string produced by a grammar G with height h is: $\phi(G)^{h}$
- Smallest possible height for a parse tree produced by grammar G for a string of length n is: $\log _{\phi(G)} n$

10-6: Repeating Non-Terminals

- Let $\phi(G)$ be the "fan out" of the grammar - the longest string that appears on the right-hand side of some rule
- Let height of a parse tree be the longest path from root to some leaf
- Longest possible string produced by a grammar G with height h is: $\phi(G)^{h}$
- Smallest possible height for a parse tree produced by grammar G for a string of length n is: $\log _{\phi(G)} n$

Given any grammar G and integer k, there exists an n such that any string of length n must have a height $\geq k$

10-7: Repeating Non-Terminals

- Given any grammar G and integer k, there exists an n such that any string of length n must have a parse tree of height $\geq k$
- If a parse tree has a height $\geq k$, and the number of non-terminals in the string is $<k$ then by the pigeonhole principle ...

10-8: Repeating Non-Terminals

- Given any grammar G and integer k, there exists an n such that any string of length n must have a parse tree of height $\geq k$
- If a parse tree has a height $\geq k$, and the number of non-terminals in the string is $<k$ then by the pigeonhole principle, some non-terminal must repeat along a path from the root to some leaf.

10-9: Repeating Non-Terminals

10-10: Repeating Non-Terminals

10-11: Repeating Non-Terminals

10-12: Repeating Non-Terminals

10-13: Repeating Non-Terminals

10-14: Repeating Non-Terminals

10-15: Repeating Non-Terminals

10-16: CF Pumping Lemma

- Given any Context-Free language L, there exists an integer n, such that for all $w \in L$ with $|w| \geq n$ can be broken into $w=u v x y z$ such that
- $|v y|>0$
- $u v^{i} x y^{i} z \in L$ for all $i \geq 0$

10-17: CF Pumping Lemma

$L=\left\{0^{n} 1^{n} 2^{n}: n>0\right\}$ is not Context Free

- Let n be the constant of the Context-Free Pumping lemma
- Consider $w=0^{n} 1^{n} 2^{n}$
- If we break $w=u v x y z$, there are 4 cases:
- v contains both 0's and 1's, or both 1's and 2's, or y contains both 0's and 1's, or both 1's and 2's
- Neither v nor y contain any 0's
- Neither v nor y contain any 1's
- Neither v nor y contain any 2's

10-18: CF Pumping Lemma

- v contains both 0's and 1's, or both 1's and 2's, or y contains both 0's and 1's, or both 1's and 2's $u v^{2} x y^{2} z$ is not in $0^{*} 1^{*} 2^{*}$, and is not in L
- Neither v nor y contain any 0's $u v^{2} x y^{2} z$ contains either more 1 's than 0 's, or more 2's than 0's, and is not in L
- Neither v nor y contain any 1 's
$u v^{2} x y^{2} z$ contains either more 0's than 1's, or more 2's than 1's, and is not in L
- Neither v nor y contain any 2's $u v^{2} x y^{2} z$ contains either more 1's than 2's, or more 0's than 2's, and is not in L

10-19: CF Pumping Lemma

$L=\left\{a^{n}: n\right.$ is prime $\}$ is not Context Free

10-20: CF Pumping Lemma

$L=\left\{a^{n}: n\right.$ is prime $\}$ is not Context Free

- Let n be the constant of the Context-Free Pumping lemma
- Consider $w=a^{p}$, where p is the smallest prime number $>n$.
- If we break $w=u v x y z$:
- Let $|v y|=k,|u x z|=r=n-k$
- $u v^{i} x y^{i} z=a^{r+i k}, r+i k$ must be prime for all i
- set $i=r+k+1$:
$r+i k=r+k r+k^{2}+k=(r+k)(k+1)$
- $u v^{i} x y^{i} z$ is not in L for $i=r+k+1$; L is not Context-Free

10-21: CF Closure Properties

- Are the Context-Free Languages closed under union?

10-22: CF Closure Properties

- Are the Context-Free Languages closed under union?
- YES!
- Proved in Lecture 8 (when showing $\left.L_{R E G} \subseteq L_{C F G}\right)$
- Are the Context-Free Languages closed under intersection?

10-23: CF Closure Properties

- Are the Context-Free Languages closed under union?
- YES!
- Proved in Lecture 8 (when showing $\left.L_{R E G} \subseteq L_{C F G}\right)$
- Are the Context-Free Languages closed under intersection?
- Hint - can we intersect two Context-Free langauges to get $0^{n} 1^{n} 2^{n}$?

10-24: CF Closure Properties

- Are the Context-Free Languages closed under intersection?

$$
\begin{array}{ll}
L_{1}=0^{n} 1^{n} 2^{*} & L_{2}=0^{*} 1^{n} 2^{n} \\
S_{1} \rightarrow A_{1} B_{1} & S_{2} \rightarrow A_{2} B_{2} \\
A_{1} \rightarrow 0 A_{1} 1 \mid 01 & A_{2} \rightarrow 0 A \mid \epsilon \\
B_{1} \rightarrow 2 B_{1} \mid \epsilon & B_{2} \rightarrow 1 B_{2} 2 \mid 12
\end{array}
$$

- $L_{1} \cap L_{2}=0^{n} 1^{n} 2^{n}$
- L_{1} is Context-Free, L_{2} is Context-Free, $L_{1} \cap L_{2}$ is not Context-Free

10-25: CF Closure Properties

- The Context-Free Languages are not closed under intersection
- What if we tried to use the machine construction proof that showed that $L_{D F A}$ is closed under intersection - why wouldn't that work?

10-26: CF Closure Properties

- Are the Context-Free Languages closed under intersection with a regular language?
- That is, if L_{1} is Context-Free, and L_{2} is regular, must $L_{1} \cap L_{2}$ be Context-Free?

10-27: CF Closure Properties

- Are the Context-Free Languages closed under intersection with a regular language?
- That is, if L_{1} is Context-Free, and L_{2} is regular, must $L_{1} \cap L_{2}$ be Context-Free?
- Run PDA L_{1} and DFA L_{2} "in parallel" (just like the intersection of two regular languages)

10-28: CF Closure Properties

$M_{1}=\left(K_{1}, \Sigma, \Gamma_{1}, \Delta_{1}, s_{1}, F_{1}\right) \quad M_{2}=\left(K_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$

- $K=K_{1} \times K_{2}$
- $\Gamma_{1}=\Gamma$
- $s=\left(s_{1}, s_{2}\right)$
- $F=F_{1} \times F_{2}$
- Δ :
- For each transition in Δ of form $\left(\left(q_{1}, a, \beta\right),\left(p_{1}, \gamma\right)\right)$, for each state $q_{2} \in K_{2}$, add $\left(\left(\left(q_{1}, q_{2}\right), a, \beta\right),\left(\left(p_{1}, \delta\left(q_{2}\right)\right), \gamma\right)\right)$ to Δ
- For each transition in Δ of form
$\left(\left(q_{1}, \epsilon, \beta\right),\left(p_{1}, \gamma\right)\right)$, for each state $q_{2} \in K_{2}$, add $\left(\left(\left(q_{1}, q_{2}\right), a, \beta\right),\left(\left(p_{1}, q_{2}\right), \gamma\right)\right)$ to Δ

10-29: CF Closure Properties

- Is $L=\left\{(0+1+2)^{*}: ~ \#\right.$ of 0 's $=$ \# of 1's = \# of 2's $\}$ Context Free?

10-30: CF Closure Properties

- Is $L=\left\{(0+1+2)^{*}: ~ \#\right.$ of 0 's $=$ \# of 1's = \# of 2's $\}$ Context Free?
- $L \cap 00^{*} 11^{*} 22^{*}=\left\{0^{n} 1^{n} 2^{n}: n>0\right\}$ which is not Context Free
- Context-Free language intersected with a regular language must be context free
- L is not Context-Free

10-31: CF Closure Properties

- Is $L=\left\{w w w: w \in(a+b)^{*}\right\}$ Context Free?

10.32: CF Closure Properties

- Is $L=\left\{w w w: w \in(a+b)^{*}\right\}$ Context Free?
- Intersect L with $a^{*} b a^{*} b a^{*} b$ to get L_{1}
- $L_{1}=a^{n} b a^{n} b a^{n} b$
- If L_{1} is not context-free, L is not context-free either

10-33: CF Closure Properties

- Is $L=\left\{a^{n} b a^{n} b a^{n} b: n \geq 0\right\}$ Context Free?

10-34: CF Closure Properties

- Is $L=\left\{a^{n} b a^{n} b a^{n} b: n \geq 0\right\}$ Context Free?
- Let n be the constant of the context-free pumping lemma
- Consider $w=a^{n} b a^{n} b a^{n} b$
- If we break w into uvxyz, there are several possibilities:

10-35: CF Closure Properties

- If we break w into $u v x y z$, there are several possibilities:
- Either v or y contains at least one b. Then $w^{\prime}=u v^{2} x y^{2} z$ will contain more than $3 b$'s, and not be in L
- Neither v nor y contains any characters from the first set of a 's. In this case, $w^{\prime}=u v^{2} x y^{2} z$ will be of the form $a^{n} b a^{m} b a^{o} b$, were either m or o is greater than n, and hence w^{\prime} is not in L

10-36: CF Closure Properties

- If we break w into $u v x y z$, there are several possibilities:
- Neither v nor y contains any characters from the second set of a 's. In this case, $w^{\prime}=u v^{2} x y^{2} z$ will be of the form $a^{m} b a^{n} b a^{o} b$, were either m or o is greater than n, and hence w^{\prime} is not in L
- Neither v nor y contains any characters from the third set of a 's. In this case, $w^{\prime}=u v^{2} x y^{2} z$ will be of the form $a^{m} b a^{o} b a^{n} b$, were either m or o is greater than n, and hence w^{\prime} is not in L

