CS411-2015F-16

16-0: Enumeration Machines

- An Enumeration Machine is a special kind of Turing Machine:
 - Takes no input
 - Produces strings as output
- Turn it on, and it start spitting out strings

16-1: Enumeration Machines

- Enumeration Machine M:
 - *M* has a special (non-halting) "output state"
 - Whenever M enters "output state", contents of the tape are output
 - We will insist that the tape is of the form $\triangleright \sqcup w$
 - *M* runs forever, outputting strings
 - $L[M] = \{w : w \text{ is eventually ouput by } M\}$

16-2: Enumeration Machines

• Enumeration machine for a^* (output state is q_{out})

	a	\Box
q_0		(q_1, \rightarrow)
q_1	(q_1, \rightarrow)	(q_2, a)
q_2	(q_2, \leftarrow)	(q_{out},\sqcup)
q_{out}		(q_1, \rightarrow)

16-3: Enumeration Machines

• Enumeration machine for ba^*b

16-4: Enumeration Machines

• Enumeration machine for ba^*b

	a	b	\Box
q_0			(q_1, \rightarrow)
q_1			(q_2, b)
q_2		(q_2, \rightarrow)	(q_3, b)
q_3	(q_3, \leftarrow)	(q_3, \leftarrow)	(q_{out},\sqcup)
q_4	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_5, b)
q_5		(q_6, \leftarrow)	
q_6		(q_3, a)	
q_{out}			(q_4, \rightarrow)

16-5: Enumeration & Recursive

- All recursive languages can be enumerated
 - How?

16-6: Enumeration & Recursive

- All recursive languages can be enumerated
 - If a language is recursive, there exists some TM M that decides it
 - Generate each string in Σ^* in lexicographic order
 - Run each generated string through M.
 - If M says "yes", output the string

16-7: Enumeration & r.e.

- Can a recursively enumerable languages be enumerated?
 - The name does give a hint ...

16-8: Enumeration & r.e.

- Recursively enumerable languages can be enumerated!
 - The enumeration method for recursive languages doesn't work
 - Why?

16-9: Enumeration & r.e.

- Recursively enumerable languages can be enumerated!
 - We will use the same trick we used to show that a deterministic TM can be simulated by a non-deterministic TM
 - Try first (lexicographicly) string for 1 step
 - Try first and second strings for 2 steps each
 - Try first, second, and third strings for 3 steps each
 - $\bullet \ \ldots$ and so on

16-10: Enumeration & r.e.

- Recursively enumerable languages can be enumerated
- We have no idea in what order the strings in the language will be output.
 - Why?
- What if we had an enumeration machine that could output the strings of a language L in lexicographical order what would we know about L?

16-11: Enumeration & r.e.

- If an enumeration machine outputs the strings of a language L in lexicographical order, then L is recursive.
- We can write a Turing Machine M that decides L
- To determine if w is in L:
 - Start running the enumeration machine
 - Eventually, either w will be output, or some string that appears after w lexicographically will be output.

16-12: Enumeration & r.e.

- If a language can be enumerated by an enumeration machine, it can be semi-decided by a (standard) Turing machine
 - Given an enumeration machine that generates L, how can we create a standard Turing machine that semidecides L?

16-13: Enumeration & r.e.

- Given an enumeration machine that generates L, we can create a standard Turing machine that semi-decides L
 - Move tape head just beyond input
 - Start up enumeration machine
 - Each time a string is output, check to see if it matches input string. If so, halt and accept

16-14: Recursive & r.e.

- A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 - L is recursive if there exists a Turing Machine M that decides L
 - L is recursively ennumerable if there exists a Turing Machine M that semi-decides L

16-15: Recursive & r.e.

- A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 - "only if" (If L is recursive, then L and \overline{L} are recursively enumerable)

16-16: **Recursive & r.e.**

- A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 - "only if"
 - If L is recursive, then L is recursively enumerable
 - If L is recursive, then \overline{L} is recursive (swap yes/no states), and hence \overline{L} is recursively enumerable

16-17: Recursive & r.e.

- A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 - "if" (If L and \overline{L} are recursively enumerable, then L is recursive)

16-18: Recursive & r.e.

- A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 - "if"
 - Run r.e. machines for L and \overline{L} in parallel
 - Eventually one of them will halt

16-19: Properties of r.e. Languages

• Are the recursively enumerable languages closed under union?

• Given a Turing Machines M_1 and M_2 , can we create a Turing Machine M such that $L[M] = L[M_1] \cup L[M_2]$?

16-20: Properties of r.e. Languages

- Are the recursively enumerable languages closed under union?
 - Given a Turing Machines M_1 and M_2 , can we create a Turing Machine M such that $L[M] = L[M_1] \cup L[M_2]$?

16-21: Properties of r.e. Languages

- Are the recursively enumerable languages closed under intersection?
 - Given a Turing Machines M_1 and M_2 , can we create a Turing Machine M such that $L[M] = L[M_1] \cap L[M_2]$?

16-22: Properties of r.e. Languages

- Given a Turing Machines M_1 and M_2 , can we create a Turing Machine M such that $L[M] = L[M_1] \cap L[M_2]$?
 - First, make a backup copy of w
 - Run M_1 on w. If it halts and accepts ...
 - Restore w from the backup and run M_2 on w
 - Return result of running M_2 on w

16-23: Properties of r.e. Languages

- Are the recursively enumerable languages closed under complementation?
 - Given a Turing Machines M, can we create a Turing Machine M' such that $L[M'] = \overline{L[M]}$?

16-24: Properties of r.e. Languages

- Given a Turing Machines M, can we create a Turing Machine M' such that $L[M'] = \overline{L[M]}$?
- NO!
 - If L and \overline{L} are r.e., then L is recursive.
 - There are some r.e. languages (the halting problem, for instance) that are not recursive

16-25: Rice's Theorem

- Determining if the language accepted by a Turing machine has any non-trivial property is undecidable
- "Non-Trivial" property means:
 - At least one recursively enumerable language has the property

- Not all recursively enumerable languages have the property
- Example: Is the language accepted by a Turing Machine M regular?

16-26: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
 - Is this problem decidable?

16-27: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
 - Is this problem decidable? YES!
- All recursively enumerable languages are recursively enumerable.
- The question is "trivial"

16-28: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
 - Is this problem decidable?

16-29: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
 - Is this problem decidable? YES!
 - Problem is not language related we're not asking a question about the language that is accepted, but about the language that is accepted *within a certain number of steps*

16-30: Rice's Theorem – Proof

- We will prove Rice's theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.
- Given any Machine M, string w, and non-trivial property P, we will create a new machine M', such that either
 - L[M'] has property P if and only if M halts on w
 - L[M'] has property P if and only if M does not halt on w

16-31: Rice's Theorem – Proof

- Let P be some non-trivial property of a language.
- Two cases:
 - The empty language {} has the property
 - The empty language {} does not have the property

16-32: Rice's Theorem – Proof

• Properties that the empty language has:

- Regular Languages
- Languages that do not contain the string "aab"
- Languages that are finite
- Properties that the empty language does not have:
 - Languages containing the string "aab"
 - Languages containing at least one string
 - Languages that are infinite

16-33: Rice's Theorem – Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\{\}$ has property P.
- Let L_{NP} be some recursively enumerable language that does *not* have the property P, and let M_{NP} be a Turing Machine such that $L[M_{NP}] = L_{NP}$
- We will create a machine M' such that M' has property P if and only if M does not halt on w.

16-34: Rice's Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input

16-35: Rice's Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input
- If M halts on w, $L[M'] = L_{NP}$, and L[M'] does not have property P
- If M does not halt on w, $L[M'] = \{\}$, and L[M'] does have property P

16-36: Rice's Theorem – Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\{\}$ does not have property P.
- Let L_{NP} be some recursively enumerable language that *does* have the property P, and let M_P be a Turing Machine such that $L[M_P] = L_P$
- We will create a machine M' such that M' has property P if and only if M does halt on w.

16-37: Rice's Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_P on input

16-38: Rice's Theorem – Proof

- *M*':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_P on input
- If M halts on w, $L[M'] = L_P$, and L[M'] does have property P
- If M does not halt on w, $L[M'] = \{\}$, and L[M'] does not have property P

16-39: Undecidability

- How many undecidable languages are there?
 - A language is a set of strings
 - Set of all languages over Σ^* is the set of all subsets of Σ^*
 - Set of all languages over Σ^* is 2^{Σ^*}

16-40: Undecidability

- How many different langauges over Σ^* are there?
 - The set of all langauges over an alphabet Σ is 2^{Σ^*}
 - There is a bijection between strings and integers (lexigraphic ordering)
 - Thus, the number of different languages is $2^{\Sigma^*} = |2^{\mathbf{N}}|$
- How big is $2^{\mathbf{N}}$?

16-41: Undecidability

- $2^{\mathbf{N}}$ is uncountable
- Proof by contradiction (yet another diagonalization!)
 - Assume that there is a bijection between N and $2^{\mathbf{N}}$
 - Show that there must be an element of $2^{\mathbf{N}}$ that is not in the bijection contradiction!

16-42: $2^{\mathbf{N}}$ is Uncountable

• Assume that there is a bijection between N and 2^{N}

0 {100, 8, 6} 1 {0, 1, 2, 3, 9, 11, 22} 2 {} 3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...} 4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...} 5 {3, 9, 11, 23, 54, 128}

- • • • • •
- We will find an element of $2^{\mathbf{N}}$ that is not in the bijection

16-43: $2^{\mathbf{N}}$ is Uncountable

• Let S_n be the set mapped to by n in the bijection

```
• Consider the set S = \{x : x \in \mathbb{N}, S \notin S_x\}

0 {100, 8, 6}

1 {0, 1, 2, 3, 9, 11, 22}

2 {}

3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...}

4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}

5 {3, 9, 11, 23, 54, 128}

....

S = \{0, 2, 3, 5, ...\}
```

16-44: # of Turing Machines

- How many Turing Machines are there?
 - Any Turing Machine can be represented by a finite string of 0's and 1's
 - There is a bijection between set of all Turing Machines and N
 - Countable # of Turing Machines

16-45: Undecidability

- Each language represents a problem
- Each Turing Machine represents a solution to a problem
- There are a countable number of Turing Machines, and an uncountable number of languages
 - Vastly more undecidable problems than decidable problems!