
CS411-2015F-16 Enumeration Machines & Rice’s Theorem 1

16-0: Enumeration Machines

• An Enumeration Machine is a special kind of Turing Machine:

• Takes no input

• Produces strings as output

• Turn it on, and it start spitting out strings

16-1: Enumeration Machines

• Enumeration Machine M :

• M has a a special (non-halting) “output state”

• Whenever M enters “output state”, contents of the tape are output

• We will insist that the tape is of the form ⊲⊔w

• M runs forever, outputting strings

• L[M] = {w : w is eventually ouput by M}

16-2: Enumeration Machines

• Enumeration machine for a∗ (output state is qout)

a ⊔

q0 (q1,→)
q1 (q1,→) (q2, a)
q2 (q2,←) (qout,⊔)
qout (q1,→)

16-3: Enumeration Machines

• Enumeration machine for ba∗b

16-4: Enumeration Machines

• Enumeration machine for ba∗b

a b ⊔

q0 (q1,→)
q1 (q2, b)
q2 (q2,→) (q3, b)
q3 (q3,←) (q3,←) (qout,⊔)
q4 (q4,→) (q4,→) (q5, b)
q5 (q6,←)
q6 (q3, a)
qout (q4,→)

16-5: Enumeration & Recursive

• All recursive languages can be enumerated

• How?

16-6: Enumeration & Recursive

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 2

• All recursive languages can be enumerated

• If a language is recursive, there exists some TM M that decides it

• Generate each string in Σ∗ in lexicographic order

• Run each generated string through M .

• If M says “yes”, output the string

16-7: Enumeration & r.e.

• Can a recursively enumerable languages be enumerated?

• The name does give a hint ...

16-8: Enumeration & r.e.

• Recursively enumerable languages can be enumerated!

• The enumeration method for recursive languages doesn’t work

• Why?

16-9: Enumeration & r.e.

• Recursively enumerable languages can be enumerated!

• We will use the same trick we used to show that a deterministic TM can be simulated by a non-deterministic

TM

• Try first (lexicographicly) string for 1 step

• Try first and second strings for 2 steps each

• Try first, second, and third strings for 3 steps each

• . . . and so on

16-10: Enumeration & r.e.

• Recursively enumerable languages can be enumerated

• We have no idea in what order the strings in the language will be output.

• Why?

• What if we had an enumeration machine that could output the strings of a language L in lexicographical order –

what would we know about L?

16-11: Enumeration & r.e.

• If an enumeration machine outputs the strings of a language L in lexicographical order, then L is recursive.

• We can write a Turing Machine M that decides L

• To determine if w is in L:

• Start running the enumeration machine

• Eventually, either w will be output, or some string that appears after w lexicographically will be output.

16-12: Enumeration & r.e.

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 3

• If a language can be enumerated by an enumeration machine, it can be semi-decided by a (standard) Turing

machine

• Given an enumeration machine that generates L, how can we create a standard Turing machine that semi-

decides L?

16-13: Enumeration & r.e.

• Given an enumeration machine that generates L, we can create a standard Turing machine that semi-decides L

• Move tape head just beyond input

• Start up enumeration machine

• Each time a string is output, check to see if it matches input string. If so, halt and accept

16-14: Recursive & r.e.

• A Language L is recursive if and only if both L and L are recursively enumerable

• L is recursive if there exists a Turing Machine M that decides L

• L is recursively ennumerable if there exists a Turing Machine M that semi-decides L

16-15: Recursive & r.e.

• A Language L is recursive if and only if both L and L are recursively enumerable

• “only if” (If L is recursive, then L and L are recursively enumerable)

16-16: Recursive & r.e.

• A Language L is recursive if and only if both L and L are recursively enumerable

• “only if”

• If L is recursive, then L is recursively enumerable

• If L is recursive, then L is recursive (swap yes/no states), and hence L is recursively enumerable

16-17: Recursive & r.e.

• A Language L is recursive if and only if both L and L are recursively enumerable

• “if” (If L and L are recursively enumerable, then L is recursive)

16-18: Recursive & r.e.

• A Language L is recursive if and only if both L and L are recursively enumerable

• “if”

• Run r.e. machines for L and L in parallel

• Eventually one of them will halt

16-19: Properties of r.e. Languages

• Are the recursively enumerable languages closed under union?

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 4

• Given a Turing Machines M1 and M2, can we create a Turing Machine M such that L[M] = L[M1] ∪
L[M2]?

16-20: Properties of r.e. Languages

• Are the recursively enumerable languages closed under union?

• Given a Turing Machines M1 and M2, can we create a Turing Machine M such that L[M] = L[M1] ∪
L[M2]?

M

M

1

2

16-21: Properties of r.e. Languages

• Are the recursively enumerable languages closed under intersection?

• Given a Turing Machines M1 and M2, can we create a Turing Machine M such that L[M] = L[M1] ∩
L[M2]?

16-22: Properties of r.e. Languages

• Given a Turing Machines M1 and M2, can we create a Turing Machine M such that L[M] = L[M1] ∩ L[M2]?

• First, make a backup copy of w

• Run M1 on w. If it halts and accepts ...

• Restore w from the backup and run M2 on w

• Return result of running M2 on w

16-23: Properties of r.e. Languages

• Are the recursively enumerable languages closed under complementation?

• Given a Turing Machines M , can we create a Turing Machine M ′ such that L[M ′] = L[M]?

16-24: Properties of r.e. Languages

• Given a Turing Machines M , can we create a Turing Machine M ′ such that L[M ′] = L[M]?

• NO!

• If L and L are r.e., then L is recursive.

• There are some r.e. languages (the halting problem, for instance) that are not recursive

16-25: Rice’s Theorem

• Determining if the language accepted by a Turing machine has any non-trivial property is undecidable

• “Non-Trivial” property means:

• At least one recursively enumerable language has the property

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 5

• Not all recursively enumerable languages have the property

• Example: Is the language accepted by a Turing Machine M regular?

16-26: Rice’s Theorem

• Problem: Is the language defined by the Turing Machine M recursively enumerable?

• Is this problem decidable?

16-27: Rice’s Theorem

• Problem: Is the language defined by the Turing Machine M recursively enumerable?

• Is this problem decidable? YES!

• All recursively enumerable languages are recursively enumerable.

• The question is “trivial”

16-28: Rice’s Theorem

• Problem: Does the Turing Machine M accept the string w in k computational steps?

• Is this problem decidable?

16-29: Rice’s Theorem

• Problem: Does the Turing Machine M accept the string w in k computational steps?

• Is this problem decidable? YES!

• Problem is not language related – we’re not asking a question about the language that is accepted, but

about the language that is accepted within a certain number of steps

16-30: Rice’s Theorem – Proof

• We will prove Rice’s theorem by showing that, for any non-trivial propertyP , we can reduce the halting problem

to the problem of determining if the language accepted by a Turing Machine has Property P .

• Given any Machine M , string w, and non-trivial property P , we will create a new machine M ′, such that either

• L[M ′] has property P if and only if M halts on w

• L[M ′] has property P if and only if M does not halt on w

16-31: Rice’s Theorem – Proof

• Let P be some non-trivial property of a language.

• Two cases:

• The empty language {} has the property

• The empty language {} does not have the property

16-32: Rice’s Theorem – Proof

• Properties that the empty language has:

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 6

• Regular Languages

• Languages that do not contain the string “aab”

• Languages that are finite

• Properties that the empty language does not have:

• Languages containing the string “aab”

• Languages containing at least one string

• Languages that are infinite

16-33: Rice’s Theorem – Proof

• Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that

{} has property P .

• Let LNP be some recursively enumerable language that does not have the property P , and let MNP be a Turing

Machine such that L[MNP] = LNP

• We will create a machine M ′ such that M ′ has property P if and only if M does not halt on w.

16-34: Rice’s Theorem – Proof

• M ′:

• Save input

• Erase input, simulate running M on w

• Restore input

• Simulates running MNP on input

16-35: Rice’s Theorem – Proof

• M ′:

• Save input

• Erase input, simulate running M on w

• Restore input

• Simulates running MNP on input

• If M halts on w, L[M ′] = LNP , and L[M ′] does not have property P

• If M does not halt on w, L[M ′] = {}, and L[M ′] does have property P

16-36: Rice’s Theorem – Proof

• Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that

{} does not have property P .

• Let LNP be some recursively enumerable language that does have the property P , and let MP be a Turing

Machine such that L[MP] = LP

• We will create a machine M ′ such that M ′ has property P if and only if M does halt on w.

16-37: Rice’s Theorem – Proof

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 7

• M ′:

• Save input

• Erase input, simulate running M on w

• Restore input

• Simulates running MP on input

16-38: Rice’s Theorem – Proof

• M ′:

• Save input

• Erase input, simulate running M on w

• Restore input

• Simulates running MP on input

• If M halts on w, L[M ′] = LP , and L[M ′] does have property P

• If M does not halt on w, L[M ′] = {}, and L[M ′] does not have property P

16-39: Undecidability

• How many undecidable languages are there?

• A language is a set of strings

• Set of all languages over Σ∗ is the set of all subsets of Σ∗

• Set of all languages over Σ∗ is 2Σ
∗

16-40: Undecidability

• How many different langauges over Σ∗ are there?

• The set of all langauges over an alphabet Σ is 2Σ
∗

• There is a bijection between strings and integers (lexigraphic ordering)

• Thus, the number of different languages is 2Σ
∗

= |2N|

• How big is 2N?

16-41: Undecidability

• 2N is uncountable

• Proof by contradiction (yet another diagonalization!)

• Assume that there is a bijection between N and 2N

• Show that there must be an element of 2N that is not in the bijection – contradiction!

16-42: 2N is Uncountable

CS411-2015F-16 Enumeration Machines & Rice’s Theorem 8

• Assume that there is a bijection between N and 2N

0 {100, 8, 6}
1 {0, 1, 2, 3, 9, 11, 22}
2 {}
3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . .}
4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .}
5 {3, 9, 11, 23, 54, 128}
.

• We will find an element of 2N that is not in the bijection

16-43: 2N is Uncountable

• Let Sn be the set mapped to by n in the bijection

• Consider the set S = {x : x ∈ N, S 6∈ Sx}

0 {100, 8, 6}
1 {0, 1, 2, 3, 9, 11, 22}
2 {}
3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . .}
4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .}
5 {3, 9, 11, 23, 54, 128}
.

S = {0, 2, 3, 5, . . .}

16-44: # of Turing Machines

• How many Turing Machines are there?

• Any Turing Machine can be represented by a finite string of 0’s and 1’s

• There is a bijection between set of all Turing Machines and N

• Countable # of Turing Machines

16-45: Undecidability

• Each language represents a problem

• Each Turing Machine represents a solution to a problem

• There are a countable number of Turing Machines, and an uncountable number of languages

• Vastly more undecidable problems than decidable problems!

