16-0: Enumeration Machines

- An Enumeration Machine is a special kind of Turing Machine:
- Takes no input
- Produces strings as output
- Turn it on, and it start spitting out strings

16-1: Enumeration Machines

- Enumeration Machine M :
- M has a a special (non-halting) "output state"
- Whenever M enters "output state", contents of the tape are output
- We will insist that the tape is of the form $\triangleright \sqcup ~ \sqcup w$
- M runs forever, outputting strings
- $L[M]=\{w: w$ is eventually ouput by $M\}$

16-2: Enumeration Machines

- Enumeration machine for a^{*} (output state is $q_{o u t}$)

	a	\sqcup
q_{0}		$\left(q_{1}, \rightarrow\right)$
q_{1}	$\left(q_{1}, \rightarrow\right)$	$\left(q_{2}, a\right)$
q_{2}	$\left(q_{2}, \leftarrow\right)$	$\left(q_{\text {out }}, \sqcup\right)$
$q_{\text {out }}$		$\left(q_{1}, \rightarrow\right)$

16-3: Enumeration Machines

- Enumeration machine for $b a^{*} b$

16-4: Enumeration Machines

- Enumeration machine for $b a^{*} b$

	a	b	\sqcup
q_{0}			$\left(q_{1}, \rightarrow\right)$
q_{1}			$\left(q_{2}, b\right)$
q_{2}		$\left(q_{2}, \rightarrow\right)$	$\left(q_{3}, b\right)$
q_{3}	$\left(q_{3}, \leftarrow\right)$	$\left(q_{3}, \leftarrow\right)$	$\left(q_{o u t}, \sqcup\right)$
q_{4}	$\left(q_{4}, \rightarrow\right)$	$\left(q_{4}, \rightarrow\right)$	$\left(q_{5}, b\right)$
q_{5}		$\left(q_{6}, \leftarrow\right)$	
q_{6}		$\left(q_{3}, a\right)$	
$q_{\text {out }}$			$\left(q_{4}, \rightarrow\right)$

16-5: Enumeration \& Recursive

- All recursive languages can be enumerated
- How?

16-6: Enumeration \& Recursive

- All recursive languages can be enumerated
- If a language is recursive, there exists some TM M that decides it
- Generate each string in Σ^{*} in lexicographic order
- Run each generated string through M.
- If M says "yes", output the string

16-7: Enumeration \& r.e.

- Can a recursively enumerable languages be enumerated?
- The name does give a hint ...

16-8: Enumeration \& r.e.

- Recursively enumerable languages can be enumerated!
- The enumeration method for recursive languages doesn't work
- Why?

16-9: Enumeration \& r.e.

- Recursively enumerable languages can be enumerated!
- We will use the same trick we used to show that a deterministic TM can be simulated by a non-deterministic TM
- Try first (lexicographicly) string for 1 step
- Try first and second strings for 2 steps each
- Try first, second, and third strings for 3 steps each
- ... and so on

16-10: Enumeration \& r.e.

- Recursively enumerable languages can be enumerated
- We have no idea in what order the strings in the language will be output.
- Why?
- What if we had an enumeration machine that could output the strings of a language L in lexicographical order what would we know about L ?

16-11: Enumeration \& r.e.

- If an enumeration machine outputs the strings of a language L in lexicographical order, then L is recursive.
- We can write a Turing Machine M that decides L
- To determine if w is in L :
- Start running the enumeration machine
- Eventually, either w will be output, or some string that appears after w lexicographically will be output.

16-12: Enumeration \& r.e.

- If a language can be enumerated by an enumeration machine, it can be semi-decided by a (standard) Turing machine
- Given an enumeration machine that generates L, how can we create a standard Turing machine that semidecides L ?

16-13: Enumeration \& r.e.

- Given an enumeration machine that generates L, we can create a standard Turing machine that semi-decides L
- Move tape head just beyond input
- Start up enumeration machine
- Each time a string is output, check to see if it matches input string. If so, halt and accept

16-14: Recursive \& r.e.

- A Language L is recursive if and only if both L and \bar{L} are recursively enumerable
- L is recursive if there exists a Turing Machine M that decides L
- L is recursively ennumerable if there exists a Turing Machine M that semi-decides L

16-15: Recursive \& r.e.

- A Language L is recursive if and only if both L and \bar{L} are recursively enumerable
- "only if" (If L is recursive, then L and \bar{L} are recursively enumerable)

16-16: Recursive \& r.e.

- A Language L is recursive if and only if both L and \bar{L} are recursively enumerable
- "only if"
- If L is recursive, then L is recursively enumerable
- If L is recursive, then \bar{L} is recursive (swap yes/no states), and hence \bar{L} is recursively enumerable

16-17: Recursive \& r.e.

- A Language L is recursive if and only if both L and \bar{L} are recursively enumerable
- "if" (If L and \bar{L} are recursively enumerable, then L is recursive)

16-18: Recursive \& r.e.

- A Language L is recursive if and only if both L and \bar{L} are recursively enumerable
- "if"
- Run r.e. machines for L and \bar{L} in parallel
- Eventually one of them will halt

16-19: Properties of r.e. Languages

- Are the recursively enumerable languages closed under union?
- Given a Turing Machines M_{1} and M_{2}, can we create a Turing Machine M such that $L[M]=L\left[M_{1}\right] \cup$ $L\left[M_{2}\right]$?

16-20: Properties of r.e. Languages

- Are the recursively enumerable languages closed under union?
- Given a Turing Machines M_{1} and M_{2}, can we create a Turing Machine M such that $L[M]=L\left[M_{1}\right] \cup$ $L\left[M_{2}\right]$?

16-21: Properties of r.e. Languages

- Are the recursively enumerable languages closed under intersection?
- Given a Turing Machines M_{1} and M_{2}, can we create a Turing Machine M such that $L[M]=L\left[M_{1}\right] \cap$ $L\left[M_{2}\right]$?

16-22: Properties of r.e. Languages

- Given a Turing Machines M_{1} and M_{2}, can we create a Turing Machine M such that $L[M]=L\left[M_{1}\right] \cap L\left[M_{2}\right]$.
- First, make a backup copy of w
- Run M_{1} on w. If it halts and accepts ...
- Restore w from the backup and run M_{2} on w
- Return result of running M_{2} on w

16-23: Properties of r.e. Languages

- Are the recursively enumerable languages closed under complementation?
- Given a Turing Machines M, can we create a Turing Machine M^{\prime} such that $L\left[M^{\prime}\right]=\overline{L[M]}$?

16-24: Properties of r.e. Languages

- Given a Turing Machines M, can we create a Turing Machine M^{\prime} such that $L\left[M^{\prime}\right]=\overline{L[M]}$?
- NO!
- If L and \bar{L} are r.e., then L is recursive.
- There are some r.e. languages (the halting problem, for instance) that are not recursive

16-25: Rice's Theorem

- Determining if the language accepted by a Turing machine has any non-trivial property is undecidable
- "Non-Trivial" property means:
- At least one recursively enumerable language has the property
- Not all recursively enumerable languages have the property
- Example: Is the language accepted by a Turing Machine M regular?

16-26: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
- Is this problem decidable?

16-27: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
- Is this problem decidable? YES!
- All recursively enumerable languages are recursively enumerable.
- The question is "trivial"

16-28: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
- Is this problem decidable?

16-29: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
- Is this problem decidable? YES!
- Problem is not language related - we're not asking a question about the language that is accepted, but about the language that is accepted within a certain number of steps

16-30: Rice's Theorem - Proof

- We will prove Rice's theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.
- Given any Machine M, string w, and non-trivial property P, we will create a new machine M^{\prime}, such that either
- $L\left[M^{\prime}\right]$ has property P if and only if M halts on w
- $L\left[M^{\prime}\right]$ has property P if and only if M does not halt on w

16-31: Rice's Theorem - Proof

- Let P be some non-trivial property of a language.
- Two cases:
- The empty language $\}$ has the property
- The empty language $\}$ does not have the property

16-32: Rice's Theorem - Proof

- Properties that the empty language has:
- Regular Languages
- Languages that do not contain the string "aab"
- Languages that are finite
- Properties that the empty language does not have:
- Languages containing the string "aab"
- Languages containing at least one string
- Languages that are infinite

16-33: Rice's Theorem - Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\}$ has property P.
- Let $L_{N P}$ be some recursively enumerable language that does not have the property P, and let $M_{N P}$ be a Turing Machine such that $L\left[M_{N P}\right]=L_{N P}$
- We will create a machine M^{\prime} such that M^{\prime} has property P if and only if M does not halt on w.

16-34: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running $M_{N P}$ on input

16-35: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running $M_{N P}$ on input
- If M halts on $w, L\left[M^{\prime}\right]=L_{N P}$, and $L\left[M^{\prime}\right]$ does not have property P
- If M does not halt on $w, L\left[M^{\prime}\right]=\{ \}$, and $L\left[M^{\prime}\right]$ does have property P

16-36: Rice's Theorem - Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\}$ does not have property P.
- Let $L_{N P}$ be some recursively enumerable language that does have the property P, and let M_{P} be a Turing Machine such that $L\left[M_{P}\right]=L_{P}$
- We will create a machine M^{\prime} such that M^{\prime} has property P if and only if M does halt on w.

16-37: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running M_{P} on input

16-38: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running M_{P} on input
- If M halts on $w, L\left[M^{\prime}\right]=L_{P}$, and $L\left[M^{\prime}\right]$ does have property P
- If M does not halt on $w, L\left[M^{\prime}\right]=\{ \}$, and $L\left[M^{\prime}\right]$ does not have property P

16-39: Undecidability

- How many undecidable languages are there?
- A language is a set of strings
- Set of all languages over Σ^{*} is the set of all subsets of Σ^{*}
- Set of all languages over Σ^{*} is $2^{\Sigma^{*}}$

16-40: Undecidability

- How many different langauges over Σ^{*} are there?
- The set of all langauges over an alphabet Σ is $2^{\Sigma^{*}}$
- There is a bijection between strings and integers (lexigraphic ordering)
- Thus, the number of different languages is $2^{\Sigma^{*}}=\left|2^{\mathbf{N}}\right|$
- How big is $2^{\mathbf{N}}$?

16-41: Undecidability

- $2^{\mathbf{N}}$ is uncountable
- Proof by contradiction (yet another diagonalization!)
- Assume that there is a bijection between N and $2^{\mathbf{N}}$
- Show that there must be an element of $2^{\mathbf{N}}$ that is not in the bijection - contradiction!

16-42: 2^{N} is Uncountable

- Assume that there is a bijection between \mathbf{N} and $2^{\mathbf{N}}$

```
0 {100, 8, 6}
        {0,1,2,3, 9, 11, 22}
        {}
        {2,4,6,8,10,12,14,16,18,20,\ldots}
        {2,4,8,16,32,64,128,256,512,1024,\ldots.}
        {3,9,11, 23,54, 128}
```

- We will find an element of 2^{N} that is not in the bijection

$16-43: 2^{\mathbf{N}}$ is Uncountable

- Let S_{n} be the set mapped to by n in the bijection
- Consider the set $S=\left\{x: x \in \mathbf{N}, S \notin S_{x}\right\}$
$0 \quad\{100,8,6\}$
$1 \quad\{0,1,2,3,9,11,22\}$
2 \{\}
$3 \quad\{2,4,6,8,10,12,14,16,18,20, \ldots\}$
$4 \quad\{2,4,8,16,32,64,128,256,512,1024, \ldots\}$
$5 \quad\{3,9,11,23,54,128\}$
... ...
$S=\{0,2,3,5, \ldots\}$

16-44: \# of Turing Machines

- How many Turing Machines are there?
- Any Turing Machine can be represented by a finite string of 0's and 1's
- There is a bijection between set of all Turing Machines and \mathbf{N}
- Countable \# of Turing Machines

16-45: Undecidability

- Each language represents a problem
- Each Turing Machine represents a solution to a problem
- There are a countable number of Turing Machines, and an uncountable number of languages
- Vastly more undecidable problems than decidable problems!

