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17-0: Tractable vs. Intractable

If a problem is recursive, then there exists a Turing
machine that always halts, and solves it.

However, a recursive problem may not be
practically solvable

Problem that takes an exponential amount of
time to solve is not practically solvable for large
problem sizes

Today, we will focus on problems that are
practically solvable



17-1: Language Class P

A language L is polynomially decidable if there
exists a polynomially bound Turing machine that
decides it.

A Turing Machine M is polynomially bound if:

There exists some polynomial function p(n)

For any input string w, M always halts within

p(|w|) steps

The set of languages that are polynomially
decidable is P



17-2: Language Class P

P is the set of languages that can reasonably be
decided by a computer

What about n100, or 10100000n2

Can these running times really be
“reasonably” solvable

What about nlog logn

Not bound by any polynomial, but grows very
slowly until n gets quite large



17-3: Language Class P

P is the set of languages/problems that can
reasonably be solved by a computer

What about n100, or 10100000n2

Problems that have these kinds of running
times are quite rare

Even a huge polynomial has a chance at being
solvable for large problems if you throw enough
machines at it – unlike exponential problems,
where there is pretty much no hope for solving
large problems



17-4: Reachability

Given a Graph G, and two vertices x and y, is
there a path from x to y in G?

Note that this is a Problem and not a Language,
though we can easily convert it into a language as
follows:

Lreachable = {w : w = en(g)en(x)en(y), there is a

path from x to y in G}

Can encode G:
Numbering all of the vertices
Give an adjacency matrix, using binary
encoding of each vertex



17-5: Reachability

Let A[] be the adjacency matrix

A[i, j] = 1 if link from vi to vj

for (i=0; i<|V|; i++) {
A[i,i] = 1;
for (i=0; i < |V|; i++)

for (j=0; j < |V|; j++)
for (k=0; k < |V|; k++)

if (A[i,j] && A[j,k])
A[i,k] = 1;

}



17-6: Java/C vs. Turing Machine

But wait ... that’s Java/C code, not a Turing
Machine!

If a C program can execute in n steps, then we can
simulate the C program with a Turing Machine that

takes at most p(n) steps, for some polynomial
function p.

We will use Java/C style pseudo-code for many of
the following problems



17-7: Euler Cycles

Given an undirected graph G, is there a cycle that
traverses every edge exactly once?



17-8: Euler Cycles

Given an undirected graph G, is there a cycle that
traverses every edge exactly once?

1

23

4

5

6

7

8

9

10

11

12

13



17-9: Euler Cycles

We can determine if a graph G has an Euler cycle
in polynomial time.

A graph G has an Euler cycle if and only if:

G is connected

All vertices in G have an even # of adjacent
edges



17-10: Euler Cycles

Pick any vertex, start following edges (only
following an edge once) until you reach a “dead
end” (no untraversed edges from the current node).

Must be back at the node you started with

Why?

Pick a new node with untraversed edges, create a
new cycle, and splice it in

Repeat until all edges have been traversed



17-11: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?



17-12: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?



17-13: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

Very similar to the Euler Cycle problem

No known polynomial-time solution



17-14: Traveling Salesman

Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?
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17-15: Traveling Salesman

Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?
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17-16: Decision vs. Optimization

A Decision Problem has a yes/no answer

Is there a path from vertex i to vertex j in graph
G?

Is there an Euler cycle in graph G?

Is there a Hamiltonian cycle in graph G?

An Optimization Problem tries to find an optimal
solution, from a choice of several potential
solutions

What is the cheaptest cycle in a weigted graph?



17-17: Decision vs. Optimization

Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?

This is an optimization problem, and not a
decision problem

We can easily convert it into a decision
problem:

Given a weighted, undirected graph G, is
there a cycle with cost no greater than k?



17-18: Decision vs. Optimization

For every optimization problem

Find the lowest cost solution to a problem

We can create a similar decision problem

Is there a solution under cost k?



17-19: Decision vs. Optimization

If we can solve the “optimization” version of a
problem in polynomial time, we can solve the
“decision” version of the same problem in
polynomial time.

Find the optimal solution, check to see if it is
under the limit

If we can solve the “decision” version of the
problem, we can solve the “optimization” version of
the same problem

Modified binary search



17-20: Integer Partition

Set S of non-negative numbers {a1 . . . an}

Is there a set P ⊆ {1, 2, . . . n} such that

∑

i∈P

ai =
∑

i 6∈P

ai

Can we partition the set into two subsets, each of
which has the same sum?



17-21: Integer Partition

S = {3, 5, 7, 10, 15, 20}

Can break S into:

{3, 5, 7, 15}

{10, 20}



17-22: Integer Partition

S = {1, 4, 9, 10, 15, 27}

No valid partiton

Sum of all numbers is 66

Each partition needs to sum to 34 (why?)

No subset of S sums to 34



17-23: Solving Integer Partition

H = sum of all integers in S divided by 2

B(i) = {b ≤ H : b is the sum of some subset of
a1 . . . ai}

a1 = 5, a2 = 20, a3 = 17, a4 = 30, H = 36

B(0) = {0}

B(1) = {0, 5}

B(2) = {0, 5, 20, 25}

B(3) = {0, 5, 17, 20, 22, 25}

B(4) = {0, 5, 17, 20, 22, 25, 30, 35}

Partition iff H ∈ B(n)



17-24: Solving Integer Partition

Computing B(n) (inefficient):

B(0) = {0}
for (i = 1; i <= n; i++)

B(i) = B(i− 1) (copy)
for (j = i; j < H; j ++)

if (j − ai) ∈ B(i− 1)
add j to B(i)

(How might we make this more efficient?)



17-25: Solving Integer Partition

Computing B(n) (inefficient):

B(0) = {0}
for (i = 1; i <= n; i++)

B(i) = B(i− 1) (copy)
for (j = i; j < H; j ++)

if (j − ai) ∈ B(i− 1)
add j to B(i)

Running time: O(nH). Polynomial?



17-26: Solving Integer Partition

Running time: O(nH).

Not polynomial.

n integers of size ≈ 2n

n integers, each of which has ≈ n digits

H ≈ n

2
2n

Length of input n2

Not the most efficient algorithm to solve the
problem

All known solutions require exponential time,
however



17-27: Unary Integer Partition

Given a set S of non-negative numbers {a1 . . . an},
encoded in unary

Is there a set P ⊆ {1, 2, . . . n} such that

∑

i∈P

ai =
∑

i 6∈P

ai

This problem can be solved in Polynomial time

In fact, the previous algorithm will solve the
problem in polynomial time!

How can this be?



17-28: Unary Integer Partition

Given a set S of non-negative numbers {a1 . . . an},
encoded in unary

Is there a set P ⊆ {1, 2, . . . n} such that

∑

i∈P

ai =
∑

i 6∈P

ai

This problem can be solved in Polynomial time

We’ve made the problem description
exponentially longer

In general, it doesn’t matter how you encode a
problem as long as you don’t use unary to
encode numbers!



17-29: Satisfiability

A Boolean Formula in Conjunctive Normal Form
(CNF) is a conjunction of disjunctions.

(x1 ∨ x2) ∧ (x3 ∨ x2 ∨ x1) ∧ (x5)

(x3 ∨ x1 ∨ x5) ∧ (x1 ∨ x5 ∨ x3) ∧ (x5)

A Clause is a group of variables xi (or negated

variables xj) connected by ORs (∨)

A Formula is a group of clauses, connected by

ANDs (∧)



17-30: Satisfiability

Satisfiability Problem: Given a formula in
Conjunctive Normal Form, is there a set of truth
values for the variables in the formula which makes
the formula true?

(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

Satisfiable: x1 = T, x2 = F, x3 = T, x4 = F

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

Not Satisfiable



17-31: 2-SAT

2-SAT is a special case of the satisfiability problem,
where each clause has no more than 2 variables.

Both of the following problems are instances of
2-SAT

(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)



17-32: 2-SAT

2-SAT is in P – given an instance of 2-SAT, we can
determine if the formula is satisfiable in polynomial
time

If a variable xi is true:

Every clause that contains xi is true.

For every clause of the form (xi ∨ xj), variable
xj must be true.

For every clause of the form (xi ∨ xj), variable

xj must be false.



17-33: 2-SAT

2-SAT is in P – given an instance of 2-SAT, we can
determine if the formula is satisfiable in polynomial
time

If a variable xi is false:

Every clause that contains xi is true.

For every clause of the form (xi ∨ xj), variable
xj must be true.

For every clause of the form (xi ∨ xj), variable

xj must be false.

Once we know the truth value of a single variable,
we can use this information to find the truth value
of many other variables



17-34: 2-SAT

(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

If x1 is true ...



17-35: 2-SAT

(x1 ∨ x4)∧(x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x1∨x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

If x1 is true ...



17-36: 2-SAT

(x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

If x1 is true

Then x4 must be false ...



17-37: 2-SAT

(x2∨x4) ∧ (x3 ∨ x2)∧
(x4)∧(x2 ∨ x3)∧(x2 ∨ x4)

If x1 is true

Then x4 must be false ...



17-38: 2-SAT

(x2) ∧ (x3 ∨ x2)∧
(x2 ∨ x3)

If x1 is true

Then x4 must be false

Then x2 must be false ...



17-39: 2-SAT

(x2) ∧(x3∨x2)∧
(x2 ∨ x3)

If x1 is true

Then x4 must be false

Then x2 must be false ...



17-40: 2-SAT

(x3)

If x1 is true

Then x4 must be false

Then x2 must be false

Then x3 must be true ...



17-41: 2-SAT

(x3)

If x1 is true

Then x4 must be false

Then x2 must be false

Then x3 must be true

And the formula is satisfiable



17-42: Algorithm to solve 2-SAT

Pick any variable xi. Set it to true

Modify the formula, based on xi being true:

Remove any clause that contains xi

For any clause of the form (xi, xj), Variable xj

must be true. Recursively modify the formula
based on xj being true.

For any clause of the form (xi, xj), Variable xj

must be false. Recursively modify the formula
based on xj being false.



17-43: Algorithm to solve 2-SAT

Pick any variable xi. Set it to true

Modify the formula, based on xi being true:

When you are done with the modification, one of 3
cases may occur:

All of the variables are set to some value, and
the formula is thus satisfiable

Several of the clauses have been removed,
leaving you with a smaller problem. Pick
another variable and repeat

The choice of True for xi leads to a
contradiction: some variable xj must be both

true and false. In this case, restore the old
formula, set xi to false, and repeat



17-44: Algorithm to solve 2-SAT

Example:

(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)∧
(x1 ∨ x4) ∧ (x1 ∨ x2)

First, we pick x1, set it to true ...



17-45: Algorithm to solve 2-SAT

Example:

(x1 ∨ x3) ∧(x2 ∨ x3) ∧ (x2 ∨ x3)∧
(x1 ∨x4)∧ (x1 ∨ x2)

First, we pick x1, set it to true

Which means than x4 must be true ...



17-46: Algorithm to solve 2-SAT

Example:

(x1 ∨ x3) ∧(x2 ∨ x3) ∧ (x2 ∨ x3)∧
(x1 ∨x4) ∧ (x1 ∨ x2)

First, we pick x1, set it to true

Which means than x4 must be true ...

And we have a smaller problem.



17-47: Algorithm to solve 2-SAT

Example:

(x2 ∨ x3) ∧ (x2 ∨ x3)

First, we pick x1, set it to true

Which means than x4 must be true

And we have a smaller problem.

Next, pick x2, set it to true ...



17-48: Algorithm to solve 2-SAT

Example:

(x2∨x3) ∧ (x2∨x3)

First, we pick x1, set it to true

Which means than x4 must be true

And we have a smaller problem.

Next, pick x2, set it to true ...



17-49: Algorithm to solve 2-SAT

Example:

(x2∨x3) ∧ (x2∨x3)

First, we pick x1, set it to true

Which means than x4 must be true

And we have a smaller problem.

Next, pick x2, set it to true

and x3 must be both true and false. Whoops!



17-50: Algorithm to solve 2-SAT

Example:

(x2 ∨ x3) ∧ (x2 ∨ x3)

First, we pick x1, set it to true

Which means than x4 must be true

And we have a smaller problem.

Next, pick x2, set it to true

and x3 must be both true and false.

Back up, set x2 to false ...



17-51: Algorithm to solve 2-SAT

Example:

(x2 ∨ x3) ∧ (x2 ∨ x3)

First, we pick x1, set it to true

Which means than x4 must be true

And we have a smaller problem.

Next, pick x2, set it to true

and x3 must be both true and false.

Back up, set x2 to false

And all clauses are satisfied (value of x3 doesn’t
matter)



17-52: Algorithm to solve 2-SAT

Example:

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧
(x1 ∨ x3)

First, we pick x1, and set it to true



17-53: Algorithm to solve 2-SAT

Example:

(x1∨x2) ∧ (x1∨x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧
(x1 ∨ x3)

First, we pick x1, and set it to true

And x2 must be both true and false. Back up ...



17-54: Algorithm to solve 2-SAT

Example:

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧
(x1 ∨ x3)

First, we pick x1, and set it to true

And x2 must be both true and false. Back up

And set x1 to be false ...



17-55: Algorithm to solve 2-SAT

Example:

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧
(x1∨x3)

First, we pick x1, and set it to true

And x2 must be both true and false. Back up

And set x1 to be false

And x3 must be true ...



17-56: Algorithm to solve 2-SAT

Example:

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3∨x4) ∧ (x3∨x4) ∧
(x1∨x3)

First, we pick x1, and set it to true

And x2 must be both true and false. Back up

And set x1 to be false

And x3 must be true

And x4 must be both true and false. No solution



17-57: Algorithm to solve 2-SAT

Once we’ve decided to set a variable to true or
false, the “marking off” phase takes a polynomial
number of steps

Each variable will be chosen to be set to true no
more than once, and chosen to be set to false no
more than once more than once

Total running time is polynomial



17-58: 3-SAT

3-SAT is a special case of the satisfiability problem,
where each clause has no more than 3 variables.

3-SAT has no known polynomial solution

Can’t really do any better than trying all
possible truth assignments to all variables, and
see if they work.
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