17-0: Tractable vs. Intractable

- If a problem is recursive, then there exists a Turing machine that always halts, and solves it.
- However, a recursive problem may not be practically solvable
- Problem that takes an exponential amount of time to solve is not practically solvable for large problem sizes
- Today, we will focus on problems that are practically solvable

17-1: Language Class \mathbf{P}

- A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps
- The set of languages that are polynomially decidable is \mathbf{P}

17-2: Language Class \mathbf{P}

- \mathbf{P} is the set of languages that can reasonably be decided by a computer
- What about n^{100}, or $10^{100000} n^{2}$
- Can these running times really be "reasonably" solvable
- What about $n^{\log \log n}$
- Not bound by any polynomial, but grows very slowly until n gets quite large

17-3: Language Class \mathbf{P}

- \mathbf{P} is the set of languages/problems that can reasonably be solved by a computer
- What about n^{100}, or $10^{100000} n^{2}$
- Problems that have these kinds of running times are quite rare
- Even a huge polynomial has a chance at being solvable for large problems if you throw enough machines at it - unlike exponential problems, where there is pretty much no hope for solving large problems

17-4: Reachability

- Given a Graph G, and two vertices x and y, is there a path from x to y in G ?
- Note that this is a Problem and not a Language, though we can easily convert it into a language as follows:
- $L_{\text {reachable }}=\{w: w=e n(g) e n(x) e n(y)$, there is a path from x to y in $G\}$
- Can encode G :
- Numbering all of the vertices
- Give an adjacency matrix, using binary encoding of each vertex

17-5: Reachability

- Let $A[]$ be the adjacency matrix
- $A[i, j]=1$ if link from v_{i} to v_{j}

```
for (i=0; i<|V|; i++) {
    A[i,i] = 1;
    for (i=0; i < |V|; i++)
        for (j=0; j < |V|; j++)
            for (k=0; k < |V|; k++)
            if (A[i,j] && A[j,k])
            A[i,k] = 1;
}
```


17-6: Java/C vs. Turing Machine

- But wait ... that's Java/C code, not a Turing Machine!
- If a C program can execute in n steps, then we can simulate the C program with a Turing Machine that takes at most $p(n)$ steps, for some polynomial function p.
- We will use Java/C style pseudo-code for many of the following problems

17-7: Euler Cycles

- Given an undirected graph G, is there a cycle that traverses every edge exactly once?

17-8: Euler Cycles

- Given an undirected graph G, is there a cycle that traverses every edge exactly once?

17-9: Euler Cycles

- We can determine if a graph G has an Euler cycle in polynomial time.
- A graph G has an Euler cycle if and only if:
- G is connected
- All vertices in G have an even \# of adjacent edges

17-10: Euler Cycles

- Pick any vertex, start following edges (only following an edge once) until you reach a "dead end" (no untraversed edges from the current node).
- Must be back at the node you started with
- Why?
- Pick a new node with untraversed edges, create a new cycle, and splice it in
- Repeat until all edges have been traversed

17-11: Hamiltonian Cycles

- Given an undirected graph G, is there a cycle that visits every vertex exactly once?

17-12: Hamiltonian Cycles

- Given an undirected graph G, is there a cycle that visits every vertex exactly once?

17-13: Hamiltonian Cycles

- Given an undirected graph G, is there a cycle that visits every vertex exactly once?
- Very similar to the Euler Cycle problem
- No known polynomial-time solution

17-14: Traveling Salesman

- Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?

17-15: Traveling Salesman

- Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?

17-16: Decision vs. Optimization

- A Decision Problem has a yes/no answer
- Is there a path from vertex i to vertex j in graph G ?
- Is there an Euler cycle in graph G ?
- Is there a Hamiltonian cycle in graph G ?
- An Optimization Problem tries to find an optimal solution, from a choice of several potential solutions
- What is the cheaptest cycle in a weigted graph?

17-17: Decision vs. Optimization

- Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?
- This is an optimization problem, and not a decision problem
- We can easily convert it into a decision problem:
- Given a weighted, undirected graph G, is there a cycle with cost no greater than k ?

17-18: Decision vs. Optimization

- For every optimization problem
- Find the lowest cost solution to a problem
- We can create a similar decision problem
- Is there a solution under cost k ?

17-19: Decision vs. Optimization

- If we can solve the "optimization" version of a problem in polynomial time, we can solve the "decision" version of the same problem in polynomial time.
- Find the optimal solution, check to see if it is under the limit
- If we can solve the "decision" version of the problem, we can solve the "optimization" version of the same problem
- Modified binary search

17-20: Integer Partition

- Set S of non-negative numbers $\left\{a_{1} \ldots a_{n}\right\}$
- Is there a set $P \subseteq\{1,2, \ldots n\}$ such that

$$
\sum_{i \in P} a_{i}=\sum_{i \notin P} a_{i}
$$

- Can we partition the set into two subsets, each of which has the same sum?

17-21: Integer Partition

- $S=\{3,5,7,10,15,20\}$
- Can break S into:
- $\{3,5,7,15\}$
- $\{10,20\}$

17-22: Integer Partition

- $S=\{1,4,9,10,15,27\}$
- No valid partiton
- Sum of all numbers is 66
- Each partition needs to sum to 34 (why?)
- No subset of S sums to 34

17-23: Solving Integer Partition

- $H=$ sum of all integers in S divided by 2
- $B(i)=\left\{b \leq H: b\right.$ is the sum of some subset of $\left.a_{1} \ldots a_{i}\right\}$
- $a_{1}=5, a_{2}=20, a_{3}=17, a_{4}=30, H=36$
- $B(0)=\{0\}$
- $B(1)=\{0,5\}$
- $B(2)=\{0,5,20,25\}$
- $B(3)=\{0,5,17,20,22,25\}$
- $B(4)=\{0,5,17,20,22,25,30,35\}$
- Partition iff $H \in B(n)$

17-24: Solving Integer Partition

- Computing $B(n)$ (inefficient):

```
\(B(0)=\{0\}\)
for \((i=1 ; i<=n ; i++)\)
    \(B(i)=B(i-1) \quad\) (copy)
    for \((j=i ; j<H ; j++)\)
        if \(\left(j-a_{i}\right) \in B(i-1)\)
            add \(j\) to \(B(i)\)
```

(How might we make this more efficient?) 17-25: Solving Integer Partition

- Computing $B(n)$ (inefficient):

```
\(B(0)=\{0\}\)
for \((i=1 ; i<=n ; i++\) )
    \(B(i)=B(i-1) \quad\) (copy)
    for \((j=i ; j<H ; j++)\)
        if \(\left(j-a_{i}\right) \in B(i-1)\)
            add \(j\) to \(B(i)\)
```

Running time: $O(n H)$. Polynomial? 17-26: Solving Integer Partition

- Running time: $O(n H)$.
- Not polynomial.
- n integers of size $\approx 2^{n}$
- n integers, each of which has $\approx n$ digits
- $H \approx \frac{n}{2} 2^{n}$
- Length of input n^{2}
- Not the most efficient algorithm to solve the problem
- All known solutions require exponential time, however

17-27: Unary Integer Partition

- Given a set S of non-negative numbers $\left\{a_{1} \ldots a_{n}\right\}$, encoded in unary
- Is there a set $P \subseteq\{1,2, \ldots n\}$ such that

$$
\sum_{i \in P} a_{i}=\sum_{i \notin P} a_{i}
$$

- This problem can be solved in Polynomial time
- In fact, the previous algorithm will solve the problem in polynomial time!
- How can this be?

17-28: Unary Integer Partition

- Given a set S of non-negative numbers $\left\{a_{1} \ldots a_{n}\right\}$, encoded in unary
- Is there a set $P \subseteq\{1,2, \ldots n\}$ such that

$$
\sum_{i \in P} a_{i}=\sum_{i \notin P} a_{i}
$$

- This problem can be solved in Polynomial time
- We've made the problem description exponentially longer
- In general, it doesn't matter how you encode a problem as long as you don't use unary to encode numbers!

17-29: Satisfiability

- A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.
- $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \overline{x_{2}} \vee \overline{x_{1}}\right) \wedge\left(x_{5}\right)$
- $\left(x_{3} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee \overline{x_{5}} \vee \overline{x_{3}}\right) \wedge\left(x_{5}\right)$
- A Clause is a group of variables x_{i} (or negated variables $\overline{x_{j}}$) connected by ORs (V)
- A Formula is a group of clauses, connected by ANDs (\wedge)

17-30: Satisfiability

- Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the variables in the formula which makes the formula true?
- $\left(x_{1} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- Satisfiable: $x_{1}=\mathrm{T}, x_{2}=\mathrm{F}, x_{3}=\mathrm{T}, x_{4}=\mathrm{F}$
- $\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$
- Not Satisfiable

17-31: 2-SAT

- 2-SAT is a special case of the satisfiability problem, where each clause has no more than 2 variables.
- Both of the following problems are instances of 2-SAT
- $\left(x_{1} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- $\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$

17-32: 2-SAT

- 2-SAT is in \mathbf{P} - given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time
- If a variable x_{i} is true:
- Every clause that contains x_{i} is true.
- For every clause of the form $\left(\overline{x_{i}} \vee x_{j}\right)$, variable x_{j} must be true.
- For every clause of the form $\left(\overline{x_{i}} \vee \overline{x_{j}}\right)$, variable x_{j} must be false.

17-33: 2-SAT

- 2-SAT is in \mathbf{P} - given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time
- If a variable x_{i} is false:
- Every clause that contains $\overline{x_{i}}$ is true.
- For every clause of the form $\left(x_{i} \vee x_{j}\right)$, variable x_{j} must be true.
- For every clause of the form $\left(x_{i} \vee \overline{x_{j}}\right)$, variable x_{j} must be false.
- Once we know the truth value of a single variable, we can use this information to find the truth value of many other variables

17-34: 2-SAT

- $\left(x_{1} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- If x_{1} is true ...

17-35: 2-SAT

- $\left(x_{1} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{\overline{x_{T}}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- If x_{1} is true ...

17-36: 2-SAT

- $\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- If x_{1} is true
- Then x_{4} must be false ...

17-37: 2-SAT

- $\left(\overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$
$\left(\overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee \overline{x_{4}}\right)$
- If x_{1} is true
- Then x_{4} must be false ...

17-38: 2-SAT

- $\left(\overline{x_{2}}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- If x_{1} is true
- Then x_{4} must be false
- Then x_{2} must be false ...

17-39: 2-SAT

- $\left(\overline{x_{2}}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge$ $\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- If x_{1} is true
- Then x_{4} must be false
- Then x_{2} must be false ...

17-40: 2-SAT

- $\left(x_{3}\right)$
- If x_{1} is true
- Then x_{4} must be false
- Then x_{2} must be false
- Then x_{3} must be true ...

17-41: 2-SAT

- $\left(x_{3}\right)$
- If x_{1} is true
- Then x_{4} must be false
- Then x_{2} must be false
- Then x_{3} must be true
- And the formula is satisfiable
- Pick any variable x_{i}. Set it to true
- Modify the formula, based on x_{i} being true:
- Remove any clause that contains x_{i}
- For any clause of the form $\left(\overline{x_{i}}, x_{j}\right)$, Variable x_{j} must be true. Recursively modify the formula based on x_{j} being true.
- For any clause of the form $\left(\overline{x_{i}}, \overline{x_{j}}\right)$, Variable x_{j} must be false. Recursively modify the formula based on x_{j} being false.

17-43: Algorithm to solve 2-SAT

- Pick any variable x_{i}. Set it to true
- Modify the formula, based on x_{i} being true:
- When you are done with the modification, one of 3 cases may occur:
- All of the variables are set to some value, and the formula is thus satisfiable
- Several of the clauses have been removed, leaving you with a smaller problem. Pick another variable and repeat
- The choice of True for x_{i} leads to a contradiction: some variable x_{j} must be both true and false. In this case, restore the old formula, set x_{i} to false, and repeat

17-44: Algorithm to solve 2-SAT

- Example:
- $\left(x_{1} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge$ $\left(\overline{x_{1}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2}\right)$
- First, we pick x_{1}, set it to true ...

17-45: Algorithm to solve 2-SAT

- Example:
- $\left(x_{1} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge$ $\left(\overline{\bar{T}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true ...

17-46: Algorithm to solve 2-SAT

- Example:
- $\left(x_{1} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge$
$\left(\overline{\bar{T}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true ...
- And we have a smaller problem.

17-47: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true
- And we have a smaller problem.
- Next, pick x_{2}, set it to true ...

17-48: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{z}} \vee x_{3}\right) \wedge\left(\overline{x_{z}} \vee \overline{x_{3}}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true
- And we have a smaller problem.
- Next, pick x_{2}, set it to true ...

17-49: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{z}} \vee x_{3}\right) \wedge\left(\overline{x_{z}} \vee \overline{x_{3}}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true
- And we have a smaller problem.
- Next, pick x_{2}, set it to true
- and x_{3} must be both true and false. Whoops!

17-50: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true
- And we have a smaller problem.
- Next, pick x_{2}, set it to true
- and x_{3} must be both true and false.
- Back up, set x_{2} to false ...

17-51: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- First, we pick x_{1}, set it to true
- Which means than x_{4} must be true
- And we have a smaller problem.
- Next, pick x_{2}, set it to true
- and x_{3} must be both true and false.
- Back up, set x_{2} to false
- And all clauses are satisfied (value of x_{3} doesn't matter)

17-52: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- First, we pick x_{1}, and set it to true

17-53: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{T}} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- First, we pick x_{1}, and set it to true
- And x_{2} must be both true and false. Back up ...

17-54: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- First, we pick x_{1}, and set it to true
- And x_{2} must be both true and false. Back up
- And set x_{1} to be false ...

17-55: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- First, we pick x_{1}, and set it to true
- And x_{2} must be both true and false. Back up
- And set x_{1} to be false
- And x_{3} must be true ...

17-56: Algorithm to solve 2-SAT

- Example:
- $\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- First, we pick x_{1}, and set it to true
- And x_{2} must be both true and false. Back up
- And set x_{1} to be false
- And x_{3} must be true
- And x_{4} must be both true and false. No solution

17-57: Algorithm to solve 2-SAT

- Once we've decided to set a variable to true or false, the "marking off" phase takes a polynomial number of steps
- Each variable will be chosen to be set to true no more than once, and chosen to be set to false no more than once more than once
- Total running time is polynomial

17-58: 3-SAT

- 3-SAT is a special case of the satisfiability problem, where each clause has no more than 3 variables.
- 3-SAT has no known polynomial solution
- Can't really do any better than trying all possible truth assignments to all variables, and see if they work.

