
CS411-2015-17 Complexity Theory I: Polynomial Time 1

17-0: Tractable vs. Intractable

• If a problem is recursive, then there exists a Turing machine that always halts, and solves it.

• However, a recursive problem may not be practically solvable

• Problem that takes an exponential amount of time to solve is not practically solvable for large problem

sizes

• Today, we will focus on problems that are practically solvable

17-1: Language Class P

• A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.

• A Turing Machine M is polynomially bound if:

• There exists some polynomial function p(n)

• For any input string w, M always halts within p(|w|) steps

• The set of languages that are polynomially decidable is P

17-2: Language Class P

• P is the set of languages that can reasonably be decided by a computer

• What about n100, or 10100000n2

• Can these running times really be “reasonably” solvable

• What about nlog logn

• Not bound by any polynomial, but grows very slowly until n gets quite large

17-3: Language Class P

• P is the set of languages/problems that can reasonably be solved by a computer

• What about n100, or 10100000n2

• Problems that have these kinds of running times are quite rare

• Even a huge polynomial has a chance at being solvable for large problems if you throw enough machines

at it – unlike exponential problems, where there is pretty much no hope for solving large problems

17-4: Reachability

• Given a Graph G, and two vertices x and y, is there a path from x to y in G?

• Note that this is a Problem and not a Language, though we can easily convert it into a language as follows:

• Lreachable = {w : w = en(g)en(x)en(y), there is a path from x to y in G}

• Can encode G:

• Numbering all of the vertices

• Give an adjacency matrix, using binary encoding of each vertex

17-5: Reachability

CS411-2015-17 Complexity Theory I: Polynomial Time 2

• Let A[] be the adjacency matrix

• A[i, j] = 1 if link from vi to vj

for (i=0; i<|V|; i++) {

A[i,i] = 1;

for (i=0; i < |V|; i++)

for (j=0; j < |V|; j++)

for (k=0; k < |V|; k++)

if (A[i,j] && A[j,k])

A[i,k] = 1;

}

17-6: Java/C vs. Turing Machine

• But wait ... that’s Java/C code, not a Turing Machine!

• If a C program can execute in n steps, then we can simulate the C program with a Turing Machine that takes at

most p(n) steps, for some polynomial function p.

• We will use Java/C style pseudo-code for many of the following problems

17-7: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?

17-8: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?

1

23

4

5

6

7

8

9

10

11

12

13

CS411-2015-17 Complexity Theory I: Polynomial Time 3

17-9: Euler Cycles

• We can determine if a graph G has an Euler cycle in polynomial time.

• A graph G has an Euler cycle if and only if:

• G is connected

• All vertices in G have an even # of adjacent edges

17-10: Euler Cycles

• Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed

edges from the current node).

• Must be back at the node you started with

• Why?

• Pick a new node with untraversed edges, create a new cycle, and splice it in

• Repeat until all edges have been traversed

17-11: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

17-12: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

17-13: Hamiltonian Cycles

CS411-2015-17 Complexity Theory I: Polynomial Time 4

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

• Very similar to the Euler Cycle problem

• No known polynomial-time solution

17-14: Traveling Salesman

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit

that connects all of the vertices?

3

2 1

7

5

9

6
4

4
7

17-15: Traveling Salesman

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit

that connects all of the vertices?

3

2 1

7

5

9

6
4

4
7

Path Cost:18

17-16: Decision vs. Optimization

• A Decision Problem has a yes/no answer

• Is there a path from vertex i to vertex j in graph G?

• Is there an Euler cycle in graph G?

• Is there a Hamiltonian cycle in graph G?

• An Optimization Problem tries to find an optimal solution, from a choice of several potential solutions

• What is the cheaptest cycle in a weigted graph?

17-17: Decision vs. Optimization

CS411-2015-17 Complexity Theory I: Polynomial Time 5

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit

that connects all of the vertices?

• This is an optimization problem, and not a decision problem

• We can easily convert it into a decision problem:

• Given a weighted, undirected graph G, is there a cycle with cost no greater than k?

17-18: Decision vs. Optimization

• For every optimization problem

• Find the lowest cost solution to a problem

• We can create a similar decision problem

• Is there a solution under cost k?

17-19: Decision vs. Optimization

• If we can solve the “optimization” version of a problem in polynomial time, we can solve the “decision” version

of the same problem in polynomial time.

• Find the optimal solution, check to see if it is under the limit

• If we can solve the “decision” version of the problem, we can solve the “optimization” version of the same

problem

• Modified binary search

17-20: Integer Partition

• Set S of non-negative numbers {a1 . . . an}

• Is there a set P ⊆ {1, 2, . . . n} such that ∑

i∈P

ai =
∑

i6∈P

ai

• Can we partition the set into two subsets, each of which has the same sum?

17-21: Integer Partition

• S = {3, 5, 7, 10, 15, 20}

• Can break S into:

• {3, 5, 7, 15}

• {10, 20}

17-22: Integer Partition

• S = {1, 4, 9, 10, 15, 27}

• No valid partiton

• Sum of all numbers is 66

• Each partition needs to sum to 34 (why?)

CS411-2015-17 Complexity Theory I: Polynomial Time 6

• No subset of S sums to 34

17-23: Solving Integer Partition

• H = sum of all integers in S divided by 2

• B(i) = {b ≤ H : b is the sum of some subset of a1 . . . ai}

• a1 = 5, a2 = 20, a3 = 17, a4 = 30, H = 36

• B(0) = {0}

• B(1) = {0, 5}

• B(2) = {0, 5, 20, 25}

• B(3) = {0, 5, 17, 20, 22, 25}

• B(4) = {0, 5, 17, 20, 22, 25, 30, 35}

• Partition iff H ∈ B(n)

17-24: Solving Integer Partition

• Computing B(n) (inefficient):

B(0) = {0}
for (i = 1; i <= n; i++)

B(i) = B(i− 1) (copy)

for (j = i; j < H ; j ++)
if (j − ai) ∈ B(i− 1)

add j to B(i)

(How might we make this more efficient?) 17-25: Solving Integer Partition

• Computing B(n) (inefficient):

B(0) = {0}
for (i = 1; i <= n; i++)

B(i) = B(i− 1) (copy)

for (j = i; j < H ; j ++)
if (j − ai) ∈ B(i− 1)

add j to B(i)

Running time: O(nH). Polynomial? 17-26: Solving Integer Partition

• Running time: O(nH).

• Not polynomial.

• n integers of size ≈ 2n

• n integers, each of which has ≈ n digits

• H ≈ n
2
2n

• Length of input n2

CS411-2015-17 Complexity Theory I: Polynomial Time 7

• Not the most efficient algorithm to solve the problem

• All known solutions require exponential time, however

17-27: Unary Integer Partition

• Given a set S of non-negative numbers {a1 . . . an}, encoded in unary

• Is there a set P ⊆ {1, 2, . . . n} such that ∑

i∈P

ai =
∑

i6∈P

ai

• This problem can be solved in Polynomial time

• In fact, the previous algorithm will solve the problem in polynomial time!

• How can this be?

17-28: Unary Integer Partition

• Given a set S of non-negative numbers {a1 . . . an}, encoded in unary

• Is there a set P ⊆ {1, 2, . . . n} such that ∑

i∈P

ai =
∑

i6∈P

ai

• This problem can be solved in Polynomial time

• We’ve made the problem description exponentially longer

• In general, it doesn’t matter how you encode a problem as long as you don’t use unary to encode numbers!

17-29: Satisfiability

• A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.

• (x1 ∨ x2) ∧ (x3 ∨ x2 ∨ x1) ∧ (x5)

• (x3 ∨ x1 ∨ x5) ∧ (x1 ∨ x5 ∨ x3) ∧ (x5)

• A Clause is a group of variables xi (or negated variables xj) connected by ORs (∨)

• A Formula is a group of clauses, connected by ANDs (∧)

17-30: Satisfiability

• Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the

variables in the formula which makes the formula true?

• (x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• Satisfiable: x1 = T, x2 = F, x3 = T, x4 = F

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

• Not Satisfiable

17-31: 2-SAT

CS411-2015-17 Complexity Theory I: Polynomial Time 8

• 2-SAT is a special case of the satisfiability problem, where each clause has no more than 2 variables.

• Both of the following problems are instances of 2-SAT

• (x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

17-32: 2-SAT

• 2-SAT is in P – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time

• If a variable xi is true:

• Every clause that contains xi is true.

• For every clause of the form (xi ∨ xj), variable xj must be true.

• For every clause of the form (xi ∨ xj), variable xj must be false.

17-33: 2-SAT

• 2-SAT is in P – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time

• If a variable xi is false:

• Every clause that contains xi is true.

• For every clause of the form (xi ∨ xj), variable xj must be true.

• For every clause of the form (xi ∨ xj), variable xj must be false.

• Once we know the truth value of a single variable, we can use this information to find the truth value of many

other variables

17-34: 2-SAT

• (x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• If x1 is true ...

17-35: 2-SAT

• (x1 ∨ x4)∧(x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x1∨x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• If x1 is true ...

17-36: 2-SAT

• (x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• If x1 is true

• Then x4 must be false ...

CS411-2015-17 Complexity Theory I: Polynomial Time 9

17-37: 2-SAT

• (x2∨x4) ∧ (x3 ∨ x2)∧

(x4)∧(x2 ∨ x3)∧(x2 ∨ x4)

• If x1 is true

• Then x4 must be false ...

17-38: 2-SAT

• (x2) ∧ (x3 ∨ x2)∧

(x2 ∨ x3)

• If x1 is true

• Then x4 must be false

• Then x2 must be false ...

17-39: 2-SAT

• (x2) ∧(x3∨x2)∧

(x2 ∨ x3)

• If x1 is true

• Then x4 must be false

• Then x2 must be false ...

17-40: 2-SAT

• (x3)

• If x1 is true

• Then x4 must be false

• Then x2 must be false

• Then x3 must be true ...

17-41: 2-SAT

• (x3)

• If x1 is true

• Then x4 must be false

• Then x2 must be false

• Then x3 must be true

• And the formula is satisfiable

17-42: Algorithm to solve 2-SAT

CS411-2015-17 Complexity Theory I: Polynomial Time 10

• Pick any variable xi. Set it to true

• Modify the formula, based on xi being true:

• Remove any clause that contains xi

• For any clause of the form (xi, xj), Variable xj must be true. Recursively modify the formula based on xj

being true.

• For any clause of the form (xi, xj), Variable xj must be false. Recursively modify the formula based on

xj being false.

17-43: Algorithm to solve 2-SAT

• Pick any variable xi. Set it to true

• Modify the formula, based on xi being true:

• When you are done with the modification, one of 3 cases may occur:

• All of the variables are set to some value, and the formula is thus satisfiable

• Several of the clauses have been removed, leaving you with a smaller problem. Pick another variable and

repeat

• The choice of True for xi leads to a contradiction: some variable xj must be both true and false. In this

case, restore the old formula, set xi to false, and repeat

17-44: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)∧

(x1 ∨ x4) ∧ (x1 ∨ x2)

• First, we pick x1, set it to true ...

17-45: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x3) ∧(x2 ∨ x3) ∧ (x2 ∨ x3)∧

(x1 ∨x4)∧ (x1 ∨ x2)

• First, we pick x1, set it to true

• Which means than x4 must be true ...

17-46: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x3) ∧(x2 ∨ x3) ∧ (x2 ∨ x3)∧

(x1 ∨x4) ∧ (x1 ∨ x2)

• First, we pick x1, set it to true

• Which means than x4 must be true ...

CS411-2015-17 Complexity Theory I: Polynomial Time 11

• And we have a smaller problem.

17-47: Algorithm to solve 2-SAT

• Example:

• (x2 ∨ x3) ∧ (x2 ∨ x3)

• First, we pick x1, set it to true

• Which means than x4 must be true

• And we have a smaller problem.

• Next, pick x2, set it to true ...

17-48: Algorithm to solve 2-SAT

• Example:

• (x2∨x3) ∧ (x2∨x3)

• First, we pick x1, set it to true

• Which means than x4 must be true

• And we have a smaller problem.

• Next, pick x2, set it to true ...

17-49: Algorithm to solve 2-SAT

• Example:

• (x2∨x3) ∧ (x2∨x3)

• First, we pick x1, set it to true

• Which means than x4 must be true

• And we have a smaller problem.

• Next, pick x2, set it to true

• and x3 must be both true and false. Whoops!

17-50: Algorithm to solve 2-SAT

• Example:

• (x2 ∨ x3) ∧ (x2 ∨ x3)

• First, we pick x1, set it to true

• Which means than x4 must be true

• And we have a smaller problem.

• Next, pick x2, set it to true

CS411-2015-17 Complexity Theory I: Polynomial Time 12

• and x3 must be both true and false.

• Back up, set x2 to false ...

17-51: Algorithm to solve 2-SAT

• Example:

• (x2 ∨ x3) ∧ (x2 ∨ x3)

• First, we pick x1, set it to true

• Which means than x4 must be true

• And we have a smaller problem.

• Next, pick x2, set it to true

• and x3 must be both true and false.

• Back up, set x2 to false

• And all clauses are satisfied (value of x3 doesn’t matter)

17-52: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3)

• First, we pick x1, and set it to true

17-53: Algorithm to solve 2-SAT

• Example:

• (x1∨x2) ∧ (x1∨x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3)

• First, we pick x1, and set it to true

• And x2 must be both true and false. Back up ...

17-54: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3)

• First, we pick x1, and set it to true

• And x2 must be both true and false. Back up

• And set x1 to be false ...

17-55: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1∨x3)

CS411-2015-17 Complexity Theory I: Polynomial Time 13

• First, we pick x1, and set it to true

• And x2 must be both true and false. Back up

• And set x1 to be false

• And x3 must be true ...

17-56: Algorithm to solve 2-SAT

• Example:

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3∨x4) ∧ (x3∨x4) ∧ (x1∨x3)

• First, we pick x1, and set it to true

• And x2 must be both true and false. Back up

• And set x1 to be false

• And x3 must be true

• And x4 must be both true and false. No solution

17-57: Algorithm to solve 2-SAT

• Once we’ve decided to set a variable to true or false, the “marking off” phase takes a polynomial number of

steps

• Each variable will be chosen to be set to true no more than once, and chosen to be set to false no more than once

more than once

• Total running time is polynomial

17-58: 3-SAT

• 3-SAT is a special case of the satisfiability problem, where each clause has no more than 3 variables.

• 3-SAT has no known polynomial solution

• Can’t really do any better than trying all possible truth assignments to all variables, and see if they work.

