CS411-2014S-18 Complexity Theory II: Class NP 1

18-0: Language Class P

e A language L is polynomially decidable if there exists a polynomially bound deterministic Turing machine that
decides it.

e A Turing Machine M is polynomially bound if:

e There exists some polynomial function p(n)

e For any input string w, M always halts within p(|w|) steps

e The set of languages that are polynomially decidable is P
18-1: Language Class NP

e Alanguage L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic
Turing machine that decides it.

e A Non-Deterministic Turing Machine M is polynomially bound if:

e There exists some polynomial function p(n)

e For any input string w, M always halts within p(|w|) steps, for all computational paths

e The set of languages that are non-deterministically polynomially decidable is NP

18-2: Language Class NP

e If a Language L is in NP:

e There exists a non-deterministic Turing machine M
e M halts within p(|w|) steps for all inputs w, in all computational paths

e If w € L, then there is at least one computational path for w that accepts (and potentially several that
reject)

e If w & L, then all computational paths for w reject
18-3: NP vs P

e A problem is in P if we can generate a solution quickly (that is, in polynomial time
e A problem is in NP if we can check to see if a potential solution is correct quickly

e Non-deterministically create (guess) a potential solution

e Check to see that the solution is correct

18-4: NP vs P

e All problems in P are also in NP
e Thatis, P C NP

e If you can generate correct solutions, you can check if a guessed solution is correct

18-5: NP Problems

e Finding Hamiltonian Cycles is NP

e Non-deterministically pick a permutation of the nodes of the graph

CS411-2014S-18 Complexity Theory II: Class NP 2

e First, non-deterministically pick any node in the graph, and place it first in the permutation

e Then, non-deterministically pick any unchosen node in the graph, and place it second in the permuta-
tion
o ...

e Check to see if that permutation forms a valid cycle
18-6: NP Problems

e Traveling Salesman decision problem is NP

e Non-deterministically pick a permutation of the nodes of the graph

e First, non-deterministically pick any node in the graph, and place it first in the permutation
e Then, non-deterministically pick any unchosen node in the graph, and place it second in the permuta-
tion

e Check to see if the cost of that cycle is within the cost bound.
18-7: Integer Partition

e Integer Partition is NP

e Non-deterministically pick a subset P C S
e Check to see if:

Y- Y s

peEP seS—P

18-8: NP Problems

o Satisfiability is NP

e Count the number of variables in the formula
e Non-deterministically write down True or False for each of the n variables in the formula

e Check to see if that truth assignment satisfies the formula

18-9: Reduction Redux

e Given a problem instance P, if we can

e Create an instance of a different problem P’, in polynomial time, such that the solution to P’ is the same
as the solution to P

e Solve the instance P’ in polynomial time

e Then we can solve P in polynomial time
18-10: Reduction Example

o If we could solve the Traveling Salesman decision problem in polynomial time, we could solve the Hamiltonian
Cycle problem in polynomial time

e Given any graph GG, we can create a new graph G’ and limit k&, such that there is a Hamiltonian Circuit in
G if and only if there is a Traveling Salesman tour in G’ with cost less than &

e Vertices in G’ are the same as the vertices in G

CS411-2014S-18 Complexity Theory II: Class NP 3

e For each pair of vertices z; and x; in G, if the edge (z;, z;) is in G, add the edge (z;, ;) to G’ with the
cost 1. Otherwise, add the edge (z;, z;) to G’ with the cost 2.

e Set the limit £ = # of vertices in G

18-11: Reduction Example

O O 1
2| 2
© 1
Limit = 4

18-12: Reduction Example

o If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time

e Start with an instance of Hamiltonian Cycle
e Create instance of TSP
e Feed instance of TSP into TSP solver

e Use result to find solution to Hamiltonian Cycle
18-13: Reduction Example #2

e Given any instance of the Hamiltonian Cycle Problem:

e We can (in polynomial time) create an instance of Satisfiability

e Thatis, given any graph GG, we can create a boolean formula f, such that f is satisfiable if and only if there
is a Hamiltonian Cycle in G

o If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polyno-
mial Time

18-14: Reduction Example #2

e Given a graph G with n vertices, we will create a formula with n? variables:

® T11,212,T13y---Lln
€21,T22,T23,...T2n
Tnl, Tn2,Ln3, .- - Tnn

e Design our formula such that x;; will be true if and only if the ith element in a Hamiltonian Circuit of G is
vertex # j

18-15: Reduction Example #2

e For our set of n? variables x;;, we need to write a formula that ensures that:

e For each 4, there is exactly one j such that z;; = true

CS411-2014S-18 Complexity Theory II: Class NP

e For each j, there is exactly one 7 such that x;; = true

e If x;; and x(;; 1)) are both true, then there must be a link from v; to vy, in the graph G
18-16: Reduction Example #2

e For each i, there is exactly one j such that z;; = true

e Foreachiin1...n, add the rules:

. (xil \/.I'ig\/...\/l'm)
e This ensures that for each i, there is at least one j such that z;; = true

e (This adds n clauses to the formula)
18-17: Reduction Example #2

e For each 1, there is exactly one j such that z;; = true

foreachzinl...n
foreachjinl...n
foreachkinl...n ji#k
Add rule (T7; V Tix)

e This ensures that for each i, there is at most one j such that x;; = true

o (this adds a total of n? clauses to the formula)
18-18: Reduction Example #2

e For each j, there is exactly one ¢ such that z;; = true

e Foreach jin1...n, add the rules:

o (z1; Vg V... Vy,)
o This ensures that for each j, there is at least one ¢ such that z;; = true
e (This adds n clauses to the formula)
18-19: Reduction Example #2

e For each j, there is exactly one 7 such that z;; = true

foreachjinl...n
foreachzinl...n
foreachkinl...n
Add rule (775 V Tx;)

o This ensures that for each j, there is at most one ¢ such that x;; = true

o (This adds a total of n? clauses to the formula)

18-20: Reduction Example #2

CS411-2014S-18 Complexity Theory II: Class NP 5

o Ifz;; and T(i41)k are both true, then there must be a link from v; to vy, in the graph G

foreachiinl...(n —1)
foreachjinl...n
foreachkinl...n
if edge (v;, vx) is not in the graph:
Add rule (Z75 V T k)

o (This adds no more than n> clauses to the formula)
18-21: Reduction Example #2

o If x,,; and xy, are both true, then there must be a link from v; to vy, in the graph G (looping back to finish cycle)

foreachjinl...n
foreachkinl...n
if edge (vj, vx) is not in the graph:
Add rule (Z,; V Tox)

o (This adds no more than n? clauses to the formula)

18-22: Reduction Example #2

e In order for this formula to be satisfied:

e For each 4, there is exactly one j such that ;; is true
e For each j, there is exactly one 7 such that zj; is true

e if z;; is true, and (;1 1), is true, then there is an arc from v; to vy in the graph G

e Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

18-23: NP-Complete

e A language L is NP-Complete if:
e Lisin NP

e [fwe could decide L in polynomial time, then all NP languages could be decided in polynomial time

e That is, we could reduce any NP problem to L in polynomial time
18-24: NP-Complete

e How do you show a problem is NP-Complete?

o Given any polynomially-bound non-deterministic Turing machine M and string w:

o Create an instance of the problem that has a solution if and only if M accepts w

18-25: NP-Complete

e First NP-Complete Problem: Satisfiability (SAT)

e Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound p(n)

CS411-2014S-18 Complexity Theory II: Class NP

e Create a boolean formula f, such that f is satisfiable if and only of M accepts w
18-26: Cook’s Theorem

e Satisfiability is NP-Complete

e Given a Turing Machine M, string w, polynomial bound p(n), we will create:

o A set of variables
o A set of clauses containing these variables

e Such that the conjunction (A) of the clauses is satisfiable if and only if M accepts w within p(Jw|) steps

e WARNING: This explaination is somewhat simplifed. Some subtleties have been eliminated for clarity.
18-27: Cook’s Theorem

e Variables

e Qli, k] at time 4, machine is in state g
e HJi, j] at time 4, the machine is scanning tape square j

e SJi, j, k] at time ¢, the contents of tape location j is the symbol &k

e How many of each of these variables are there?

18-28: Cook’s Theorem

e Variables
e Q[i, k] | K|+ p(|wl)
o Hli,jl p(|wl) * p(|w])
o S[i,j, k] p(lwl) = p(|wl]) * |2

e How many of each of these variables are there?
18-29: Cook’s Theorem
G1 Ateach time ¢, M is in exactly one state
G2 Ateach time i, the read-write head is scanning one tape square
G's Ateach time i, each tape square contains exactly one symbol
G4 Attime 0, the computation is in the initial configuration for input w
G5 By time p(|w|), M has entered the final state and has hence accepted w
Gg For each time i, the configuration of the M at ¢ + 1 follows by a single application of §

18-30: Cook’s Theorem

(GG1 Ateach time ¢, M is in exactly one state

CS411-2014S-18 Complexity Theory II: Class NP

(Q[E, 0] v Q[i, 1]V ... v Q[i, [KT])
foreach 0 < i < p(Jw|)
(Q[i, j] v Qi ')

foreach 0 < i < p(Jwl|),0 < j < 5/ <|K] 18-31: Cook’s Theorem

G2 Ateach time i, the read-write head is scanning one tape square

(H[i,0]V H[i, 1]V ...V H[i,p(Jw])])

foreach 0 < i < p(Jw|)

(HTi, j] v H[i, 5'])

foreach 0 < i < p(|w|),0 < j < j < p(jw])
18-32: Cook’s Theorem

G's Ateach time i, each tape square contains exactly one symbol

(S[é, 4,01V S[i, 3,1] V...V S[i, 4, |Z]])

foreach 0 < i < p(Jw|),0 < j < p(|w|)

(S[é, g, k] v S[i, 5, K1)

forcach 0 < i < p(jw]),0 < j < p(ju]),0 < k < ¥ < |5
18-33: Cook’s Theorem

G4 Attime 0, the computation is in the initial configuration for input w

Q10,0]
H[0,1]
70]

1]

2]

)

nn
o O O

,0
, 1w
727w

S|
S[O, |w|,w|w|]
S[0, |w[+1,0]
S[0, |w[+2,0]

S10, p(|wl), 0]
18-34: Cook’s Theorem

G5 By time p(|w|), M has entered the final state and has hence accepted w

CS411-2014S-18 Complexity Theory II: Class NP

Qlp(Jw]), 7]

Where g, is the accept state
18-35: Cook’s Theorem

G For each time i, the configuration of the M at i + 1 follows by a single application of §

For each deterministic transtion ((g, X4), (g1, —))
Foralll 0 <14 < p(|w|),0 < j < p(Jw|)
Add:
Qlé, k) AN H[i, j] A S[i, j,al = H[i + 1,5 + 1]
Qlé, k] A HIi, j] A S[i, j,a] = Qi + 1,1

18-36: Cook’s Theorem
Gg For each time i, the configuration of the M at i + 1 follows by a single application of §

For each deterministic transtion ((qx, Xq), (g1, <))
Foralll 0 <4 < p(Jw]),0 < j < p(|w])
Add:
Qli, k] AN Hi, j) A S[i,j,a) = H[i + 1,5 — 1]
Qli, k] A H[i, j) A S[i, j,a] = Qi + 1,1]

18-37: Cook’s Theorem

G For each time i, the configuration of the M at ¢ + 1 follows by a single application of §

For each deterministic transtion ((qx, X4), (g1, Xp))
Foralll 0 < i < p(Jwl]),0 < j < p(Jwl|)
Add:
Qli, k] A H[i,j) A\ S[i, j,a) = H[i + 1, 7]
Qli, k) N H[i, j] A Sliy j,a] = Qi + 1,1]
Qli, k] A H[i, j) A S[i, j,a) = STi, 5, 0]

18-38: Cook’s Theorem
Gg For each time i, the configuration of the M at i + 1 follows by a single application of §
For each non-deterministic transtion ((qx, X4), (¢, —)) and ((gx, Xa), (gm, —))
Foralll 0 < i < p(Jwl]),0 < j < p(Jwl|)
Add:
Qli, k] A HIi, j] A S[iyj,a] = H[i+ 1,5 + 1]
Qli, k] A Hi,] A S[i, jya] = Qi+ 1,11V Qli + 1, m]
18-39: Cook’s Theorem
G For each time i, the configuration of the M at i + 1 follows by a single application of §

e ... similar rules for other non-deterministic cases

CS411-2014S-18 Complexity Theory II: Class NP

18-40: Cook’s Theorem

Gg For each time 7, the configuration of the M at i + 1 follows by a single application of §

Hli,j1 A Sli,k,a] = S[i+ 1,k a

for all values of k, j between 0 and p(|w|) where k # 4, and all values 0 < a < |3
18-41: More NP-Complete Problems

e So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
e Including factoring large numbers ...

o Satisfiability is NP-Complete

e There are many NP-Complete problems

e Prove NP-Completeness using a reduction
18-42: More NP-Complete Problems

e Exact Cover Problem

e Set of elements A
e F C 24, family of subsets

e Is there a subset of F' such that each element of A appears exactly once?

18-43: More NP-Complete Problems

e Exact Cover Problem
L4 A:{a7b7c7d7e7f7g}
o I'={{a,b,c},{d,e, f},{b, f, 9}, {g}}

e Exact cover exists:

{a,b, ¢} {d, e, [}, {g}

18-44: More NP-Complete Problems

e Exact Cover Problem
L A: {a7bac7d7e7f7g}
o F'={{a,b,c},{c,de, f},{a, f, g} {c}}

e No exact cover exists

18-45: More NP-Complete Problems

e Exact Coverisin NP

o Guess a cover

e Check that each element appears exactly once

e Exact Cover is NP-Complete

CS411-2014S-18 Complexity Theory II: Class NP 10

e Reduction from Satisfiability

¢ Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

18-46: Exact Cover is NP-Complete
e Given an instance of SAT:

o (1 = (21,V73)

o (= ($_1V$2V1'3)

o (3 = (72)

o C14 = (I_Qa I_3)

e Formula: C1 ACo A C3 A Cy

e Create an instance of Exact Cover

e Define a set A and family of subsets F' such that there is an exact cover of A in F' if and only if the formula
is satisfiable

18-47: Exact Cover is NP-Complete
C) = (561 \/CC_Q) Cy = (CC_1V$2 \/x‘g) C3 = (x‘g) Cy = (CC_QVx'_S)

A = {x1,22,23,C1,C2,C3,Cy, p11, P12, P21, P22, P23, P31, Pal, P42 }

F = {{pu}, {p12}, {p21}, {p22}, {p23}, {pa1}, {par }, {pa=},

X1, f={z1,p11}

X1,t ={x1,p21}

Xo, f = {x2,p22,p31}

Xo,t = {x2,p12,pa1}

Xs, f = {ws,p23}

X3, t = {x3,pa2}

{C1,p11}, {C1,p12}, {C2sp21}, {C2,p22}, {C2,p23t, {C3,p31}, {Ca, par}, {Ca, paza}} 18-48: Knapsack

e Given a set of integers S and a limit k:
o Is there some subset of S that sums to k?
e {3,5,11, 15,20, 25} Limit: 36
e {5,11,20}
e {2,5,10, 12,20, 27} Limit: 43
e No solution
e Generalized version of Integer Partition problem

18-49: Knapsack

e Knapsack is NP-Complete
e By reduction from Exact Cover

e Given any Exact Cover problem (set A, family of subsets F'), we will create a Knapsack problem (set S,
limit k), such that there is a subset of S that sums to & if and only if there is an exact cover of A in F'

18-50: Knapsack

CS411-2014S-18 Complexity Theory II: Class NP

11

e Each set will be represented by a number — bit-vector representation of the set

A= {G17(I2,(I37(I4}

Set Number
Fl = {al,a2,a3} 1110
F2 = {CLQ,CL4} 0101
F3 = {al,ag} 1010
F4 = {ag,ag,a4} 0111

There is an exact cover if some subset of the numbers sum to ...

18-51: Knapsack

e Each set will be represented by a number — bit-vector representation of the set

A= {G17(I2,(I37(I4}

Set Number
Fl = {al,a2,a3} 1110
F2 = {CLQ,CL4} 0101
F3 = {al,ag} 1010
F4 = {ag,ag,a4} 0111

There is an exact cover if some subset of the numbers sum to 1111

18-52: Knapsack

e Bug in our reduction:

A= {G17(I2,(I37(I4}

Set Number
Fl = {0@,@3,@4} 0111
F2 = {CLQ,CL4} 0101
F3 = {a3} 0010
F3 = {a4} 0001
F4 = {al,ag,a4} 1011

e 011140101 +0001 +0010=1111

e What can we do?
18-53: Knapsack

e Construct the numbers just as before

e Do addition in base m, where m is the number of element in A. A = {a1, az, a3, a4}

Set Number
Fl = {0@,@3,@4} 0111
F2 = {CLQ,CL4} 0101
F3 = {a3} 0010
F3 = {a4} 0001
F4 = {al,ag,a4} 1011

e 0111+0101 +0001 + 0010 = 0223

CS411-2014S-18 Complexity Theory II: Class NP 12

e No subset of numbers sums to 1111
18-54: Integer Partition

e Integer Partition

o Special Case of the Knapsack problem
e “Half sum” H (sum of all elements in the set / 2) is an integer
e Limithk=H

o Integer Partition is NP-Complete

e Reduce Knapsack to Integer Partition

18-55: Integer Partition

e Given any instance of the Knapsack problem

e Set of integers S = {aq,as,...,a,} limit k

e Is there a subset of .S that sums to k?
e Create an instance of Integer Partition

e Set of integers S = {a1,as2,...,am}
e Can we divde S into two subsets that have the same sum?
e Equivalently, is there a subset if S that sums to H = (3" a;)/2

18-56: Integer Partition
e Given any instance of the Knapsack problem
e Set of integers S = {aq,as,...,a,} limit k
e We create the following instance of Integer Partition:

o S"=SU{2H + 2k,4H} (H is the half sum of S)
18-57: Integer Partition

o S'=SU{2H + 2k,4H} (H is the half sum of .5)

e If there is a partion for S’, 2H + 2k and 4H must be in separate partitions (why)?

AH+ > a;=2H+2k+ Y q;
a;, P ajES—P
18-58: Integer Partition

AH+ > a;=2H+2k+ > a;
a;€P a; €S—P

CS411-2014S-18 Complexity Theory II: Class NP 13

e Adding), . p a; to both sides:
AH+2Y a; = 2H+2k+ > q
a;€EP ajES
AH+2 Y a;i = 4H+2k
a;EP
Yo -k
a;,€P

e Thus, if S’ has a partition, then there must be some subset of S that sums to &
18-59: Directed Hamiltonian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

p

18-60: Directed Hamiltonian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

<

18-61: Directed Hamiltonian Cycle

e The Directed Hamiltonian Cycle problem is NP-Complete
e Reduce Exact Cover to Directed Hamiltonian Cycle

e Given any set A, and family of subsets F:

e Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F'
18-62: Directed Hamiltonian Cycle

e Widgets:

CS411-2014S-18 Complexity Theory II: Class NP 14

o Consider the following graph segment:

a b
O

u Vv W/
C@\
©°c

d o
e If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either a — u —
v —=w—borc— w— v — u— d-butnot both (why)?
18-63: Directed Hamiltonian Cycle
o Widgets:

e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a b

) 7y > O

< v
dO OC

18-64: Directed Hamiltonian Cycle

e Widgets:
e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
a b
o o
d c f e
b

a
f ° e d °c
18-65: Directed Hamiltonian Cycle

e Add a vertex for every variable in A (+ 1 extra)

CS411-2014S-18 Complexity Theory II: Class NP

F={a.a}
Fo= {a&}
Fa={a.a}

a O

8, O

18-66: Directed Hamiltonian Cycle

e Add a vertex for every subset F’' (+ 1 extra)

a.3 O O FO F]_ — {31 ’ az }
Fo= {a&}
Fa={a.a}

a, O o k

a, O o R

a, O o Fs

18-67: Directed Hamiltonian Cycle

e Add an edge from the last variable to the Oth subset, and from the last subset to the Oth variable

CS411-2014S-18 Complexity Theory II: Class NP 16
a; O »O0 F
° ° Fi={a.3}
Fo={a}
Fo={a, &}
a, O o k
a, O o R
a, O o Fs

18-68: Directed Hamiltonian Cycle

e Add 2 edges from F; to F;41. One edge will be a “short edge”, and one will be a “long edge”.

a; O »O Fy
a, O o, F1
a, O o, F2
a, O o Fs

18-69: Directed Hamiltonian Cycle

]

Fi={a .3}
Fo= {a&}
Fs={a .3}

e Add an edge from a;_; to a; for each subset a; appears in.

CS411-2014S-18 Complexity Theory II: Class NP

17

as O N F,= {31,32}
Fo= {a&}
Fs={a.a}

0O
S

a, % <o F
a, < O F3

18-70: Directed Hamiltonian Cycle

e Each edge (a;—1, a;) corresponds to some subset that contains a;. Add an XOR link between this edge and the

long edge of the corresponding subset

O >0 Fy

()

a3
a
a, \S\
a, O

o ki

<O> F2

< > XOR edge
o Fs

{2, 3}
{as}
(. &}

F
F2
Fs

18-71: Directed Hamiltonian Cycle

o, Fy

% - F={a.a)
Fo= {&}
F;={a& . &}
a, o F
< ——>
a o XOR edge
© ><
ao < O F3

CS411-2014S-18

Complexity Theory II: Class NP

18

18-72: Directed Hamiltonian Cycle
a, O >0 Fy
>

ag O> Fl
a, o> F,
a, o Fs

Fi={a.3}
Fo={a&,a}
Fa={a ,a}
F,= {3}
-——>
XOR edge

