18-0: Language Class P

- A language L is polynomially decidable if there exists a polynomially bound deterministic Turing machine that decides it.
- A Turing Machine *M* is polynomially bound if:
 - There exists some polynomial function p(n)
 - For any input string w, M always halts within p(|w|) steps
- The set of languages that are polynomially decidable is P

18-1: Language Class NP

- A language L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.
- A Non-Deterministic Turing Machine M is polynomially bound if:
 - There exists some polynomial function p(n)
 - For any input string w, M always halts within p(|w|) steps, for all computational paths
- The set of languages that are non-deterministically polynomially decidable is NP

18-2: Language Class NP

- If a Language L is in **NP**:
 - There exists a non-deterministic Turing machine M
 - M halts within p(|w|) steps for all inputs w, in all computational paths
 - If $w \in L$, then there is at least one computational path for w that accepts (and potentially several that reject)
 - If $w \notin L$, then all computational paths for w reject

18-3: NP vs P

- A problem is in P if we can generate a solution quickly (that is, in polynomial time
- A problem is in NP if we can check to see if a potential solution is correct quickly
 - Non-deterministically create (guess) a potential solution
 - Check to see that the solution is correct

18-4: NP vs P

- All problems in **P** are also in **NP**
 - That is, $\mathbf{P} \subseteq \mathbf{NP}$
 - If you can generate correct solutions, you can check if a guessed solution is correct

18-5: NP Problems

- Finding Hamiltonian Cycles is NP
 - Non-deterministically pick a permutation of the nodes of the graph

- First, non-deterministically pick any node in the graph, and place it first in the permutation
- Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
- ...
- Check to see if that permutation forms a valid cycle

18-6: NP Problems

- Traveling Salesman decision problem is NP
 - Non-deterministically pick a permutation of the nodes of the graph
 - First, non-deterministically pick any node in the graph, and place it first in the permutation
 - Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
 - ...
 - Check to see if the cost of that cycle is within the cost bound.

18-7: Integer Partition

- Integer Partition is NP
 - Non-deterministically pick a subset $P \subset S$
 - Check to see if:

$$\sum_{p \in P} p = \sum_{s \in S - P} s$$

18-8: NP Problems

- Satisfiability is NP
 - Count the number of variables in the formula
 - Non-deterministically write down True or False for each of the n variables in the formula
 - Check to see if that truth assignment satisfies the formula

18-9: Reduction Redux

- Given a problem instance P, if we can
 - Create an instance of a different problem P', in polynomial time, such that the solution to P' is the same as the solution to P
 - Solve the instance P' in polynomial time
- Then we can solve *P* in polynomial time

18-10: Reduction Example

- If we could solve the Traveling Salesman decision problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time
 - Given any graph G, we can create a new graph G' and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G' with cost less than k
 - Vertices in G' are the same as the vertices in G

- For each pair of vertices x_i and x_j in G, if the edge (x_i, x_j) is in G, add the edge (x_i, x_j) to G' with the cost 1. Otherwise, add the edge (x_i, x_j) to G' with the cost 2.
- Set the limit k = # of vertices in G

18-11: Reduction Example

18-12: Reduction Example

- If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time
 - Start with an instance of Hamiltonian Cycle
 - Create instance of TSP
 - Feed instance of TSP into TSP solver
 - Use result to find solution to Hamiltonian Cycle

18-13: Reduction Example #2

- Given any instance of the Hamiltonian Cycle Problem:
 - We can (in polynomial time) create an instance of Satisfiability
 - That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
- If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

18-14: Reduction Example #2

- Given a graph G with n vertices, we will create a formula with n^2 variables:
 - $x_{11}, x_{12}, x_{13}, \dots x_{1n}$ $x_{21}, x_{22}, x_{23}, \dots x_{2n}$ \dots $x_{n1}, x_{n2}, x_{n3}, \dots x_{nn}$
- Design our formula such that x_{ij} will be true if and only if the *i*th element in a Hamiltonian Circuit of G is vertex # j

18-15: Reduction Example #2

- For our set of n^2 variables x_{ij} , we need to write a formula that ensures that:
 - For each *i*, there is exactly one *j* such that x_{ij} = true

- For each j, there is exactly one i such that x_{ij} = true
- If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_j to v_k in the graph G

18-16: Reduction Example #2

- For each *i*, there is exactly one *j* such that x_{ij} = true
 - For each i in $1 \dots n$, add the rules:
 - $(x_{i1} \lor x_{i2} \lor \ldots \lor x_{in})$
- This ensures that for each i, there is at least one j such that x_{ij} = true
- (This adds *n* clauses to the formula)

18-17: Reduction Example #2

• For each *i*, there is exactly one *j* such that x_{ij} = true

```
for each i in 1 \dots n
for each j in 1 \dots n
for each k in 1 \dots n j \neq k
Add rule (\overline{x_{ij}} \lor \overline{x_{ik}})
```

- This ensures that for each i, there is at most one j such that x_{ij} = true
- (this adds a total of n^3 clauses to the formula)

18-18: Reduction Example #2

- For each j, there is exactly one i such that x_{ij} = true
 - For each j in $1 \dots n$, add the rules:
 - $(x_{1j} \lor x_{2j} \lor \ldots \lor x_{nj})$
- This ensures that for each j, there is at least one i such that x_{ij} = true
- (This adds *n* clauses to the formula)

18-19: Reduction Example #2

• For each j, there is exactly one i such that x_{ij} = true

```
for each j in 1 \dots n
for each i in 1 \dots n
for each k in 1 \dots n
Add rule (\overline{x_{ij}} \vee \overline{x_{kj}})
```

- This ensures that for each j, there is at most one i such that x_{ij} = true
- (This adds a total of n^3 clauses to the formula)

18-20: Reduction Example #2

• If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_i to v_k in the graph G

```
for each i in 1 \dots (n-1)
for each j in 1 \dots n
for each k in 1 \dots n
if edge (v_j, v_k) is not in the graph:
Add rule (\overline{x_{ij}} \vee \overline{x_{(i+1)k}})
```

• (This adds no more than n^3 clauses to the formula)

18-21: Reduction Example #2

• If x_{nj} and x_{0k} are both true, then there must be a link from v_j to v_k in the graph G (looping back to finish cycle)

for each j in $1 \dots n$ for each k in $1 \dots n$ if edge (v_j, v_k) is *not* in the graph: Add rule $(\overline{x_{nj}} \vee \overline{x_{0k}})$

• (This adds no more than n^2 clauses to the formula)

18-22: Reduction Example #2

- In order for this formula to be satisfied:
 - For each *i*, there is exactly one *j* such that x_{ij} is true
 - For each j, there is exactly one i such that x_{ji} is true
 - if x_{ij} is true, and $x_{(i+1)k}$ is true, then there is an arc from v_j to v_k in the graph G
- Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

18-23: NP-Complete

- A language L is **NP**-Complete if:
 - L is in **NP**
 - If we could decide L in polynomial time, then all NP languages could be decided in polynomial time
 - That is, we could reduce any NP problem to L in polynomial time

18-24: NP-Complete

- How do you show a problem is NP-Complete?
 - Given *any* polynomially-bound non-deterministic Turing machine M and string w:
 - Create an instance of the problem that has a solution if and only if M accepts w

18-25: NP-Complete

- First NP-Complete Problem: Satisfiability (SAT)
 - Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound p(n)

• Create a boolean formula f, such that f is satisfiable if and only of M accepts w

18-26: Cook's Theorem

- Satisfiability is NP-Complete
 - Given a Turing Machine M, string w, polynomial bound p(n), we will create:
 - A set of variables
 - A set of clauses containing these variables
 - Such that the conjunction (\wedge) of the clauses is satisfiable if and only if M accepts w within p(|w|) steps
- WARNING: This explaination is somewhat simplifed. Some subtleties have been eliminated for clarity.

18-27: Cook's Theorem

- Variables
 - Q[i, k] at time *i*, machine is in state q_k
 - H[i, j] at time *i*, the machine is scanning tape square *j*
 - S[i, j, k] at time *i*, the contents of tape location *j* is the symbol *k*
- How many of each of these variables are there?

18-28: Cook's Theorem

• Variables

• $Q[i,k]$	$ K \ast p(w)$
• $H[i, j]$	$p(w)\ast p(w)$
• $S[i, j, k]$	$p(w)*p(w)* \Sigma $

• How many of each of these variables are there?

18-29: Cook's Theorem

- G_1 At each time *i*, *M* is in exactly one state
- G_2 At each time *i*, the read-write head is scanning one tape square
- G_3 At each time *i*, each tape square contains exactly one symbol
- G_4 At time 0, the computation is in the initial configuration for input w
- G_5 By time p(|w|), M has entered the final state and has hence accepted w
- G_6 For each time *i*, the configuration of the *M* at i + 1 follows by a single application of δ

18-30: Cook's Theorem

 G_1 At each time *i*, *M* is in exactly one state

for each $0 \le i \le p(|w|)$

 $(\overline{Q[i,j]} \vee \overline{Q[i,j']})$

for each $0 \leq i \leq p(|w|), 0 \leq j < j' \leq |K|~$ 18-31: Cook's Theorem

 G_2 At each time *i*, the read-write head is scanning one tape square

$$(H[i,0] \lor H[i,1] \lor \ldots \lor H[i,p(|w|)])$$

for each $0 \le i \le p(|w|)$

$$(\overline{H[i,j]} \vee \overline{H[i,j']})$$

for each $0 \le i \le p(|w|), 0 \le j < j' \le p(|w|)$ 18-32: Cook's Theorem

 G_3 At each time *i*, each tape square contains exactly one symbol

 $(S[i, j, 0] \lor S[i, j, 1] \lor \ldots \lor S[i, j, |\Sigma|])$

for each $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$

$$(\overline{S[i,j,k]} \vee \overline{S[i,j,k']})$$

for each $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|), 0 \leq k < k' \leq |\Sigma|$ 18-33: Cook's Theorem

 G_4 At time 0, the computation is in the initial configuration for input w

 $\begin{array}{c} Q[0,0] \\ H[0,1] \\ S[0,0,0] \\ S[0,1,w_1] \\ S[0,2,w_2] \\ \dots \\ S[0,|w|,w_{|w|}] \\ S[0,|w|+1,0] \\ S[0,|w|+2,0] \\ \dots \\ S[0,p(|w|),0] \\ \textbf{18-34: Cook's Theorem} \end{array}$

 G_5 By time p(|w|), M has entered the final state and has hence accepted w

Q[p(|w|),r]

Where q_r is the accept state 18-35: **Cook's Theorem**

 G_6 For each time i, the configuration of the M at i + 1 follows by a single application of δ

For each deterministic transition $((q_k, \Sigma_a), (q_l, \rightarrow))$ For all $0 \le i \le p(|w|), 0 \le j \le p(|w|)$ Add: $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j + 1]$ $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l]$

18-36: Cook's Theorem

 G_6 For each time *i*, the configuration of the M at i + 1 follows by a single application of δ

For each deterministic transition $((q_k, \Sigma_a), (q_l, \leftarrow))$ For all $0 \le i \le p(|w|), 0 \le j \le p(|w|)$ Add: $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j - 1]$ $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l]$

18-37: Cook's Theorem

 G_6 For each time i, the configuration of the M at i + 1 follows by a single application of δ

For each deterministic transition $((q_k, \Sigma_a), (q_l, \Sigma_b))$ For all $0 \le i \le p(|w|), 0 \le j \le p(|w|)$ Add: $Q[i,k] \land H[i,j] \land S[i,j,a] \Rightarrow H[i+1,j]$ $Q[i,k] \land H[i,j] \land S[i,j,a] \Rightarrow Q[i+1,l]$ $Q[i,k] \land H[i,j] \land S[i,j,a] \Rightarrow S[i,j,b]$

18-38: Cook's Theorem

 G_6 For each time i, the configuration of the M at i + 1 follows by a single application of δ

For each non-deterministic transition $((q_k, \Sigma_a), (q_l, \rightarrow))$ and $((q_k, \Sigma_a), (q_m, \rightarrow))$ For all $0 \le i \le p(|w|), 0 \le j \le p(|w|)$ Add: $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j + 1]$ $Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l] \lor Q[i + 1, m]$

18-39: Cook's Theorem

 G_6 For each time i, the configuration of the M at i + 1 follows by a single application of δ

• ... similar rules for other non-deterministic cases

18-40: Cook's Theorem

 G_6 For each time *i*, the configuration of the *M* at i + 1 follows by a single application of δ

 $H[i,j] \land S[i,k,a] \Rightarrow S[i+1,k,a]$

for all values of k, j between 0 and p(|w|) where $k \neq j$, and all values $0 \le a < |\Sigma|$ 18-41: More NP-Complete Problems

- So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
 - Including factoring large numbers ...
- Satisfiability is NP-Complete
- There are many NP-Complete problems
 - Prove NP-Completeness using a reduction

18-42: More NP-Complete Problems

- Exact Cover Problem
 - Set of elements A
 - $F \subset 2^A$, family of subsets
 - Is there a subset of F such that each element of A appears exactly once?

18-43: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\}$
 - Exact cover exists: {*a*, *b*, *c*}, {*d*, *e*, *f*}, {*g*}

18-44: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\}$
 - No exact cover exists

18-45: More NP-Complete Problems

- Exact Cover is in NP
 - Guess a cover
 - Check that each element appears exactly once
- Exact Cover is NP-Complete

- Reduction from Satisfiability
- Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

18-46: Exact Cover is NP-Complete

- Given an instance of SAT:
 - $C_1 = (x_1, \sqrt{x_2})$
 - $C_2 = (\overline{x_1} \lor x_2 \lor x_3)$
 - $C_3 = (x_2)$
 - $C_4 = (\overline{x_2}, \overline{x_3})$
- Formula: $C_1 \wedge C_2 \wedge C_3 \wedge C_4$
- Create an instance of Exact Cover
 - Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula is satisfiable

18-47: Exact Cover is NP-Complete

$$\begin{split} C_1 &= (x_1 \lor \overline{x_2}) C_2 = (\overline{x_1} \lor x_2 \lor x_3) C_3 = (x_2) C_4 = (\overline{x_2} \lor \overline{x_3}) \\ A &= \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\} \\ F &= \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}, \\ X_1, f &= \{x_1, p_{11}\} \\ X_1, f &= \{x_1, p_{21}\} \\ X_2, f &= \{x_2, p_{22}, p_{31}\} \\ X_2, t &= \{x_2, p_{22}, p_{31}\} \\ X_2, t &= \{x_2, p_{12}, p_{41}\} \\ X_3, f &= \{x_3, p_{23}\} \\ X_3, t &= \{x_3, p_{42}\} \\ \{C_1, p_{11}\}, \{C_1, p_{12}\}, \{C_2, p_{21}\}, \{C_2, p_{22}\}, \{C_2, p_{23}\}, \{C_3, p_{31}\}, \{C_4, p_{41}\}, \{C_4, p_{422}\} \end{split}$$
18-48: Knapsack

- Given a set of integers S and a limit k:
 - Is there some subset of S that sums to k?
- {3, 5, 11, 15, 20, 25} Limit: 36
 - {5, 11, 20}
- {2, 5, 10, 12, 20, 27} Limit: 43
 - No solution
- Generalized version of Integer Partition problem

18-49: Knapsack

- Knapsack is NP-Complete
- By reduction from Exact Cover
 - Given any Exact Cover problem (set A, family of subsets F), we will create a Knapsack problem (set S, limit k), such that there is a subset of S that sums to k if and only if there is an exact cover of A in F

18-50: Knapsack

• Each set will be represented by a number – bit-vector representation of the set

 $A = \{a_1, a_2, a_3, a_4\}$

Set	Number
$F_1 = \{a_1, a_2, a_3\}$	1110
$F_2 = \{a_2, a_4\}$	0101
$F_3 = \{a_1, a_3\}$	1010
$F_4 = \{a_2, a_3, a_4\}$	0111

There is an exact cover if some subset of the numbers sum to ...

18-51: Knapsack

• Each set will be represented by a number – bit-vector representation of the set

Set
 Number

$$F_1 = \{a_1, a_2, a_3\}$$
 1110

 $F_2 = \{a_2, a_4\}$
 0101

 $F_3 = \{a_1, a_3\}$
 1010

 $F_4 = \{a_2, a_3, a_4\}$
 0111

 $A = \{a_1, a_2, a_3, a_4\}$

There is an exact cover if some subset of the numbers sum to 1111

18-52: Knapsack

• Bug in our reduction:

$$A = \{a_1, a_2, a_3, a_4\}$$

Set	Number
$F_1 = \{a_2, a_3, a_4\}$	0111
$F_2 = \{a_2, a_4\}$	0101
$F_3 = \{a_3\}$	0010
$F_3 = \{a_4\}$	0001
$F_4 = \{a_1, a_3, a_4\}$	1011

- 0111 + 0101 + 0001 + 0010 = 1111
- What can we do?

18-53: Knapsack

- Construct the numbers just as before
- Do addition in base m, where m is the number of element in A. $A = \{a_1, a_2, a_3, a_4\}$

Set	Number
$F_1 = \{a_2, a_3, a_4\}$	0111
$F_2 = \{a_2, a_4\}$	0101
$F_3 = \{a_3\}$	0010
$F_3 = \{a_4\}$	0001
$F_4 = \{a_1, a_3, a_4\}$	1011

• 0111 + 0101 + 0001 + 0010 = 0223

• No subset of numbers sums to 1111

18-54: Integer Partition

- Integer Partition
 - Special Case of the Knapsack problem
 - "Half sum" H (sum of all elements in the set / 2) is an integer
 - Limit k = H
- Integer Partition is NP-Complete
 - Reduce Knapsack to Integer Partition

18-55: Integer Partition

- Given any instance of the Knapsack problem
 - Set of integers $S = \{a_1, a_2, \dots, a_n\}$ limit k
 - Is there a subset of S that sums to k?
- Create an instance of Integer Partition
 - Set of integers $S = \{a_1, a_2, ..., a_m\}$
 - Can we divde S into two subsets that have the same sum?
 - Equivalently, is there a subset if S that sums to $H = (\sum_{i=1}^{m} a_i)/2$

18-56: Integer Partition

- Given any instance of the Knapsack problem
 - Set of integers $S = \{a_1, a_2, \dots, a_n\}$ limit k
- We create the following instance of Integer Partition:
 - $S' = S \cup \{2H + 2k, 4H\}$ (*H* is the half sum of *S*)

18-57: Integer Partition

- $S' = S \cup \{2H + 2k, 4H\}$ (*H* is the half sum of *S*)
 - If there is a partion for S', 2H + 2k and 4H must be in separate partitions (why)?

$$4H+\sum_{a_i\in P}a_i=2H+2k+\sum_{a_j\in S-P}a_j$$

18-58: Integer Partition

$$4H + \sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_j \in S - P} a_j$$

• Adding $\sum_{a_i \in P} a_i$ to both sides:

$$\begin{array}{rcl} 4H+2\sum\limits_{a_i\in P}a_i&=&2H+2k+\sum\limits_{a_j\in S}a_j\\ 4H+2\sum\limits_{a_i\in P}a_i&=&4H+2k\\ &&\sum\limits_{a_i\in P}a_i&=&k \end{array}$$

• Thus, if S' has a partition, then there must be some subset of S that sums to k

18-59: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

18-60: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

18-61: Directed Hamiltonian Cycle

- The Directed Hamiltonian Cycle problem is NP-Complete
- Reduce Exact Cover to Directed Hamiltonian Cycle
 - Given any set A, and family of subsets F:
 - Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

18-62: Directed Hamiltonian Cycle

• Widgets:

• If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \to u \to v \to w \to b$ or $c \to w \to v \to u \to d$ – but not both (why)?

18-63: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-64: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-65: Directed Hamiltonian Cycle

• Add a vertex for every variable in A (+ 1 extra)

a ₃ O	$F_1 = \{a_1, a_2\}$
	$F_2 = \{a_3\}$
	$F_3 = \{a_2, a_3\}$

a₂ O

a₁ O

a₀ O

18-66: Directed Hamiltonian Cycle

• Add a vertex for every subset F (+ 1 extra)

a ₃	0	0	F ₀	$F_1 = \{a_1, a_2\}$ $F_2 = \{a_3\}$
a ₂	0	0	F ₁	$F_3 = \{a_2, a_3\}$
a ₁	0	0	F ₂	

a₀ O F₃

18-67: Directed Hamiltonian Cycle

• Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

a₁ O

a ₃	0	►0	F ₀	$F_{1} = \{a_{1}, a_{2}\}$ $F_{2} = \{a_{3}\}$
a ₂	0	0	F ₁	$F_3 = \{a_2, a_3\}$

0

 F_2

18-68: Directed Hamiltonian Cycle

• Add **2** edges from F_i to F_{i+1} . One edge will be a "short edge", and one will be a "long edge".

18-69: Directed Hamiltonian Cycle

• Add an edge from a_{i-1} to a_i for **each** subset a_i appears in.

18-70: Directed Hamiltonian Cycle

• Each edge (a_{i-1}, a_i) corresponds to some subset that contains a_i . Add an XOR link between this edge and the long edge of the corresponding subset

18-71: Directed Hamiltonian Cycle

18-72: Directed Hamiltonian Cycle

