18-0: Language Class \mathbf{P}

- A language L is polynomially decidable if there exists a polynomially bound deterministic Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps
- The set of languages that are polynomially decidable is \mathbf{P}

18-1: Language Class NP

- A language L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.
- A Non-Deterministic Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps, for all computational paths
- The set of languages that are non-deterministically polynomially decidable is NP

18-2: Language Class NP

- If a Language L is in NP:
- There exists a non-deterministic Turing machine M
- M halts within $p(|w|)$ steps for all inputs w, in all computational paths
- If $w \in L$, then there is at least one computational path for w that accepts (and potentially several that reject)
- If $w \notin L$, then all computational paths for w reject

18-3: NP vs P

- A problem is in \mathbf{P} if we can generate a solution quickly (that is, in polynomial time
- A problem is in NP if we can check to see if a potential solution is correct quickly
- Non-deterministically create (guess) a potential solution
- Check to see that the solution is correct

18-4: NP vs P

- All problems in \mathbf{P} are also in NP
- That is, $\mathbf{P} \subseteq \mathbf{N P}$
- If you can generate correct solutions, you can check if a guessed solution is correct

18-5: NP Problems

- Finding Hamiltonian Cycles is NP
- Non-deterministically pick a permutation of the nodes of the graph
- First, non-deterministically pick any node in the graph, and place it first in the permutation
- Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
- ...
- Check to see if that permutation forms a valid cycle

18-6: NP Problems

- Traveling Salesman decision problem is NP
- Non-deterministically pick a permutation of the nodes of the graph
- First, non-deterministically pick any node in the graph, and place it first in the permutation
- Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
- ...
- Check to see if the cost of that cycle is within the cost bound.

18-7: Integer Partition

- Integer Partition is NP
- Non-deterministically pick a subset $P \subset S$
- Check to see if:

$$
\sum_{p \in P} p=\sum_{s \in S-P} s
$$

18-8: NP Problems

- Satisfiability is NP
- Count the number of variables in the formula
- Non-deterministically write down True or False for each of the n variables in the formula
- Check to see if that truth assignment satisfies the formula

18-9: Reduction Redux

- Given a problem instance P, if we can
- Create an instance of a different problem P^{\prime}, in polynomial time, such that the solution to P^{\prime} is the same as the solution to P
- Solve the instance P^{\prime} in polynomial time
- Then we can solve P in polynomial time

18-10: Reduction Example

- If we could solve the Traveling Salesman decision problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time
- Given any graph G, we can create a new graph G^{\prime} and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G^{\prime} with cost less than k
- Vertices in G^{\prime} are the same as the vertices in G
- For each pair of vertices x_{i} and x_{j} in G, if the edge $\left(x_{i}, x_{j}\right)$ is in G, add the edge $\left(x_{i}, x_{j}\right)$ to G^{\prime} with the cost 1 . Otherwise, add the edge $\left(x_{i}, x_{j}\right)$ to G^{\prime} with the cost 2 .
- Set the limit $k=\#$ of vertices in G

18-11: Reduction Example

Limit $=4$

18-12: Reduction Example

- If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time
- Start with an instance of Hamiltonian Cycle
- Create instance of TSP
- Feed instance of TSP into TSP solver
- Use result to find solution to Hamiltonian Cycle

18-13: Reduction Example \#2

- Given any instance of the Hamiltonian Cycle Problem:
- We can (in polynomial time) create an instance of Satisfiability
- That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
- If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

18-14: Reduction Example \#2

- Given a graph G with n vertices, we will create a formula with n^{2} variables:
- $x_{11}, x_{12}, x_{13}, \ldots x_{1 n}$

$$
x_{21}, x_{22}, x_{23}, \ldots x_{2 n}
$$

...
$x_{n 1}, x_{n 2}, x_{n 3}, \ldots x_{n n}$

- Design our formula such that $x_{i j}$ will be true if and only if the i th element in a Hamiltonian Circuit of G is vertex \# j

18-15: Reduction Example \#2

- For our set of n^{2} variables $x_{i j}$, we need to write a formula that ensures that:
- For each i, there is exactly one j such that $x_{i j}=$ true
- For each j, there is exactly one i such that $x_{i j}=$ true
- If $x_{i j}$ and $x_{(i+1) k}$ are both true, then there must be a link from v_{j} to v_{k} in the graph G

18-16: Reduction Example \#2

- For each i, there is exactly one j such that $x_{i j}=$ true
- For each i in $1 \ldots n$, add the rules:
- $\left(x_{i 1} \vee x_{i 2} \vee \ldots \vee x_{i n}\right)$
- This ensures that for each i, there is at least one j such that $x_{i j}=$ true
- (This adds n clauses to the formula)

18-17: Reduction Example \#2

- For each i, there is exactly one j such that $x_{i j}=$ true for each i in $1 \ldots n$
for each j in $1 \ldots n$
for each k in $1 \ldots n \quad j \neq k$
Add rule $\left(\overline{x_{i j}} \vee \overline{x_{i k}}\right)$
- This ensures that for each i, there is at most one j such that $x_{i j}=$ true
- (this adds a total of n^{3} clauses to the formula)

18-18: Reduction Example \#2

- For each j, there is exactly one i such that $x_{i j}=$ true
- For each j in $1 \ldots n$, add the rules:

$$
\text { - }\left(x_{1 j} \vee x_{2 j} \vee \ldots \vee x_{n j}\right)
$$

- This ensures that for each j, there is at least one i such that $x_{i j}=$ true
- (This adds n clauses to the formula)

18-19: Reduction Example \#2

- For each j, there is exactly one i such that $x_{i j}=$ true

```
for each j in 1...n
```

for each i in $1 \ldots n$
for each k in $1 \ldots n$
Add rule $\left(\overline{x_{i j}} \vee \overline{x_{k j}}\right)$

- This ensures that for each j, there is at most one i such that $x_{i j}=$ true
- (This adds a total of n^{3} clauses to the formula)

18-20: Reduction Example \#2

- If $x_{i j}$ and $x_{(i+1) k}$ are both true, then there must be a link from v_{i} to v_{k} in the graph G

```
for each \(i\) in \(1 \ldots(n-1)\)
        for each \(j\) in \(1 \ldots n\)
            for each \(k\) in \(1 \ldots n\)
                if edge \(\left(v_{j}, v_{k}\right)\) is not in the graph:
                Add rule \(\left(\overline{x_{i j}} \vee \overline{x_{(i+1) k}}\right)\)
```

- (This adds no more than n^{3} clauses to the formula)

18-21: Reduction Example \#2

- If $x_{n j}$ and $x_{0 k}$ are both true, then there must be a link from v_{j} to v_{k} in the graph G (looping back to finish cycle)
for each j in $1 \ldots n$
for each k in $1 \ldots n$
if edge $\left(v_{j}, v_{k}\right)$ is not in the graph:
Add rule $\left(\overline{x_{n j}} \vee \overline{x_{0 k}}\right)$
- (This adds no more than n^{2} clauses to the formula)

18-22: Reduction Example \#2

- In order for this formula to be satisfied:
- For each i, there is exactly one j such that $x_{i j}$ is true
- For each j, there is exactly one i such that $x_{j i}$ is true
- if $x_{i j}$ is true, and $x_{(i+1) k}$ is true, then there is an arc from v_{j} to v_{k} in the graph G
- Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

18-23: NP-Complete

- A language L is NP-Complete if:
- L is in NP
- If we could decide L in polynomial time, then all NP languages could be decided in polynomial time
- That is, we could reduce any NP problem to L in polynomial time

18-24: NP-Complete

- How do you show a problem is NP-Complete?
- Given any polynomially-bound non-deterministic Turing machine M and string w :
- Create an instance of the problem that has a solution if and only if M accepts w

18-25: NP-Complete

- First NP-Complete Problem: Satisfiability (SAT)
- Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound $p(n)$
- Create a boolean formula f, such that f is satisfiable if and only of M accepts w

18-26: Cook's Theorem

- Satisfiability is NP-Complete
- Given a Turing Machine M, string w, polynomial bound $p(n)$, we will create:
- A set of variables
- A set of clauses containing these variables
- Such that the conjunction (\wedge) of the clauses is satisfiable if and only if M accepts w within $p(|w|)$ steps
- WARNING: This explaination is somewhat simplifed. Some subtleties have been eliminated for clarity.

18-27: Cook's Theorem

- Variables
- $Q[i, k]$ at time i, machine is in state q_{k}
- $H[i, j]$ at time i, the machine is scanning tape square j
- $S[i, j, k]$ at time i, the contents of tape location j is the symbol k
- How many of each of these variables are there?

18-28: Cook's Theorem

- Variables
- $Q[i, k]$
$|K| * p(|w|)$
- $H[i, j]$
$p(|w|) * p(|w|)$
- $S[i, j, k]$
$p(|w|) * p(|w|) *|\Sigma|$
- How many of each of these variables are there?

18-29: Cook's Theorem

G_{1} At each time i, M is in exactly one state
G_{2} At each time i, the read-write head is scanning one tape square
G_{3} At each time i, each tape square contains exactly one symbol
G_{4} At time 0, the computation is in the initial configuration for input w
G_{5} By time $p(|w|), M$ has entered the final state and has hence accepted w
G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ

18-30: Cook's Theorem

G_{1} At each time i, M is in exactly one state

$$
(Q[i, 0] \vee Q[i, 1] \vee \ldots \vee Q[i,|K|])
$$

```
for each \(0 \leq i \leq p(|w|)\)
```

$$
\left(\overline{Q[i, j]} \vee \overline{Q\left[i, j^{\prime}\right]}\right)
$$

for each $0 \leq i \leq p(|w|), 0 \leq j<j^{\prime} \leq|K|$ 18-31: Cook's Theorem
G_{2} At each time i, the read-write head is scanning one tape square

$$
(H[i, 0] \vee H[i, 1] \vee \ldots \vee H[i, p(|w|)])
$$

for each $0 \leq i \leq p(|w|)$

$$
\left(\overline{H[i, j]} \vee \overline{H\left[i, j^{\prime}\right]}\right)
$$

for each $0 \leq i \leq p(|w|), 0 \leq j<j^{\prime} \leq p(|w|)$
18-32: Cook's Theorem
G_{3} At each time i, each tape square contains exactly one symbol

$$
(S[i, j, 0] \vee S[i, j, 1] \vee \ldots \vee S[i, j,|\Sigma|])
$$

for each $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$

$$
\left(\overline{S[i, j, k]} \vee \overline{S\left[i, j, k^{\prime}\right]}\right)
$$

for each $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|), 0 \leq k<k^{\prime} \leq|\Sigma|$
18-33: Cook's Theorem
G_{4} At time 0 , the computation is in the initial configuration for input w

```
    Q[0,0]
    H[0, 1]
    S[0,0,0]
    S[0,1, w1]
    S[0,2, w2]
    S[0, |w|, w ww|
    S[0,|w|+1,0]
    S[0, |w| +2,0]
    S[0, p(|w|),0]
18-34: Cook's Theorem
\(G_{5}\) By time \(p(|w|), M\) has entered the final state and has hence accepted \(w\)
```

$$
Q[p(|w|), r]
$$

Where q_{r} is the accept state

18-35: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ
For each deterministic transtion $\left(\left(q_{k}, \Sigma_{a}\right),\left(q_{l}, \rightarrow\right)\right)$
For alll $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$
Add:
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow H[i+1, j+1]$
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow Q[i+1, l]$

18-36: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ
For each deterministic transtion $\left(\left(q_{k}, \Sigma_{a}\right),\left(q_{l}, \leftarrow\right)\right)$
For alll $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$
Add:
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow H[i+1, j-1]$
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow Q[i+1, l]$

18-37: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ
For each deterministic transtion $\left(\left(q_{k}, \Sigma_{a}\right),\left(q_{l}, \Sigma_{b}\right)\right)$
For alll $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$
Add:
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow H[i+1, j]$
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow Q[i+1, l]$
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow S[i, j, b]$

18-38: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ
For each non-deterministic transtion $\left(\left(q_{k}, \Sigma_{a}\right),\left(q_{l}, \rightarrow\right)\right)$ and $\left(\left(q_{k}, \Sigma_{a}\right),\left(q_{m}, \rightarrow\right)\right)$
For alll $0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)$
Add:
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow H[i+1, j+1]$
$Q[i, k] \wedge H[i, j] \wedge S[i, j, a] \Rightarrow Q[i+1, l] \vee Q[i+1, m]$

18-39: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ

- ... similar rules for other non-deterministic cases

18-40: Cook's Theorem

G_{6} For each time i, the configuration of the M at $i+1$ follows by a single application of δ

$$
H[i, j] \wedge S[i, k, a] \Rightarrow S[i+1, k, a]
$$

for all values of k, j between 0 and $p(|w|)$ where $k \neq j$, and all values $0 \leq a<|\Sigma|$
18-41: More NP-Complete Problems

- So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
- Including factoring large numbers ...
- Satisfiability is NP-Complete
- There are many NP-Complete problems
- Prove NP-Completeness using a reduction

18-42: More NP-Complete Problems

- Exact Cover Problem
- Set of elements A
- $F \subset 2^{A}$, family of subsets
- Is there a subset of F such that each element of A appears exactly once?

18-43: More NP-Complete Problems

- Exact Cover Problem
- $A=\{a, b, c, d, e, f, g\}$
- $F=\{\{a, b, c\},\{d, e, f\},\{b, f, g\},\{g\}\}$
- Exact cover exists:
$\{a, b, c\},\{d, e, f\},\{g\}$

18-44: More NP-Complete Problems

- Exact Cover Problem
- $A=\{a, b, c, d, e, f, g\}$
- $F=\{\{a, b, c\},\{c, d, e, f\},\{a, f, g\},\{c\}\}$
- No exact cover exists

18-45: More NP-Complete Problems

- Exact Cover is in NP
- Guess a cover
- Check that each element appears exactly once
- Exact Cover is NP-Complete
- Reduction from Satisfiability
- Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

18-46: Exact Cover is NP-Complete

- Given an instance of SAT:
- $C_{1}=\left(x_{1}, \vee \overline{x_{2}}\right)$
- $C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$
- $C_{3}=\left(x_{2}\right)$
- $C_{4}=\left(\overline{x_{2}}, \overline{x_{3}}\right)$
- Formula: $C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$
- Create an instance of Exact Cover
- Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula is satisfiable

18-47: Exact Cover is NP-Complete
$C_{1}=\left(x_{1} \vee \overline{x_{2}}\right) C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) C_{3}=\left(x_{2}\right) C_{4}=\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
$A=\left\{x_{1}, x_{2}, x_{3}, C_{1}, C_{2}, C_{3}, C_{4}, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\right\}$
$F=\left\{\left\{p_{11}\right\},\left\{p_{12}\right\},\left\{p_{21}\right\},\left\{p_{22}\right\},\left\{p_{23}\right\},\left\{p_{31}\right\},\left\{p_{41}\right\},\left\{p_{42}\right\}\right.$,
$X_{1}, f=\left\{x_{1}, p_{11}\right\}$
$X_{1}, t=\left\{x_{1}, p_{21}\right\}$
$X_{2}, f=\left\{x_{2}, p_{22}, p_{31}\right\}$
$X_{2}, t=\left\{x_{2}, p_{12}, p_{41}\right\}$
$X_{3}, f=\left\{x_{3}, p_{23}\right\}$
$X_{3}, t=\left\{x_{3}, p_{42}\right\}$
$\left.\left\{C_{1}, p_{11}\right\},\left\{C_{1}, p_{12}\right\},\left\{C_{2}, p_{21}\right\},\left\{C_{2}, p_{22}\right\},\left\{C_{2}, p_{23}\right\},\left\{C_{3}, p_{31}\right\},\left\{C_{4}, p_{41}\right\},\left\{C_{4}, p_{422}\right\}\right\}$ 18-48: Knapsack

- Given a set of integers S and a limit k :
- Is there some subset of S that sums to k ?
- $\{3,5,11,15,20,25\}$ Limit: 36
- $\{5,11,20\}$
- $\{2,5,10,12,20,27\}$ Limit: 43
- No solution
- Generalized version of Integer Partition problem

18-49: Knapsack

- Knapsack is NP-Complete
- By reduction from Exact Cover
- Given any Exact Cover problem (set A, family of subsets F), we will create a Knapsack problem (set S, limit k), such that there is a subset of S that sums to k if and only if there is an exact cover of A in F

18-50: Knapsack

- Each set will be represented by a number - bit-vector representation of the set
$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$

Set	Number
$F_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}$	1110
$F_{2}=\left\{a_{2}, a_{4}\right\}$	0101
$F_{3}=\left\{a_{1}, a_{3}\right\}$	1010
$F_{4}=\left\{a_{2}, a_{3}, a_{4}\right\}$	0111

There is an exact cover if some subset of the numbers sum to ...

18-51: Knapsack

- Each set will be represented by a number - bit-vector representation of the set
$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$

Set	Number
$F_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}$	1110
$F_{2}=\left\{a_{2}, a_{4}\right\}$	0101
$F_{3}=\left\{a_{1}, a_{3}\right\}$	1010
$F_{4}=\left\{a_{2}, a_{3}, a_{4}\right\}$	0111

There is an exact cover if some subset of the numbers sum to 1111

18-52: Knapsack

- Bug in our reduction:
$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$

Set	Number
$F_{1}=\left\{a_{2}, a_{3}, a_{4}\right\}$	0111
$F_{2}=\left\{a_{2}, a_{4}\right\}$	0101
$F_{3}=\left\{a_{3}\right\}$	0010
$F_{3}=\left\{a_{4}\right\}$	0001
$F_{4}=\left\{a_{1}, a_{3}, a_{4}\right\}$	1011

- $0111+0101+0001+0010=1111$
- What can we do?

18-53: Knapsack

- Construct the numbers just as before
- Do addition in base m, where m is the number of element in A. $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$

Set	Number
$F_{1}=\left\{a_{2}, a_{3}, a_{4}\right\}$	0111
$F_{2}=\left\{a_{2}, a_{4}\right\}$	0101
$F_{3}=\left\{a_{3}\right\}$	0010
$F_{3}=\left\{a_{4}\right\}$	0001
$F_{4}=\left\{a_{1}, a_{3}, a_{4}\right\}$	1011

- $0111+0101+0001+0010=0223$
- No subset of numbers sums to 1111

18-54: Integer Partition

- Integer Partition
- Special Case of the Knapsack problem
- "Half sum" H (sum of all elements in the set/2) is an integer
- Limit $k=H$
- Integer Partition is NP-Complete
- Reduce Knapsack to Integer Partition

18-55: Integer Partition

- Given any instance of the Knapsack problem
- Set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ limit k
- Is there a subset of S that sums to k ?
- Create an instance of Integer Partition
- Set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- Can we divde S into two subsets that have the same sum?
- Equivalently, is there a subset if S that sums to $H=\left(\sum_{i=1}^{m} a_{i}\right) / 2$

18-56: Integer Partition

- Given any instance of the Knapsack problem
- Set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ limit k
- We create the following instance of Integer Partition:
- $S^{\prime}=S \cup\{2 H+2 k, 4 H\}(H$ is the half sum of $S)$

18-57: Integer Partition

- $S^{\prime}=S \cup\{2 H+2 k, 4 H\}(H$ is the half sum of $S)$
- If there is a partion for $S^{\prime}, 2 H+2 k$ and $4 H$ must be in separate partitions (why)?

$$
4 H+\sum_{a_{i} \in P} a_{i}=2 H+2 k+\sum_{a_{j} \in S-P} a_{j}
$$

18-58: Integer Partition

$$
4 H+\sum_{a_{i} \in P} a_{i}=2 H+2 k+\sum_{a_{j} \in S-P} a_{j}
$$

- Adding $\sum_{a_{i} \in P} a_{i}$ to both sides:

$$
\begin{aligned}
4 H+2 \sum_{a_{i} \in P} a_{i} & =2 H+2 k+\sum_{a_{j} \in S} a_{j} \\
4 H+2 \sum_{a_{i} \in P} a_{i} & =4 H+2 k \\
\sum_{a_{i} \in P} a_{i} & =k
\end{aligned}
$$

- Thus, if S^{\prime} has a partition, then there must be some subset of S that sums to k

18-59: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
- Cycle that includes every node in the graph exactly once, following the direction of the arrows

18-60: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
- Cycle that includes every node in the graph exactly once, following the direction of the arrows

18-61: Directed Hamiltonian Cycle

- The Directed Hamiltonian Cycle problem is NP-Complete
- Reduce Exact Cover to Directed Hamiltonian Cycle
- Given any set A, and family of subsets F :
- Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

18-62: Directed Hamiltonian Cycle

- Widgets:
- Consider the following graph segment:

- If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow$ $v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ - but not both (why)?

18-63: Directed Hamiltonian Cycle

- Widgets:
- XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-64: Directed Hamiltonian Cycle

- Widgets:
- XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-65: Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)
$\mathrm{a}_{3} \mathrm{O}$

$$
\begin{aligned}
& F_{1}=\left\{a_{1}, a_{2}\right\} \\
& F_{2}=\left\{a_{3}\right\} \\
& F_{3}=\left\{a_{2}, a_{3}\right\}
\end{aligned}
$$

$a_{2} O$
$a_{1} O$
$a_{0} O$
18-66: Directed Hamiltonian Cycle

- Add a vertex for every subset F (+ 1 extra)
$\mathrm{a}_{3} \mathrm{O}$
$\bigcirc \quad \mathrm{F}_{0}$

$$
\begin{aligned}
& \mathrm{F}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\} \\
& \mathrm{F}_{2}=\left\{\mathrm{a}_{3}\right\} \\
& \mathrm{F}_{3}=\left\{\mathrm{a}_{2}, \mathrm{a}_{3}\right\}
\end{aligned}
$$

$a_{1} \quad 0$
O $\quad \mathrm{F}_{2}$
$\mathrm{a}_{0} \mathrm{O} \quad \mathrm{O} \quad \mathrm{F}_{3}$

18-67: Directed Hamiltonian Cycle

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

$$
\begin{aligned}
& F_{1}=\left\{a_{1}, a_{2}\right\} \\
& F_{2}=\left\{a_{3}\right\} \\
& F_{3}=\left\{a_{2}, a_{3}\right\}
\end{aligned}
$$

$a_{2} \quad 0$
○ F_{1}
$a_{1} \quad 0$

- F_{2}

F_{3}
18-68: Directed Hamiltonian Cycle
- Add 2 edges from F_{i} to F_{i+1}. One edge will be a "short edge", and one will be a "long edge".

18-69: Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_{i} for each subset a_{i} appears in.

18-70: Directed Hamiltonian Cycle

- Each edge $\left(a_{i-1}, a_{i}\right)$ corresponds to some subset that contains a_{i}. Add an XOR link between this edge and the long edge of the corresponding subset

18-71: Directed Hamiltonian Cycle

18-72: Directed Hamiltonian Cycle

