Automata Theory CS411 2015F-02 Formal Languages

David Galles

Department of Computer Science University of San Francisco

02-0: Alphabets & Strings

• An alphabet Σ is a finite set of symbols

•
$$\Sigma_1 = \{a, b, ..., z\}$$

- $\Sigma_2 = \{0, 1\}$
- A string is a finite sequence of symbols from an alphabet
 - fire, truck are both strings over {a, ..., z}
- length of a string is the number of symbols in the string
 - |fire| = 4, |truck| = 5

02-1: Alphabets & Strings

- The empty string ε is a string of 0 characters
 |ε| = 0
- $\bullet\,\,\circ\,$ is the concatenation operator
 - $w_1 = \text{fire}, w_2 = \text{truck}$
 - $w_1 \circ w_2 = \text{firetruck}$
 - $w_2 \circ w_1 = \text{truckfire}$
 - $w_2 \circ w_2 = \text{trucktruck}$
- Often drop the \circ : w_1w_2 = firetruck
- For any string w, $w\epsilon = w$

02-2: Concatenation & Reversal

• We can concatenate a string with itself:

- $w^1 = w$
- $w^2 = ww$
- $w^3 = www$
- By definition, $w^0 = \epsilon$
- Can reverse a string: w^R
 - truck^R = kcurt

02-3: Formal Language

- A formal language (or just language) is a set of strings
 - $L_1 = \{a, aa, abba, bbba\}$
 - $L_2 = \{ car, truck, goose \}$
 - $L_3 = \{1, 11, 111, 1111, 11111, \ldots\}$
- A language can be either finite or infinite

02-4: Language Concatenation

- We can concatenate languages as well as strings
- $L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$
- {a, ab}{bb, b} =

02-5: Language Concatenation

- We can concatenate languages as well as strings
- $L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$
- {a, ab}{bb, b} = {abb, ab, abb}
- {a, ab}{a, ab} =

02-6: Language Concatenation

- We can concatenate languages as well as strings
- $L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$
- {a, ab}{bb, b} = {abb, ab, abb}
- {a, ab}{a, ab} = {aa, aab, aba, abab}
- {a, aa}{a, aa} =

02-7: Language Concatenation

- We can concatenate languages as well as strings
- $L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$
- {a, ab}{bb, b} = {abb, ab, abb}
- {a, ab}{a, ab} = {aa, aab, aba, abab}
- {a, aa}{a, aa} = {aa, aaa, aaaa}

What can we say about $|L_1L_2|$, if we know $|L_1| = m$ and $|L_2| = n$?

02-8: Language Concatenation

- We can concatenate a language with itself, just like strings
 - $L^1 = L, L^2 = LL, L^3 = LLL$, etc.
 - What should L^0 be, and why?

02-9: Language Concatenation

- We can concatenate a language with itself, just like strings
 - $L^1 = L, L^2 = LL, L^3 = LLL$, etc.
 - L⁰ = {ε}
 {} is the empty language
 {ε} is the trivial language
- Kleene Closure (L^*)
 - $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$

02-10: Regular Expressions

- Regular expressions are a way to describe formal languages
- Regular expressions are defined recursively
 - Base case simple regular expressions
 - Recursive case how to build more complex regular expressions from simple regular expressions

02-11: Regular Expressions

- ϵ is a regular expression, representing $\{\epsilon\}$
- Ø is a regular expression, representing {}
- $\forall a \in \Sigma$, a is a regular expression representing {a}
- if r_1 and r_2 are regular expressions, then (r_1r_2) is a regular expression

• $L[(r_1r_2)] = L[r_1] \circ L[r_2]$

• if r_1 and r_2 are regular expressions, then $(r_1 + r_2)$ is a regular expression

• $L[(r_1 + r_2)] = L[r_1] \cup L[r_2]$

• if r is regular expressions, then (r^*) is a regular expression

• $L[(r^*)] = (L[r])^*$

02-12: Regular Expressions

Regular Expression Definition

02-13: Regular Expressions

- (((a+b)(b*))a)

- ((a((a+b)*))a)
- ((a*)(b*))
- ((ab)*)

02-14: Regular Expressions

- (((a+b)(b*))a)
 - {aa, ba, aba, bba, abba, bbba, abbba, bbbba, ...}
- ((a((a+b)*))a)
 - {aa, aaa, aba, aaaa, aaba, abaa, abba, ...}
- ((a*)(b*))
 - { ϵ , a, b, aa, ab, bb, aaa, aab, abb, bbb, . . .}
- ((ab)*)
 - { ϵ , ab, abab, ababab, abababab, . . .}

02-15: Regular Expressions

- All those parenthesis can be confusing
 Drop them!!
- (((ab)b)a) becomes abba
- What about a+bb*a what's the problem?

02-16: Regular Expressions

- All those parenthesis can be confusing
 - Drop them!!
- (((ab)b)a) becomes abba
- What about a+bb*a what's the problem?
 - Ambiguous!
 - a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a ?

02-17: r.e. Precedence

From highest to Lowest:

Kleene Closure * Concatenation Alternation +

 $ab^{*}c+e = (a(b^{*})c) + e$

(We will still need parentheses for some regular expressions: (a+b)(a+b))

02-18: Regular Expressions

• Intuitive Reading of Regular Expressions

- Concatenation == "is followed by"
- + == "or"
- * == "zero or more occurances"
- (a+b)(a+b)(a+b)
- (a+b)*
- aab(aa)*

02-19: Regular Expressions

• All strings over {a,b} that start with an a

02-20: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length

02-21: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over {0,1} that have an even number of 1's.

02-22: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over {0,1} that have an even number of 1's.
 - 0*(10*10*)*
- All strings over a, b that start and end with the same letter

02-23: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over {0,1} that have an even number of 1's.
 - 0*(10*10*)*
- All strings over a, b that start and end with the same letter
 - $a(a+b)^*a + b(a+b)^*b + a + b$

02-24: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

02-25: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00

02-26: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101

02-27: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101
 - (0+1)*101(0+1)*
- All strings over {0, 1} that do not contain 01

02-28: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101
 - $(0+1)^*101(0+1)^*$
- All strings over {0, 1} that do not contain 01

• 1*0*

02-29: Regular Expressions

- All strings over {/, "*", a, ..., z } that form valid C comments
 - Use quotes to differentiate the "*" in the input from the regular expression *
 - Use [a-z] to stand for (a + b + c + d + ... + z)

02-30: Regular Expressions

- All strings over {/, "*", a, ..., z } that form valid C comments
 - Use quotes to differentiate the "*" in the input from the regular expression *
 - Use [a-z] to stand for (a + b + c + d + ... + z)
 - /"*"([a-z]+/)* ("*"("*")*[a-z]([a-z]+/)*)* "*"("*")*/
 - This exact problem (finding a regular expression for C comments) has actually been used in an industrial context.

02-31: Regular Languages

- A language is regular if it can be described by a regular expression.
- The Regular Languages (L_{REG}) is the set of all languages that can be represented by a regular expression
 - Set of set of strings
- Raises the question: Are there languages that are not regular?
 - Stay tuned!