
Automata Theory
CS411 2015F-02

Formal Languages

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

02-0: Alphabets & Strings

An alphabet Σ is a finite set of symbols

Σ1 = {a, b, . . ., z}

Σ2 = {0, 1}

A string is a finite sequence of symbols from an
alphabet

fire, truck are both strings over {a, . . ., z}

length of a string is the number of symbols in the
string

|fire| = 4, |truck| = 5

02-1: Alphabets & Strings

The empty string ǫ is a string of 0 characters

|ǫ| = 0

◦ is the concatenation operator

w1 = fire, w2 = truck

w1 ◦ w2 = firetruck

w2 ◦ w1 = truckfire

w2 ◦ w2 = trucktruck

Often drop the ◦: w1w2 = firetruck

For any string w, wǫ = w

02-2: Concatenation & Reversal

We can concatenate a string with itself:

w1 = w

w2 = ww

w3 = www

By definition, w0 = ǫ

Can reverse a string: wR

truckR = kcurt

02-3: Formal Language

A formal language (or just language) is a set of
strings

L1 ={a, aa, abba, bbba}

L2 ={car, truck, goose}

L3 ={1, 11, 111, 1111, 11111, . . .}

A language can be either finite or infinite

02-4: Language Concatenation

We can concatenate languages as well as strings

L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

{a, ab}{bb, b} =

02-5: Language Concatenation

We can concatenate languages as well as strings

L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

{a, ab}{bb, b} = {abb, ab, abbb}

{a, ab}{a, ab} =

02-6: Language Concatenation

We can concatenate languages as well as strings

L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

{a, ab}{bb, b} = {abb, ab, abbb}

{a, ab}{a, ab} = {aa, aab, aba, abab}

{a, aa}{a, aa} =

02-7: Language Concatenation

We can concatenate languages as well as strings

L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

{a, ab}{bb, b} = {abb, ab, abbb}

{a, ab}{a, ab} = {aa, aab, aba, abab}

{a, aa}{a, aa} = {aa, aaa, aaaa}

What can we say about |L1L2|, if we know |L1| = m

and |L2| = n?

02-8: Language Concatenation

We can concatenate a language with itself, just like
strings

L1 = L,L2 = LL,L3 = LLL, etc.

What should L0 be, and why?

02-9: Language Concatenation

We can concatenate a language with itself, just like
strings

L1 = L,L2 = LL,L3 = LLL, etc.

L0 = {ǫ}
{} is the empty language

{ǫ} is the trivial language

Kleene Closure (L∗)

L∗ = L0 ∪ L1 ∪ L2 ∪ L3 ∪ . . .

02-10: Regular Expressions

Regular expressions are a way to describe formal
languages

Regular expressions are defined recursively

Base case – simple regular expressions

Recursive case – how to build more complex
regular expressions from simple regular
expressions

02-11: Regular Expressions

ǫ is a regular expression, representing {ǫ}

∅ is a regular expression, representing {}

∀a ∈ Σ, a is a regular expression representing {a}

if r1 and r2 are regular expressions, then (r1r2) is a
regular expression

L[(r1r2)] = L[r1] ◦ L[r2]

if r1 and r2 are regular expressions, then (r1 + r2)
is a regular expression

L[(r1 + r2)] = L[r1] ∪ L[r2]

if r is regular expressions, then (r∗) is a regular
expression

L[(r∗)] = (L[r])∗

02-12: Regular Expressions

Regular Expression Definition

Regular Expression Language

ǫ L[ǫ] = {ǫ}

∅ L[∅] = {}

a ∈ Σ L[a] = {a}

(r1r2) L[r1r2] = L[r1]L[r2]

(r1 + r2) L[(r1 + r2)] = L[r1]
⋃
L[r2]

(r∗) L[(r∗)] = (L[r])∗

02-13: Regular Expressions

(((a+b)(b*))a)

((a((a+b)*))a)

((a*)(b*))

((ab)*)

02-14: Regular Expressions

(((a+b)(b*))a)

{aa, ba, aba, bba, abba, bbba, abbba, bbbba,
. . .}

((a((a+b)*))a)

{aa, aaa, aba, aaaa, aaba, abaa, abba, . . .}

((a*)(b*))

{ǫ, a, b, aa, ab, bb, aaa, aab, abb, bbb, . . .}

((ab)*)

{ǫ, ab, abab, ababab, abababab, . . .}

02-15: Regular Expressions

All those parenthesis can be confusing

Drop them!!

(((ab)b)a) becomes abba

What about a+bb*a – what’s the problem?

02-16: Regular Expressions

All those parenthesis can be confusing

Drop them!!

(((ab)b)a) becomes abba

What about a+bb*a – what’s the problem?

Ambiguous!

a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a ?

02-17: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expres-

sions: (a+b)(a+b))

02-18: Regular Expressions

Intuitive Reading of Regular Expressions

Concatenation == “is followed by”

+ == “or”

* == “zero or more occurances”

(a+b)(a+b)(a+b)

(a+b)*

aab(aa)*

02-19: Regular Expressions

All strings over {a,b} that start with an a

02-20: Regular Expressions

All strings over {a,b} that start with an a

a(a+b)*

All strings over {a,b} that are even in length

02-21: Regular Expressions

All strings over {a,b} that start with an a

a(a+b)*

All strings over {a,b} that are even in length

((a+b)(a+b))*

All strings over {0,1} that have an even number of
1’s.

02-22: Regular Expressions

All strings over {a,b} that start with an a

a(a+b)*

All strings over {a,b} that are even in length

((a+b)(a+b))*

All strings over {0,1} that have an even number of
1’s.

0*(10*10*)*

All strings over a, b that start and end with the
same letter

02-23: Regular Expressions

All strings over {a,b} that start with an a

a(a+b)*

All strings over {a,b} that are even in length

((a+b)(a+b))*

All strings over {0,1} that have an even number of
1’s.

0*(10*10*)*

All strings over a, b that start and end with the
same letter

a(a+b)*a + b(a+b)*b + a + b

02-24: Regular Expressions

All strings over {0, 1} with no occurrences of 00

02-25: Regular Expressions

All strings over {0, 1} with no occurrences of 00

1*(011*)*(0+1*)

All strings over {0, 1} with exactly one occurrence
of 00

02-26: Regular Expressions

All strings over {0, 1} with no occurrences of 00

1*(011*)*(0+1*)

All strings over {0, 1} with exactly one occurrence
of 00

1*(011*)*00(11*0)*1*

All strings over {0, 1} that contain 101

02-27: Regular Expressions

All strings over {0, 1} with no occurrences of 00

1*(011*)*(0+1*)

All strings over {0, 1} with exactly one occurrence
of 00

1*(011*)*00(11*0)*1*

All strings over {0, 1} that contain 101

(0+1)*101(0+1)*

All strings over {0, 1} that do not contain 01

02-28: Regular Expressions

All strings over {0, 1} with no occurrences of 00

1*(011*)*(0+1*)

All strings over {0, 1} with exactly one occurrence
of 00

1*(011*)*00(11*0)*1*

All strings over {0, 1} that contain 101

(0+1)*101(0+1)*

All strings over {0, 1} that do not contain 01

1*0*

02-29: Regular Expressions

All strings over {/, “*”, a, . . ., z } that form valid C
comments

Use quotes to differentiate the “*” in the input
from the regular expression *

Use [a-z] to stand for (a + b + c + d + . . . + z)

02-30: Regular Expressions

All strings over {/, “*”, a, . . ., z } that form valid C
comments

Use quotes to differentiate the “*” in the input
from the regular expression *

Use [a-z] to stand for (a + b + c + d + . . . + z)

/“*”([a-z]+/)* (“*”(“*”)*[a-z]([a-z]+/)*)* “*”(“*”)*/

This exact problem (finding a regular
expression for C comments) has actually been
used in an industrial context.

02-31: Regular Languages

A language is regular if it can be described by a
regular expression.

The Regular Languages(LREG) is the set of all
languages that can be represented by a regular
expression

Set of set of strings

Raises the question: Are there languages that are
not regular?

Stay tuned!

	{small lecturenumber -	heblocknumber :} Alphabets & Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alphabets & Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Concatenation & Reversaladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Formal Languageaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} r.e. Precedenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Languagesaddtocounter {blocknumber}{1}

