02-0: Alphabets \& Strings

- An alphabet Σ is a finite set of symbols
- $\Sigma_{1}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
- $\Sigma_{2}=\{0,1\}$
- A string is a finite sequence of symbols from an alphabet
- fire, truck are both strings over $\{\mathrm{a}, \ldots, \mathrm{z}\}$
- length of a string is the number of symbols in the string
- \mid fire $|=4$,$| truck \mid=5$

02-1: Alphabets \& Strings

- The empty string ϵ is a string of 0 characters
- $|\epsilon|=0$
- \circ is the concatenation operator
- $w_{1}=$ fire, $w_{2}=$ truck
- $w_{1} \circ w_{2}=$ firetruck
- $w_{2} \circ w_{1}=$ truckfire
- $w_{2} \circ w_{2}=$ trucktruck
- Often drop the $\circ: w_{1} w_{2}=$ firetruck
- For any string $w, w \epsilon=w$

02-2: Concatenation \& Reversal

- We can concatenate a string with itself:
- $w^{1}=w$
- $w^{2}=w w$
- $w^{3}=w w w$
- By definition, $w^{0}=\epsilon$
- Can reverse a string: w^{R}
- truck $^{R}=$ kcurt

02-3: Formal Language

- A formal language (or just language) is a set of strings
- $L_{1}=\{\mathrm{a}, \mathrm{aa}, \mathrm{abba}, \mathrm{bbba}\}$
- $L_{2}=\{$ car, truck, goose $\}$
- $L_{3}=\{1,11,111,1111,11111, \ldots\}$
- A language can be either finite or infinite

02-4: Language Concatenation

- We can concatenate languages as well as strings
- $L_{1} L_{2}=\left\{w v: w \in L_{1} \wedge v \in L_{2}\right\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{bb}, \mathrm{b}\}=$

02-5: Language Concatenation

- We can concatenate languages as well as strings
- $L_{1} L_{2}=\left\{w v: w \in L_{1} \wedge v \in L_{2}\right\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{bb}, \mathrm{b}\}=\{\mathrm{abb}, \mathrm{ab}, \mathrm{abbb}\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{a}, \mathrm{ab}\}=$

02-6: Language Concatenation

- We can concatenate languages as well as strings
- $L_{1} L_{2}=\left\{w v: w \in L_{1} \wedge v \in L_{2}\right\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{bb}, \mathrm{b}\}=\{\mathrm{abb}, \mathrm{ab}, \mathrm{abbb}\}$
- $\{a, a b\}\{a, a b\}=\{a a, a a b, a b a, a b a b\}$
- $\{\mathrm{a}, \mathrm{aa}\}\{\mathrm{a}, \mathrm{aa}\}=$

02-7: Language Concatenation

- We can concatenate languages as well as strings
- $L_{1} L_{2}=\left\{w v: w \in L_{1} \wedge v \in L_{2}\right\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{bb}, \mathrm{b}\}=\{\mathrm{abb}, \mathrm{ab}, \mathrm{abbb}\}$
- $\{\mathrm{a}, \mathrm{ab}\}\{\mathrm{a}, \mathrm{ab}\}=\{\mathrm{a}, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}\}$
- $\{\mathrm{a}, \mathrm{aa}\}\{\mathrm{a}, \mathrm{aa}\}=\{\mathrm{aa}, \mathrm{aaa}, \mathrm{aaaa}\}$

What can we say about $\left|L_{1} L_{2}\right|$, if we know $\left|L_{1}\right|=m$ and $\left|L_{2}\right|=n$?

02-8: Language Concatenation

- We can concatenate a language with itself, just like strings
- $L^{1}=L, L^{2}=L L, L^{3}=L L L$, etc.
- What should L^{0} be, and why?

02-9: Language Concatenation

- We can concatenate a language with itself, just like strings
- $L^{1}=L, L^{2}=L L, L^{3}=L L L$, etc.
- $L^{0}=\{\epsilon\}$
- $\}$ is the empty language
- $\{\epsilon\}$ is the trivial language
- Kleene Closure (L^{*})
- $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \cup \ldots$

02-10: Regular Expressions

- Regular expressions are a way to describe formal languages
- Regular expressions are defined recursively
- Base case - simple regular expressions
- Recursive case - how to build more complex regular expressions from simple regular expressions

02-11: Regular Expressions

- ϵ is a regular expression, representing $\{\epsilon\}$
- \emptyset is a regular expression, representing $\}$
- $\forall \mathrm{a} \in \Sigma, \mathrm{a}$ is a regular expression representing $\{\mathrm{a}\}$
- if r_{1} and r_{2} are regular expressions, then $\left(r_{1} r_{2}\right)$ is a regular expression
- $L\left[\left(r_{1} r_{2}\right)\right]=L\left[r_{1}\right] \circ L\left[r_{2}\right]$
- if r_{1} and r_{2} are regular expressions, then $\left(r_{1}+r_{2}\right)$ is a regular expression
- $L\left[\left(r_{1}+r_{2}\right)\right]=L\left[r_{1}\right] \cup L\left[r_{2}\right]$
- if r is regular expressions, then $\left(r^{*}\right)$ is a regular expression
- $L\left[\left(r^{*}\right)\right]=(L[r])^{*}$

02-12: Regular Expressions

Regular Expression Definition

$$
\begin{aligned}
\text { Regular Expression } & \text { Language } \\
\epsilon & L[\epsilon]=\{\epsilon\} \\
\emptyset & L[\emptyset]=\{ \} \\
a \in \Sigma & L[\mathrm{a}]=\{\mathrm{a}\} \\
\left(r_{1} r_{2}\right) & L\left[r_{1} r_{2}\right]=L\left[r_{1}\right] L\left[r_{2}\right] \\
\left(r_{1}+r_{2}\right) & L\left[\left(r_{1}+r_{2}\right)\right]=L\left[r_{1}\right] \cup L\left[r_{2}\right] \\
\left(r^{*}\right) & L\left[\left(r^{*}\right)\right]=(L[r])^{*}
\end{aligned} \quad 02-13: \text { Regular Expressions }
$$

- (((a+b)(b*))a)
- $\left(\left(a\left((a+b)^{*}\right)\right) a\right)$
- $\left(\left(\mathrm{a}^{*}\right)\left(\mathrm{b}^{*}\right)\right)$
- $\left((a b)^{*}\right)$

02-14: Regular Expressions

- $\left(\left((a+b)\left(b^{*}\right)\right) a\right)$
- \{aa, ba, aba, bba, abba, bbba, abbba, bbbba, ...\}
- $\left(\left(a\left((a+b)^{*}\right)\right) a\right)$
- $\{\mathrm{aa}$, aaa, aba, aaaa, aaba, abaa, abba, ...\}
- $\left(\left(a^{*}\right)\left(b^{*}\right)\right)$
- $\{\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aab}, \mathrm{abb}, \mathrm{bbb}, \ldots\}$
- ((ab)*)
- $\{\epsilon, \mathrm{ab}, \mathrm{abab}, \mathrm{ababab}$, abababab, $\ldots\}$

02-15: Regular Expressions

- All those parenthesis can be confusing
- Drop them!!
- (((ab)b)a) becomes abba
- What about $\mathrm{a}+\mathrm{bb}^{*} \mathrm{a}-$ what's the problem?

02-16: Regular Expressions

- All those parenthesis can be confusing
- Drop them!!
- (((ab)b)a) becomes abba
- What about $\mathrm{a}+\mathrm{bb} * \mathrm{a}$ - what's the problem?
- Ambiguous!
- $a+\left(b\left(b^{*}\right)\right) a,(a+b)\left(b^{*}\right) a,(a+(b b))^{*} a$?

02-17: r.e. Precedence
From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +
$a b^{*} c+e=\left(a\left(b^{*}\right) c\right)+e$
(We will still need parentheses for some regular expressions: $(a+b)(a+b)$) 02-18: Regular Expressions

- Intuitive Reading of Regular Expressions
- Concatenation $==$ "is followed by"
- + == "or"
- * == "zero or more occurances"
- $(a+b)(a+b)(a+b)$
- $(a+b)^{*}$
- $a a b(a a)^{*}$

02-19: Regular Expressions

- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that start with an a

02-20: Regular Expressions

- All strings over $\{a, b\}$ that start with an a
- $a(a+b)^{*}$
- All strings over $\{a, b\}$ that are even in length

02-21: Regular Expressions

- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that start with an a
- $a(a+b)^{*}$
- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that are even in length
- $((a+b)(a+b))^{*}$
- All strings over $\{0,1\}$ that have an even number of 1 's.

02-22: Regular Expressions

- All strings over $\{a, b\}$ that start with an a
- $a(a+b)^{*}$
- All strings over $\{a, b\}$ that are even in length
- $((a+b)(a+b))^{*}$
- All strings over $\{0,1\}$ that have an even number of 1 's.
- $0 *\left(10^{*} 10^{*}\right)^{*}$
- All strings over a, b that start and end with the same letter

02-23: Regular Expressions

- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that start with an a
- $a(a+b)^{*}$
- All strings over $\{\mathbf{a}, \mathrm{b}\}$ that are even in length
- $((a+b)(a+b))^{*}$
- All strings over $\{0,1\}$ that have an even number of 1 's.
- $0 *\left(10^{*} 10^{*}\right)^{*}$
- All strings over a, b that start and end with the same letter
- $a(a+b) * a+b(a+b) * b+a+b$

02-24: Regular Expressions

- All strings over $\{0,1\}$ with no occurrences of 00

02-25: Regular Expressions

- All strings over $\{0,1\}$ with no occurrences of 00
- $1^{*}\left(011^{*}\right)^{*}\left(0+1^{*}\right)$
- All strings over $\{0,1\}$ with exactly one occurrence of 00

02-26: Regular Expressions

- All strings over $\{0,1\}$ with no occurrences of 00
- $1^{*}\left(011^{*}\right)^{*}\left(0+1^{*}\right)$
- All strings over $\{0,1\}$ with exactly one occurrence of 00
- $1^{*}\left(011^{*}\right)^{*} 00\left(11^{*} 0\right)^{*} 1^{*}$
- All strings over $\{0,1\}$ that contain 101

02-27: Regular Expressions

- All strings over $\{0,1\}$ with no occurrences of 00
- $1^{*}\left(011^{*}\right)^{*}\left(0+1^{*}\right)$
- All strings over $\{0,1\}$ with exactly one occurrence of 00
- $1^{*}\left(011^{*}\right)^{*} 00\left(11^{*} 0\right)^{*} 1^{*}$
- All strings over $\{0,1\}$ that contain 101
- $(0+1)^{*} 101(0+1)^{*}$
- All strings over $\{0,1\}$ that do not contain 01

02-28: Regular Expressions

- All strings over $\{0,1\}$ with no occurrences of 00
- $1^{*}\left(011^{*}\right)^{*}\left(0+1^{*}\right)$
- All strings over $\{0,1\}$ with exactly one occurrence of 00
- $1^{*}\left(011^{*}\right)^{*} 00\left(11^{*} 0\right)^{*} 1^{*}$
- All strings over $\{0,1\}$ that contain 101
- $(0+1)^{*} 101(0+1)^{*}$
- All strings over $\{0,1\}$ that do not contain 01
- $1^{*} 0^{*}$

02-29: Regular Expressions

- All strings over $\{/, " * ", \mathrm{a}, \ldots, \mathrm{z}\}$ that form valid C comments
- Use quotes to differentiate the "*" in the input from the regular expression *
- Use [a-z] to stand for $(a+b+c+d+\ldots+z)$

02-30: Regular Expressions

- All strings over $\{/$, "*", a, ..., z $\}$ that form valid C comments
- Use quotes to differentiate the "*" in the input from the regular expression *
- Use $[a-z]$ to stand for $(a+b+c+d+\ldots+z)$

- This exact problem (finding a regular expression for C comments) has actually been used in an industrial context.

02-31: Regular Languages

- A language is regular if it can be described by a regular expression.
- The Regular Languages $\left(L_{R E G}\right)$ is the set of all languages that can be represented by a regular expression
- Set of set of strings
- Raises the question: Are there languages that are not regular?
- Stay tuned!

