02-0: Alphabets & Strings

• An **alphabet** Σ is a finite set of symbols

•
$$\Sigma_1 = \{a, b, ..., z\}$$

•
$$\Sigma_2 = \{0, 1\}$$

• A string is a finite sequence of symbols from an alphabet

• fire, truck are both strings over
$$\{a, ..., z\}$$

• length of a string is the number of symbols in the string

•
$$|fire| = 4$$
, $|truck| = 5$

02-1: Alphabets & Strings

• The **empty string** ϵ is a string of 0 characters

•
$$|\epsilon| = 0$$

• o is the **concatenation** operator

•
$$w_1$$
 = fire, w_2 = truck

•
$$w_1 \circ w_2 = \text{firetruck}$$

•
$$w_2 \circ w_1 = \text{truckfire}$$

•
$$w_2 \circ w_2 = \text{trucktruck}$$

• Often drop the \circ : w_1w_2 = firetruck

• For any string w, $w\epsilon = w$

02-2: Concatenation & Reversal

• We can concatenate a string with itself:

•
$$w^1 = w$$

•
$$w^2 = ww$$

•
$$w^3 = www$$

• By definition, $w^0 = \epsilon$

• Can reverse a string: w^R

• $truck^R = kcurt$

02-3: **Formal Language**

• A formal language (or just language) is a set of strings

•
$$L_1 = \{a, aa, abba, bbba\}$$

•
$$L_2 = \{\text{car, truck, goose}\}$$

•
$$L_3 = \{1, 11, 111, 1111, 11111, \ldots\}$$

• A language can be either finite or infinite

02-4: Language Concatenation

• We can concatenate languages as well as strings

•
$$L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$$

•
$$\{a, ab\}\{bb, b\} =$$

02-5: Language Concatenation

• We can concatenate languages as well as strings

•
$$L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$$

•
$$\{a, ab\}\{bb, b\} = \{abb, ab, abbb\}$$

•
$$\{a, ab\}\{a, ab\} =$$

02-6: Language Concatenation

• We can concatenate languages as well as strings

•
$$L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$$

•
$$\{a, ab\}\{bb, b\} = \{abb, ab, abbb\}$$

•
$$\{a, ab\}\{a, ab\} = \{aa, aab, aba, abab\}$$

•
$$\{a, aa\}\{a, aa\} =$$

02-7: Language Concatenation

• We can concatenate languages as well as strings

•
$$L_1L_2 = \{wv : w \in L_1 \land v \in L_2\}$$

•
$$\{a, ab\}\{bb, b\} = \{abb, ab, abbb\}$$

•
$$\{a, ab\}\{a, ab\} = \{aa, aab, aba, abab\}$$

•
$$\{a, aa\}\{a, aa\} = \{aa, aaa, aaaa\}$$

What can we say about $|L_1L_2|$, if we know $|L_1|=m$ and $|L_2|=n$?

02-8: Language Concatenation

• We can concatenate a language with itself, just like strings

•
$$L^1 = L, L^2 = LL, L^3 = LLL$$
, etc.

• What should L^0 be, and why?

02-9: Language Concatenation

• We can concatenate a language with itself, just like strings

•
$$L^1 = L, L^2 = LL, L^3 = LLL$$
, etc.

•
$$L^0 = \{\epsilon\}$$

• {} is the empty language

- $\{\epsilon\}$ is the trivial language
- Kleene Closure (L*)

$$\bullet \ L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$$

02-10: Regular Expressions

- Regular expressions are a way to describe formal languages
- Regular expressions are defined recursively
 - Base case simple regular expressions
 - Recursive case how to build more complex regular expressions from simple regular expressions

02-11: Regular Expressions

- ϵ is a regular expression, representing $\{\epsilon\}$
- \emptyset is a regular expression, representing $\{\}$
- $\forall a \in \Sigma$, a is a regular expression representing $\{a\}$
- if r_1 and r_2 are regular expressions, then (r_1r_2) is a regular expression
 - $L[(r_1r_2)] = L[r_1] \circ L[r_2]$
- if r_1 and r_2 are regular expressions, then $(r_1 + r_2)$ is a regular expression
 - $L[(r_1 + r_2)] = L[r_1] \cup L[r_2]$
- if r is regular expressions, then (r^*) is a regular expression
 - $L[(r^*)] = (L[r])^*$

02-12: Regular Expressions

Regular Expression Definition

```
\begin{array}{lll} \text{Regular Expression} & \text{Language} \\ & \epsilon & L[\epsilon] = \{\epsilon\} \\ & \emptyset & L[\emptyset] = \{\} \\ & \mathbf{a} \in \Sigma & L[\mathbf{a}] = \{\mathbf{a}\} & \text{02-13: } \mathbf{Regular Expressions} \\ & (r_1r_2) & L[r_1r_2] = L[r_1]L[r_2] \\ & (r_1+r_2) & L[(r_1+r_2)] = L[r_1]\bigcup L[r_2] \\ & (r^*) & L[(r^*)] = (L[r])^* \end{array}
```

- $(((a+b)(b^*))a)$
- ((a((a+b)*))a)
- $((a^*)(b^*))$
- ((ab)*)

02-14: Regular Expressions

• (((a+b)(b*))a)

- {aa, ba, aba, bba, abba, bbba, abbba, ...}
- ((a((a+b)*))a)
 - {aa, aaa, aba, aaaa, aaba, abaa, abba, . . .}
- $((a^*)(b^*))$
 - $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, bbb, \ldots\}$
- ((ab)*)
 - $\{\epsilon$, ab, abab, ababab, abababab, . . . $\}$

02-15: Regular Expressions

- All those parenthesis can be confusing
 - Drop them!!
- (((ab)b)a) becomes abba
- What about a+bb*a what's the problem?

02-16: Regular Expressions

- All those parenthesis can be confusing
 - Drop them!!
- (((ab)b)a) becomes abba
- What about a+bb*a what's the problem?
 - Ambiguous!
 - a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a?

02-17: r.e. Precedence

From highest to Lowest:

Kleene Closure *
Concatenation

Alternation +

$$ab*c+e = (a(b*)c) + e$$

(We will still need parentheses for some regular expressions: (a+b)(a+b)) 02-18: Regular Expressions

- Intuitive Reading of Regular Expressions
 - Concatenation == "is followed by"
 - +== "or"
 - * == "zero or more occurances"

- (a+b)(a+b)(a+b)
- (a+b)*
- aab(aa)*

02-19: Regular Expressions

• All strings over {a,b} that start with an a

02-20: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length

02-21: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over $\{0,1\}$ that have an even number of 1's.

02-22: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over $\{0,1\}$ that have an even number of 1's.
 - 0*(10*10*)*
- All strings over a, b that start and end with the same letter

02-23: Regular Expressions

- All strings over {a,b} that start with an a
 - a(a+b)*
- All strings over {a,b} that are even in length
 - ((a+b)(a+b))*
- All strings over $\{0,1\}$ that have an even number of 1's.
 - 0*(10*10*)*

- All strings over a, b that start and end with the same letter
 - a(a+b)*a + b(a+b)*b + a + b

02-24: Regular Expressions

• All strings over $\{0, 1\}$ with no occurrences of 00

02-25: Regular Expressions

- All strings over $\{0, 1\}$ with no occurrences of 00
 - 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00

02-26: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 - 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101

02-27: Regular Expressions

- All strings over {0, 1} with no occurrences of 00
 - 1*(011*)*(0+1*)
- All strings over $\{0, 1\}$ with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101
 - (0+1)*101(0+1)*
- All strings over {0, 1} that do not contain 01

02-28: Regular Expressions

- All strings over $\{0, 1\}$ with no occurrences of 00
 - 1*(011*)*(0+1*)
- All strings over {0, 1} with exactly one occurrence of 00
 - 1*(011*)*00(11*0)*1*
- All strings over {0, 1} that contain 101
 - (0+1)*101(0+1)*
- All strings over {0, 1} that do not contain 01

• 1*0*

02-29: Regular Expressions

- All strings over $\{/, \text{"*"}, a, ..., z\}$ that form valid C comments
 - Use quotes to differentiate the "*" in the input from the regular expression *
 - Use [a-z] to stand for (a+b+c+d+...+z)

02-30: Regular Expressions

- All strings over $\{/, \text{``*''}, a, ..., z \}$ that form valid C comments
 - Use quotes to differentiate the "*" in the input from the regular expression *
 - Use [a-z] to stand for (a+b+c+d+...+z)
 - /"*"([a-z]+/)* ("*"("*")*[a-z]([a-z]+/)*)* "*"("*")*/
 - This exact problem (finding a regular expression for C comments) has actually been used in an industrial context.

02-31: Regular Languages

- A language is **regular** if it can be described by a regular expression.
- ullet The **Regular Languages** (L_{REG}) is the set of all languages that can be represented by a regular expression
 - Set of set of strings
- Raises the question: Are there languages that are not regular?
 - Stay tuned!