
Automata Theory
CS411 20145-03

Determinisitic Finite Automata

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

03-0: Generators vs. Checkers

Regular expressions are one way to specify a
formal language

String Generator Generates strings in the
language

Deterministic Finite Automata (DFA) are
another way to specify a language

String Checker Given any string, determines
if that string is in the language or not

03-1: DFA Example

Example Deterministic Finite Automaton

a

a,b

b

a,b

0

1

2

03-2: DFA Example

DFA for all strings over {a,b} that contain exactly 2 a’s

03-3: DFA Example

DFA for all strings over {a,b} that contain exactly 2 a’s

a

b

0
a

b

1
a

b

2

a,b

3

03-4: DFA Example

All strings over a, b that have length 3.

03-5: DFA Example

All strings over a, b that have length 3.

a,b
0

a,b
1

a,b
2 3

a,b

a,b

3

03-6: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

03-7: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

States

03-8: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

Alphabet (characters than can occur in strings
accepted by DFA)

03-9: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

Transitions

03-10: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

Initial State

03-11: DFA Components

What makes up a DFA?

a

b

0
a

b

1
a

b

2

a,b

3

Final State(s) (there can be > 1)

03-12: DFA Definition

A DFA is a 5-tuple M = (K,Σ, δ, s, F)

K Set of states

Σ Alphabet

δ : (K × Σ) 7→ K is a Transition function

s ∈ K Initial state

F ⊆ K Final states

03-13: DFA Definition

a

b

0
a

b

1
a

b

2

a,b

3

K = {q0, q1, q2, q3}

Σ = {a, b}

δ =
{((q0, a), q1), ((q0, b), q0), ((q1, a), q2), ((q1, b), q1),
((q2, a), q3), ((q2, b), q2), ((q3, a), q3), ((q3, b), q3)}

s = q0

F = {q2}

03-14: Fun with DFA

Create a DFA for:

All strings over {0, 1} that contain the substring
1001

03-15: Fun with DFA

Create a DFA for:

All strings over {0, 1} that contain the substring
1001

1

0

0
0

1

1
0

2 3 4
1

1
0

0,1

03-16: Fun with DFA

Create a DFA for:

All strings over {0, 1} that end with 111

03-17: Fun with DFA

Create a DFA for:

All strings over {0, 1} that end with 111

0
1 1

1
1

2 3

0 0 0

0 1

03-18: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin with 111

03-19: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin with 111

1
0

1
1

1
2 3

0,1

4

0
0

0

0,1

03-20: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin or end with 111

03-21: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin or end with 111

1
0

1
1

1
2 3

0,1

4
1 1

5
1

6 7

0 0

0 0 0

1

0

0

03-22: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin and end with 111

03-23: Fun with DFA

Create a DFA for:

All strings over {0, 1} that begin and end with 111

1
0

1
1

1
2 3

1

4
1 1

5
1

6 7

0

0 0 0

1

0

8

0
0

0

0,1

03-24: Fun with DFA

Create a DFA for:

All strings over {0, 1} that contain 1001 or 0110

03-25: Fun with DFA

Create a DFA for:

All strings over {0, 1} that contain 1001 or 0110

0

1

0
1 12

0

0
3

1
4 05

1
6

1

0

1

0

0

1

0,17

03-26: Fun with DFA

Create a DFA for:

All strings over {a, b} that begin and end with the
same letter

03-27: Fun with DFA

Create a DFA for:

All strings over {a, b} that begin and end with the
same letter

0

1 2

b

a b

1 2

a

b a

a

b

a

b

03-28: Why DFA?

Why are these machines called “Deterministic
Finite Automata”

Deterministic Each transition is completely
determined by the current state and next input
symbol. That is, for each state / symbol pair,
there is exactly one state that is transitioned to

Finite Every DFA has a finite number of states

Automata (singular automaton) means
“machine”
(From Merriam-Webster Online Dictionary, definition 2: A machine or control

mechanism designed to follow automatically a predetermined sequence of

operations or respond to encoded instructions)

03-29: DFA Configuration & ⊢M

Way to describe the computation of a DFA

Configuration: What state the DFA is currently
in, and what string is left to process

∈ K × Σ∗

(q2, abba) Machine is in state q2, has abba left to
process

(q8, bba) Machine is in state q8, has bba left to
process

(q4, ǫ) Machine is in state q4 at the end of the
computation (accept iff q4 ∈ F)

03-30: DFA Configuration & ⊢M

Way to describe the computation of a DFA

Configuration: What state the DFA is currently
in, and what string is left to process

∈ K × Σ∗

Binary relation ⊢M : What machine M yields in one
step

⊢M⊆ (K × Σ∗)× (K × Σ∗)

⊢M= {((q1, aw), (q2, w)) : q1, q2 ∈ KM , w ∈
Σ∗

M
, a ∈ ΣM , ((q1, a), q2) ∈ δM}

03-31: DFA Configuration & ⊢M

Given the following machine M :

a

a,b

b

a,b

0

1

2

((q0, abba), (q2, bba)) ∈⊢M

can also be written (q0, abba) ⊢M (q2, bba)

03-32: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 11101) ⊢M (q1, 1101)

⊢M (q2, 101)

⊢M (q3, 01)

⊢M (q0, 1)

⊢M (q1, ǫ)

03-33: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 10111) ⊢M (q1, 0111)

⊢M (q0, 111)

⊢M (q1, 11)

⊢M (q2, 1)

⊢M (q3, ǫ)

03-34: DFA Configuration & ⊢∗
M

⊢∗

M
is the reflexive, transitive closure of ⊢M

Smallest superset of ⊢M that is both reflexive
and transitive

“yields in 0 or more steps”

Machine M accepts string w if:

(sM , w) ⊢∗

M
(f, ǫ) for some f ∈ FM

03-35: DFA & Languages

Language accepted by a machine M = L[M]

{w : (sM , w) ⊢∗

M
(f, ǫ) for some f ∈ FM}

DFA Languages, LDFA

Set of all languages that can be defined by a
DFA

LDFA = {L : ∃M,L[M] = L}

To think about: How does LDFA relate to LREG

	{small lecturenumber -	heblocknumber :} Generators vs. Checkersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Componentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fun with DFAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Why DFA?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA Configuration & $vdash _M^*$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFA & Languagesaddtocounter {blocknumber}{1}

