Automata Theory CS411 20145-03

Determinisitic Finite Automata

David Galles

Department of Computer Science
University of San Francisco

03-0: Generators vs. Checkers

- Regular expressions are one way to specify a formal language
- String Generator Generates strings in the language
- Deterministic Finite Automata (DFA) are another way to specify a language
- String Checker Given any string, determines if that string is in the language or not

03-1: DFA Example

Example Deterministic Finite Automaton

03.2: DFA Example

DFA for all strings over \{a,b\} that contain exactly 2 a's

03-3: DFA Example

DFA for all strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain exactly 2 a's

03.4: DFA Example

- All strings over a, b that have length 3.

03-5: DFA Example

- All strings over a, b that have length 3.

03-6: DFA Components

- What makes up a DFA?

03-7: DFA Components

- What makes up a DFA?

- States

03-8: DFA Components

- What makes up a DFA?

- Alphabet (characters than can occur in strings accepted by DFA)

03-9: DFA Components

- What makes up a DFA?

3

- Transitions

03-10: DFA Components

- What makes up a DFA?

- Initial State

03-11: DFA Components

- What makes up a DFA?

- Final State(s) (there can be > 1)

03-12: DFA Definition

- A DFA is a 5-tuple $M=(K, \Sigma, \delta, s, F)$
- K Set of states
- Σ Alphabet
- $\delta:(K \times \Sigma) \mapsto K$ is a Transition function
- $s \in K$ Initial state
- $F \subseteq K$ Final states

03-13: DFA Definition

- $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $\delta=$
$\left\{\left(\left(q_{0}, \mathrm{a}\right), q_{1}\right),\left(\left(q_{0}, \mathrm{~b}\right), q_{0}\right),\left(\left(q_{1}, \mathrm{a}\right), q_{2}\right),\left(\left(q_{1}, \mathrm{~b}\right), q_{1}\right)\right.$, $\left.\left(\left(q_{2}, \mathrm{a}\right), q_{3}\right),\left(\left(q_{2}, \mathrm{~b}\right), q_{2}\right),\left(\left(q_{3}, \mathrm{a}\right), q_{3}\right),\left(\left(q_{3}, \mathrm{~b}\right), q_{3}\right)\right\}$
- $s=q_{0}$
- $F=\left\{q_{2}\right\}$

03-14: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that contain the substring 1001

03-15: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that contain the substring 1001

03-16: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that end with 111

03-17: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that end with 111

03-18: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin with 111

03-19: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin with 111

03-20: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin or end with 111

03-21: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin or end with 111

03-22: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin and end with 111

03-23: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin and end with 111

03-24: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that contain 1001 or 0110

03-25: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that contain 1001 or 0110

03-26: Fun with DFA

Create a DFA for:

- All strings over $\{a, b\}$ that begin and end with the same letter

03-27: Fun with DFA

Create a DFA for:

- All strings over $\{a, b\}$ that begin and end with the same letter

03-28: Why DFA?

- Why are these machines called "Deterministic Finite Automata"
- Deterministic Each transition is completely determined by the current state and next input symbol. That is, for each state / symbol pair, there is exactly one state that is transitioned to
- Finite Every DFA has a finite number of states
- Automata (singular automaton) means "machine"
(From Merriam-Webster Online Dictionary, definition 2: A machine or control mechanism designed to follow automatically a predetermined sequence of operations or respond to encoded instructions)

03-29: DFA Configuration $\& \vdash_{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- $\left(q_{2}, a b b a\right)$ Machine is in state q_{2}, has abba left to process
- $\left(q_{8}, b b a\right)$ Machine is in state q_{8}, has $b b a$ left to process
- $\left(q_{4}, \epsilon\right)$ Machine is in state q_{4} at the end of the computation (accept iff $q_{4} \in F$)

03-30: DFA Configuration $\& \vdash_{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- Binary relation \vdash_{M} : What machine M yields in one step

$$
\begin{aligned}
& -\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right) \times\left(K \times \Sigma^{*}\right) \\
& \text { - } \vdash_{M}=\left\{\left(\left(q_{1}, a w\right),\left(q_{2}, w\right)\right): q_{1}, q_{2} \in K_{M}, w \in\right. \\
& \left.\Sigma_{M}^{*}, a \in \Sigma_{M},\left(\left(q_{1}, a\right), q_{2}\right) \in \delta_{M}\right\}
\end{aligned}
$$

03-31: DFA Configuration \& \vdash_{M}

Given the following machine M :

- $\left(\left(q_{0}\right.\right.$, abba $),\left(q_{2}\right.$, bba $\left.)\right) \in \vdash_{M}$
- can also be written $\left(q_{0}\right.$, abba $) \vdash_{M}\left(q_{2}\right.$, bba $)$

03-32: DFA Configuration \& \vdash_{M}

$\left(q_{0}, 11101\right) \vdash_{M}\left(q_{1}, 1101\right)$
$\vdash_{M}\left(q_{2}, 101\right)$
$\vdash_{M}\left(q_{3}, 01\right)$
$\vdash_{M}\left(q_{0}, 1\right)$
$\vdash_{M}\left(q_{1}, \epsilon\right)$

03-33: DFA Configuration \& \vdash_{M}

$\left(q_{0}, 10111\right) \vdash_{M}\left(q_{1}, 0111\right)$
$\vdash_{M}\left(q_{0}, 111\right)$
$\vdash_{M}\left(q_{1}, 11\right)$
$\vdash_{M}\left(q_{2}, 1\right)$
$\vdash_{M}\left(q_{3}, \epsilon\right)$

03-34: DFA Configuration \& $\vdash^{*}{ }_{M}$

- \vdash_{M}^{*} is the reflexive, transitive closure of \vdash_{M}
- Smallest superset of \vdash_{M} that is both reflexive and transitive
- "yields in 0 or more steps"
- Machine M accepts string w if:
$\left(s_{M}, w\right) \vdash_{M}^{*}(f, \epsilon)$ for some $f \in F_{M}$

03-35: DFA \& Languages

- Language accepted by a machine $M=L[M]$
- $\left\{w:\left(s_{M}, w\right) \vdash^{*}(f, \epsilon)\right.$ for some $\left.f \in F_{M}\right\}$
- DFA Languages, $L_{D F A}$
- Set of all languages that can be defined by a DFA
- $L_{D F A}=\{L: \exists M, L[M]=L\}$
- To think about: How does $L_{D F A}$ relate to $L_{R E G}$

