03-0: Generators vs. Checkers

- Regular expressions are one way to specify a formal language
- String Generator Generates strings in the language
- Deterministic Finite Automata (DFA) are another way to specify a language
- String Checker Given any string, determines if that string is in the language or not

03-1: DFA Example
Example Deterministic Finite Automaton

03-2: DFA Example
DFA for all strings over $\{a, b\}$ that contain exactly 2 a's
03-3: DFA Example
DFA for all strings over $\{a, b\}$ that contain exactly 2 a's

03-4: DFA Example

- All strings over a, b that have length 3 .

03-5: DFA Example

- All strings over a, b that have length 3 .

03-6: DFA Components

- What makes up a DFA?

03-7: DFA Components

- What makes up a DFA?

- States

03-8: DFA Components

- What makes up a DFA?

- Alphabet (characters than can occur in strings accepted by DFA)

03-9: DFA Components

- What makes up a DFA?

- Transitions

03-10: DFA Components

- What makes up a DFA?

- Initial State

03-11: DFA Components

- What makes up a DFA?

- Final State(s) (there can be >1)

03-12: DFA Definition

- A DFA is a 5-tuple $M=(K, \Sigma, \delta, s, F)$

> - K Set of states
> - Σ Alphabet

- $\delta:(K \times \Sigma) \mapsto K$ is a Transition function
- $s \in K$ Initial state
- $F \subseteq K$ Final states

03-13: DFA Definition

- $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $\delta=\left\{\left(\left(q_{0}, \mathrm{a}\right), q_{1}\right),\left(\left(q_{0}, \mathrm{~b}\right), q_{0}\right),\left(\left(q_{1}, \mathrm{a}\right), q_{2}\right),\left(\left(q_{1}, \mathrm{~b}\right), q_{1}\right)\right.$, $\left.\left(\left(q_{2}, \mathrm{a}\right), q_{3}\right),\left(\left(q_{2}, \mathrm{~b}\right), q_{2}\right),\left(\left(q_{3}, \mathrm{a}\right), q_{3}\right),\left(\left(q_{3}, \mathrm{~b}\right), q_{3}\right)\right\}$
- $s=q_{0}$
- $F=\left\{q_{2}\right\}$

03-14: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that contain the substring 1001

03-15: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that contain the substring 1001

03-16: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that end with 111

03-17: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that end with 111

03-18: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that begin with 111

03-19: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin with 111

03-20: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that begin or end with 111

03-21: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that begin or end with 111

03-22: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin and end with 111

03-23: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that begin and end with 111

03-24: Fun with DFA
Create a DFA for:

- All strings over $\{0,1\}$ that contain 1001 or 0110

03-25: Fun with DFA

Create a DFA for:

- All strings over $\{0,1\}$ that contain 1001 or 0110

03-26: Fun with DFA
Create a DFA for:

- All strings over $\{a, b\}$ that begin and end with the same letter

03-27: Fun with DFA
Create a DFA for:

- All strings over $\{a, b\}$ that begin and end with the same letter

03-28: Why DFA?

- Why are these machines called "Deterministic Finite Automata"
- Deterministic Each transition is completely determined by the current state and next input symbol. That is, for each state / symbol pair, there is exactly one state that is transitioned to
- Finite Every DFA has a finite number of states
- Automata (singular automaton) means "machine"

03-29: DFA Configuration $\boldsymbol{\&} \vdash^{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- $\left(q_{2}, a b b a\right)$ Machine is in state q_{2}, has $a b b a$ left to process
- $\left(q_{8}, b b a\right)$ Machine is in state q_{8}, has $b b a$ left to process
- $\left(q_{4}, \epsilon\right)$ Machine is in state q_{4} at the end of the computation (accept iff $q_{4} \in F$)

03-30: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- Binary relation \vdash_{M} : What machine M yields in one step
- $\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right) \times\left(K \times \Sigma^{*}\right)$
- $\vdash_{M}=\left\{\left(\left(q_{1}, a w\right),\left(q_{2}, w\right)\right): q_{1}, q_{2} \in K_{M}, w \in \Sigma_{M}^{*}, a \in \Sigma_{M},\left(\left(q_{1}, a\right), q_{2}\right) \in \delta_{M}\right\}$

03-31: DFA Configuration $\boldsymbol{\&} \vdash^{M}$
Given the following machine M :

- $\left(\left(q_{0}, \mathrm{abba}\right),\left(q_{2}, \mathrm{bba}\right)\right) \in \vdash_{M}$
- can also be written $\left(q_{0}\right.$, abba $) \vdash_{M}\left(q_{2}\right.$, bba $)$

03-32: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

- \vdash_{M}^{*} is the reflexive, transitive closure of \vdash_{M}
- Smallest superset of \vdash_{M} that is both reflexive and transitive
- "yields in 0 or more steps"
- Machine M accepts string w if:

$$
\left(s_{M}, w\right) \vdash_{M}^{*}(f, \epsilon) \text { for some } f \in F_{M}
$$

03-35: DFA \& Languages

- Language accepted by a machine $M=L[M]$
- $\left\{w:\left(s_{M}, w\right) \vdash_{M}^{*}(f, \epsilon)\right.$ for some $\left.f \in F_{M}\right\}$
- DFA Languages, $L_{D F A}$
- Set of all languages that can be defined by a DFA
- $L_{D F A}=\{L: \exists M, L[M]=L\}$
- To think about: How does $L_{D F A}$ relate to $L_{R E G}$

