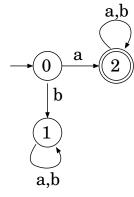
03-0: Generators vs. Checkers

- Regular expressions are one way to specify a formal language
 - String Generator Generates strings in the language
- Deterministic Finite Automata (DFA) are another way to specify a language
 - String Checker Given any string, determines if that string is in the language or not

03-1: DFA Example

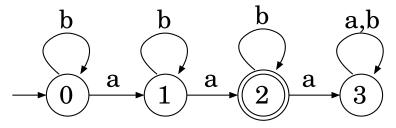
Example Deterministic Finite Automaton



03-2: DFA Example

DFA for all strings over $\{a,b\}$ that contain exactly 2 a's 03-3: **DFA Example**

DFA for all strings over $\{a,b\}$ that contain exactly 2 a's

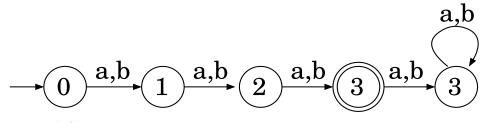


03-4: DFA Example

• All strings over a, b that have length 3.

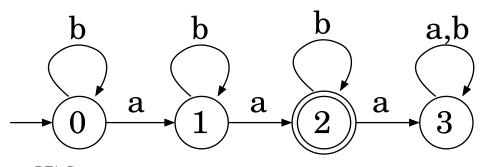
03-5: DFA Example

• All strings over a, b that have length 3.



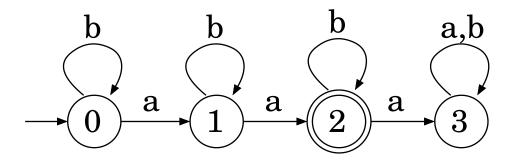
03-6: DFA Components

• What makes up a DFA?



03-7: DFA Components

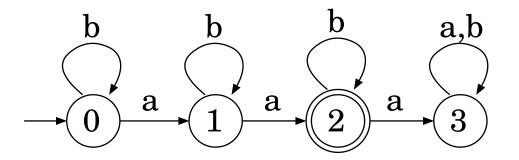
• What makes up a DFA?



• States

03-8: DFA Components

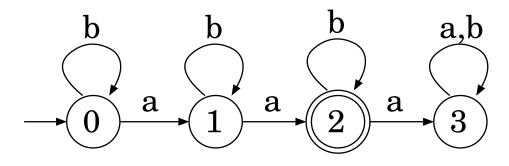
• What makes up a DFA?



• Alphabet (characters than can occur in strings accepted by DFA)

03-9: DFA Components

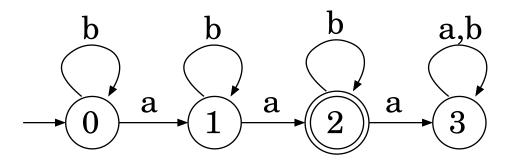
• What makes up a DFA?



• Transitions

03-10: DFA Components

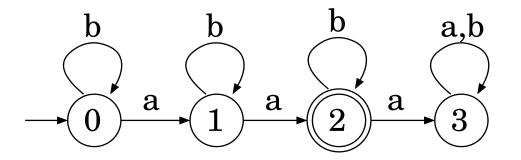
• What makes up a DFA?



• Initial State

03-11: DFA Components

• What makes up a DFA?



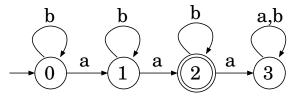
• Final State(s) (there can be > 1)

03-12: DFA Definition

- A DFA is a 5-tuple $M = (K, \Sigma, \delta, s, F)$
 - K Set of states
 - Σ Alphabet

- $\delta: (K \times \Sigma) \mapsto K$ is a Transition function
- $s \in K$ Initial state
- $F \subseteq K$ Final states

03-13: **DFA Definition**



- $K = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta = \{((q_0, \mathbf{a}), q_1), ((q_0, \mathbf{b}), q_0), ((q_1, \mathbf{a}), q_2), ((q_1, \mathbf{b}), q_1), ((q_2, \mathbf{a}), q_3), ((q_2, \mathbf{b}), q_2), ((q_3, \mathbf{a}), q_3), ((q_3, \mathbf{b}), q_3)\}$
- $s = q_0$
- $F = \{q_2\}$

03-14: Fun with DFA

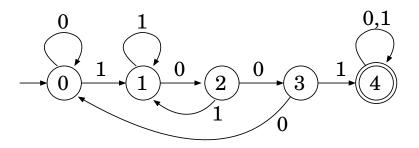
Create a DFA for:

• All strings over $\{0, 1\}$ that contain the substring 1001

03-15: Fun with DFA

Create a DFA for:

• All strings over {0, 1} that contain the substring 1001



03-16: Fun with DFA

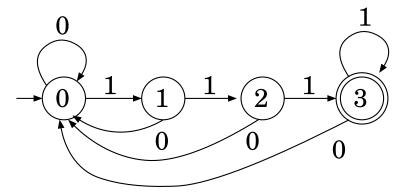
Create a DFA for:

• All strings over {0, 1} that end with 111

03-17: Fun with DFA

Create a DFA for:

• All strings over {0, 1} that end with 111



03-18: Fun with DFA

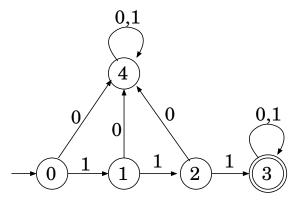
Create a DFA for:

• All strings over {0, 1} that begin with 111

03-19: Fun with DFA

Create a DFA for:

• All strings over {0, 1} that begin with 111



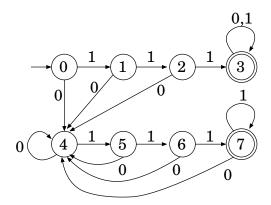
03-20: **Fun with DFA** Create a DFA for:

• All strings over {0, 1} that begin or end with 111

03-21: Fun with DFA

Create a DFA for:

• All strings over {0, 1} that begin or end with 111



03-22: Fun with DFA

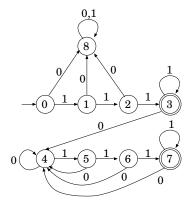
Create a DFA for:

• All strings over $\{0, 1\}$ that begin *and* end with 111

03-23: Fun with DFA

Create a DFA for:

• All strings over $\{0, 1\}$ that begin *and* end with 111



03-24: Fun with DFA

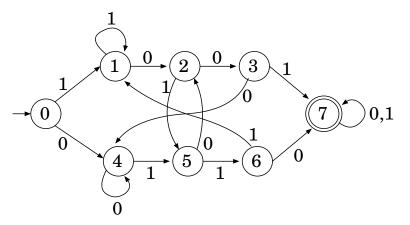
Create a DFA for:

• All strings over $\{0, 1\}$ that contain 1001 or 0110

03-25: Fun with DFA

Create a DFA for:

• All strings over $\{0, 1\}$ that contain 1001 or 0110



03-26: Fun with DFA

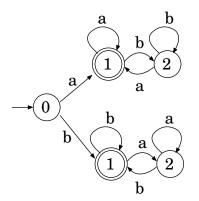
Create a DFA for:

• All strings over {a, b} that begin and end with the same letter

03-27: Fun with DFA

Create a DFA for:

• All strings over {a, b} that begin and end with the same letter



03-28: Why DFA?

- Why are these machines called "Deterministic Finite Automata"
 - **Deterministic** Each transition is completely determined by the current state and next input symbol. That is, for each state / symbol pair, there is exactly *one* state that is transitioned to
 - Finite Every DFA has a finite number of states
 - Automata (singular automaton) means "machine"

(From Merriam-Webster Online Dictionary, definition 2: A machine or control mechanism designed to follow automatically a predetermined sequence of operations or respond to encoded instructions)

03-29: **DFA Configuration &** \vdash_M

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process

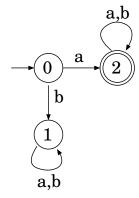
- $\bullet \ \in K \times \Sigma^*$
- $(q_2, abba)$ Machine is in state q_2 , has abba left to process
- (q_8, bba) Machine is in state q_8 , has bba left to process
- (q_4, ϵ) Machine is in state q_4 at the end of the computation (accept iff $q_4 \in F$)

03-30: **DFA Configuration &** \vdash_M

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
 - $\bullet \ \in K \times \Sigma^*$
- Binary relation \vdash_M : What machine M yields in one step
 - $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$
 - $\vdash_M = \{((q_1, aw), (q_2, w)) : q_1, q_2 \in K_M, w \in \Sigma_M^*, a \in \Sigma_M, ((q_1, a), q_2) \in \delta_M\}$

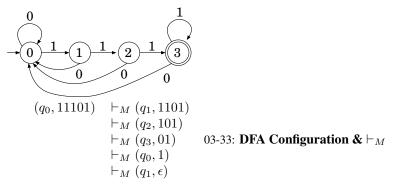
03-31: **DFA Configuration &** \vdash_M

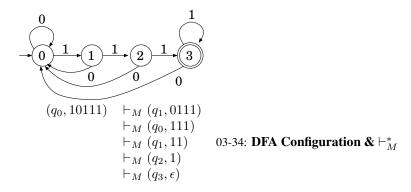
Given the following machine M:



- $((q_0, abba), (q_2, bba)) \in \vdash_M$
 - can also be written $(q_0, abba) \vdash_M (q_2, bba)$

03-32: **DFA Configuration &** \vdash_M





- \vdash_M^* is the reflexive, transitive closure of \vdash_M
 - Smallest superset of \vdash_M that is both reflexive and transitive
 - "yields in 0 or more steps"
- Machine M accepts string w if:
 - $(s_M, w) \vdash^*_M (f, \epsilon)$ for some $f \in F_M$

03-35: DFA & Languages

- Language accepted by a machine M = L[M]
 - { $w: (s_M, w) \vdash_M^* (f, \epsilon)$ for some $f \in F_M$ }
- DFA Languages, L_{DFA}
 - Set of all languages that can be defined by a DFA
 - $L_{DFA} = \{L : \exists M, L[M] = L\}$
- To think about: How does L_{DFA} relate to L_{REG}