04-0: Non-Determinism

- A Deterministic Finite Automata's transition function has exactly one transition for each state/symbol pair
- A Non-Deterministic Finite Automata can have 0, 1 or more transitions for a single state/symbol pair
- Example: $L=\{w \in\{a, b\}: w$ starts with $a\}$
- Regular expression?

04-1: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ starts with $a\}$
- $a(a+b)^{*}$

04-2: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ starts with $a\}$
- $a(a+b)^{*}$

- What happens if a 'b' is seen in state q_{0} ?
- The machine "crashes", and does not accept the string

04-3: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ contains the substring $a a\}$
- Regular Expression?

04-4: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ contains the substring $a a\}$
- $(a+b) * a a(a+b) *$

- What happens if a a is seen in state q_{0} ?

04-5: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ contains the substring $a a\}$
- $(a+b) * a(a+b) *$

- What happens if a a is seen in state q_{0} ?
- Stay in state q_{0}, or go on to state q_{1}
- Multiple Computational Paths (board example)

04-6: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ contains the substring $a a\}$

- Does this machine accept abaa?

04-7: NFA Acceptance

- If there is any computational path that accepts a string, then the machine accepts the string
- Two ways to think about NFAs:
- Magic "Oracle", which always picks the correct path to take
- Try all possible paths

04-8: NFA Example

- Example: $L=\{w \in\{a, b\}: w$ contains the substring $a a\}$

- If a string contains $a a$, will there be a computational path that accepts it?
- If a string does not contain $a a$, will there be a computational path that accepts it?

04-9: NFA Definition

- Difference between a DFA and an NFA
- DFA has exactly only transition for each state/symbol pair
- $\delta:(K \times \Sigma) \mapsto K$
- NFA has 0,1 or more transitions for each state/symbol pair

04-10: NFA Definition

- Difference between a DFA and an NFA
- DFA has exactly only transition for each state/symbol pair
- Transition function: $\delta:(K \times \Sigma) \mapsto K$
- NFA has 0,1 or more transitions for each state/symbol pair
- Transition relation: $\Delta \subseteq((K \times \Sigma) \times K)$

04-11: NFA Definition

- A NFA is a 5-tuple $M=(K, \Sigma, \Delta, s, F)$
- K Set of states
- Σ Alphabet
- $\Delta:(K \times \Sigma) \times K$ is a Transition relation
- $s \in K$ Initial state
- $F \subseteq K$ Final states

04-12: Fun with NFA
Create an NFA for:

- All strings over $\{a, b\}$ that start with a and end with b

04-13: Fun with NFA

Create an NFA for:

- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that start with a and end with b

(example compuational paths for ababb, abba, bbab)
04-14: Fun with NFA
Create an NFA for:
- All strings over $\{0,1\}$ that contian 0110 or 1001

04-15: Fun with NFA

Create an NFA for:

- All strings over $\{0,1\}$ that contian 0110 or 1001

04-16: ϵ-Transitions

- ϵ transition consumes no input
- NFA (with ϵ transitions) for (ab)*(aab)*

04-17: ϵ-Transitions

Create an NFA (with ϵ-transitions) for:

- All strings over $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ that are missing at least one letter. For example, aabba, cbbc, ccacc $\in L$, while abbc $\notin L$

04-18: ϵ-Transitions

Create an NFA (with ϵ-transitions) for:

- All strings over $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ that are missing at least one letter. For example, aabba, cbbc, ccacc $\in L$, while abbc $\notin L$

abcb, bbab, abbab, abc 04-19: Yet More Formalism
- ϵ-closure
- ϵ-closure $(q)=$ set of all states that can be reached following zero or more ϵ-transitions from state q. 04-20: ϵ-closure
- ϵ-closure examples

(quick review: What is $\mathrm{L}[\mathrm{M}]$?)
04-21: ϵ-closure
- ϵ-closure examples

$\mathrm{L}[\mathrm{M}]=\{\mathrm{a}, \mathrm{aa}, \mathrm{ba}, \mathrm{ca}, \mathrm{aba}\}$
04-22: ϵ-closure
- ϵ-closure examples

- ϵ-closure $\left(q_{0}\right)=$
- ϵ-closure $\left(q_{3}\right)=$
- ϵ-closure $\left(q_{2}\right)=$
- ϵ - $\operatorname{closure}\left(q_{5}\right)=$

04-23: ϵ-closure

- ϵ-closure examples

- ϵ - $\operatorname{closure}\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{4}, q_{5}\right\}$
- ϵ-closure $\left(q_{3}\right)=\left\{q_{3}, q_{4}, q_{5}\right\}$
- ϵ-closure $\left(q_{2}\right)=\left\{q_{2}, q_{6}\right\}$
- ϵ-closure $\left(q_{5}\right)=\left\{q_{5}\right\}$

04-24: ϵ-closure - Sets

- ϵ-closure
- ϵ-closure $(q)=$ set of all states that can be reached following zero or more ϵ-transitions from state q.
- Can extend ϵ-closure to a set of states
- ϵ-closure $(S)=\bigcup\{A: q \in S \wedge \epsilon$-closure $(q)=A\}$

04-25: NFA Definition (revised)

- A NFA is a 5-tuple $M=(K, \Sigma, \Delta, s, F)$
- K Set of states
- Σ Alphabet
- $\Delta:(K \times(\Sigma \cup\{\epsilon\})) \times K$ is a Transition relation
- $s \in K$ Initial state
- $F \subseteq K$ Final states

04-26: $\mathbf{N F A} \vdash_{M}$

- Binary relation \vdash_{M} : What machine M yields in one step
- $\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right) \times\left(K \times \Sigma^{*}\right)$
- $\vdash_{M}=\left\{\left(\left(q_{1}, a w\right),\left(q_{2}, w\right)\right): q_{1}, q_{2} \in K_{M}, w \in \Sigma_{M}^{*}, a \in \Sigma_{M} \cup\{\epsilon\},\left(\left(q_{1}, a\right), q_{2}\right) \in \Delta_{M}\right\}$
- Binary relation \vdash_{M}^{*} : Transitive, reflexive closure of \vdash_{M}

04-27: NFA Languages

- $L[M]$ - Language defined by NFA M
- $L[M]=\left\{w:\left(s_{M}, w\right) \vdash_{M}^{*}(f, \epsilon)\right.$ for some $\left.f \in F_{M} *\right\}$
- $L_{N F A}=\{L: \exists N F A \quad M, L[M]=L\}$

04-28: NFA Examples

- Create an NFA for the language
- Give an NFA for the language $L=$ All strings over $\{0,1\}$ that contain two pairs of adjacent 0 's separated by an even number of symbols. So, 0100110011,01100101100101 , and 01001000 are in the language, but 0100100,1011001 , and 0111011 are not in the language.

04-29: NFA Examples

- Create an NFA for the language
- Give an NFA for the language $L=$ All strings over $\{0,1\}$ that contain two pairs of adjacent 0 's separated by an even number of symbols. So, 0100110011,01100101100101 , and 01001000 are in the language, but 0100100,1011001 , and 0111011 are not in the language.

04-30: NFA Examples

- Create an NFA for the language
- $L=$ All strings over $\{\mathrm{a}, \mathrm{b}\}$ that have an a as one of the last 3 charaters in the string. So, a, baab, bbbab, aabbaaabb $\in L$, but bb, baabbb, bbabbbbb $\notin L$

04-31: NFA Examples

- Create an NFA for the language
- $L=$ All strings over $\{\mathrm{a}, \mathrm{b}\}$ that have an a as one of the last 3 charaters in the string. So, a, baab, bbbab, aabbaaabb $\in L$, but bb, baabbb, bbabbbbb $\notin L$

