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07-0: Fun with Finite Automata

Create a Finite Automata (DFA or NFA) for the
language:

L = {0n1n : n > 0}

{01, 0011, 000111, 00001111, . . . }



07-1: Fun with Finite Automata

L = {0n1n : n > 0} is not regular!

Why?

Need to keep track of how many 0’s there are,
and match 1’s

Only way to store information in DFA is through
what state the machine is in

Finite number of states (DFA)

Unbounded number of 0’s before the 1’s



07-2: Non-Regular Languages

If a DFA M has k states, and a string w accepted
by M has n characters, n > k, computation must
include a loop

...
...

Pigeonhole Principle:

More transitions than states

Some transition must enter the same state
twice



07-3: Non-Regular Languages

...
...

x
z

y

Break string into w = xyz

If w = xyz is accepted, then w′ = xyyz will also be
accepted

If w = xyz is accepted, then w′ = xyyyz will also
be accepted

If w = xyz is accepted, then w′ = xz will also be
accepted



07-4: Pumping Lemma

If a language L is regular, then:

∃n ≥ 1 such that any string w ∈ L with |w| ≥ n
can be rewritten as w = xyz such that
y 6= ǫ
|xy| < n

xyiz ∈ L for all i ≥ 0



07-5: Using the Pumping Lemma

Assume L is regular

Let n be the constant of the pumping lemma

Create a string w such that |w| > n

Show that for every legal decomposition of
w = xyz such that:

|xy| < n

y 6= ǫ

There is an i such that xyiz 6∈ L

Conclude that L must not be regular



07-6: Using the Pumping Lemma

Assume L is regular

Let n be the constant of the pumping lemma

Create a string w such that |w| > n

Show that for every legal decomposition of
w = xyz such that:

|xy| < n

y 6= ǫ

There is an i such that xyiz 6∈ L

Conclude that L must not be regular

L = {0n1n : n > 0}



07-7: Using the Pumping Lemma

L = {0n1n : n > 0}

Let n be the constant of the pumping lemma

Consider the string w = 0n1n

If we break w = xyz such that |xy| < n, |y| > 0,
then x and y must be all 0’s

x = 0j, y = 0k, z = 0n−k−j1n

Consider w′ = xy2z = 0n+k1n for some
0 < k < n
w′ 6∈ L

L is not regular (by the pumping lemma)



07-8: Using the Pumping Lemma

Assume L is regular

Let n be the constant of the pumping lemma

Create a string w such that |w| > n

Show that for every legal decomposition of
w = xyz such that:

|xy| < n

y 6= ǫ

There is an i such that xyiz 6∈ L

Conclude that L must not be regular

L = {ww : w ∈ (a+ b)∗}



07-9: Using the Pumping Lemma

L = {ww : w ∈ (a+ b)∗}

Let n be the constant of the pumping lemma

Consider w = anbanb ∈ L

If we break w = xyz such that |xy| < n, |y| > 0,
then x and y must be all a’s

x = aj, y = ak, z = an−k−jban

Consider w′ = xy2z = an+kbanb. As long as k > 0,
the first half of w′ contains all a’s, while the second
half contains two b’s. Thus w′ is not of the form
ww, and is not in L. Hence, L is not regular by the
pumping lemma.



07-10: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is

wrong.

you Language L is not regular!

adv Yes it is! I have a DFA to prove it!

you Oh really? How many states are in your DFA?

adv n

you OK, here’s a string w ∈ L with |w| > n. Your machine must accept w – but since

|w| > n, there must be a loop in your computation. Where’s the loop?

adv Right here! (breaks w into xyz, where y is the part of the string that goes through the

loop)

you Ah hah! If we go through the loop 2 times instead of 1, we get a string not in L that

your machine will accept!

adv Drat!



07-11: Using the Pumping Lemma

You have an adversary who thinks L is regular. You
need to prove that your adversary is wrong.

Your adversary picks an n

You pick a w ∈ L (such that |w| > n)

Your adversary breaks w into xyz (subject to
|xy| < n, |y| > 0)

You pick an i such that xyiz 6∈ L



07-12: Using the Pumping Lemma

You have an adversary who thinks L is regular. You
need to prove that your adversary is wrong.

Your adversary picks an n

You pick a w ∈ L (such that |w| > n)

Your adversary breaks w into xyz (subject to
|xy| < n, |y| > 0)

You pick an i such that xyiz 6∈ L

You don’t really have an adversary, so you need to
show that for any n, you can create a string w, and for
any way that w can be broken into xyz, there is an i
such that xyiz 6∈ L



07-13: Using the Pumping Lemma

Assume L is regular

Let n be the constant of the pumping lemma

Create a string w such that |w| > n

Show that for every legal decomposition of
w = xyz such that:

|xy| < n

y 6= ǫ

There is an i such that xyiz 6∈ L

Conclude that L must not be regular

L = {w : w ∈ (a∗b∗) ∧ w contains more a’s than b’s }



07-14: Using the Pumping Lemma

L = {w : w ∈ (a∗b∗) ∧ w contains more a’s than b’s }

Let n be the constant of the pumping lemma

Consider w = anbn−1 ∈ L

If we break w = xyz such that |xy| < n, |y| > 0,
then x and y must be all a’s

x = aj, y = ak, z = an−k−jbn−1

Consider w′ = xy0z = an−kbn−1. As long as k > 0,
w′ has at least as many b’s as a’s, and is not in L.
Hence, L is not regular, by the pumping lemma.



07-15: Using the Pumping Lemma

Assume L is regular

Let n be the constant of the pumping lemma

Create a string w such that |w| > n

Show that for every legal decomposition of
w = xyz such that:

|xy| < n

y 6= ǫ

There is an i such that xyiz 6∈ L

Conclude that L must not be regular

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s

and an odd number of b’s }



07-16: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s

and an odd number of b’s }

Let n be the constant of the pumping lemma

Consider w = a2nb ∈ L

If we break w = xyz such that |xy| < n, |y| > 0,
then x and y must be all a’s

x = aj, y = ak, z = a2n−k−jb

As long as k is even, w′ = xyiz ∈ L for all i

Remember, we don’t get to choose how the string is broken

into xyz – need to show that for any way the string can be

broken into xyz, there exists an i such that xyiz 6∈ L



07-17: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s

and an odd number of b’s }

We failed to prove L is not regular. Does that mean
that L must be regular?



07-18: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s

and an odd number of b’s }

We failed to prove L is not regular. Does that mean
that L must be regular?

No! We may not have chosen a clever enough
w

Similarly, failing to create an NFA for a
language does not prove that it is not regular.

How can we prove that L is regular?



07-19: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s

and an odd number of b’s }

We failed to prove L is not regular. Does that mean
that L must be regular?

No! We may not have chosen a clever enough
w

Similarly, failing to create an NFA for a
language does not prove that it is not regular.

How can we prove that L is regular?

Create a regular expression, DFA, or NFA that
describes L



07-20: Closure Properties

Since some languages are regular, and some are not,
we can consider closure properties of regular
languages

Is LREG closed under union?

Is LREG closed under complementation?

Is LREG closed under intersection?



07-21: Closure Properties

Is LREG closed under union?



07-22: Closure Properties

Is LREG closed under union?

L1 = L[r1], L2 = L[r2]

L1 ∪ L2 = L[(r1 + r2)]



07-23: Closure Properties

Is LREG closed under complementation?

Given any DFA M = (K,Σ, δ, s, F ), create

M ′ = (K ′,Σ′, δ′, s′, F ′) such that L[M ′] = L[M ]



07-24: Closure Properties

Is LREG closed under complementation?

Given any DFA M = (K,Σ, δ, s, F ), create

M ′ = (K ′,Σ′, δ′, s′, F ′) such that L[M ′] = L[M ]

K ′ = K

Σ′ = Σ

δ′ = δ

s′ = s

F ′ = K − F



07-25: Closure Properties

Is LREG closed under intersection?



07-26: Closure Properties

Is LREG closed under intersection?

A ∪B = A ∩ B

(diagram on board)

We can also use a direct construction

L1 = all strings over {a, b} that begin with aa

L2 = all strings over {a, b} that end with aa

Construct L1 ∩ L2



07-27: Closure Properties

Given DFA M1 = (K1,Σ1, δ1, s1, F1) and DFA

M2 = (K2,Σ2, δ2, s2, F2), create DFA M such that

L[M ] = L[M1] ∩ L[M2]



07-28: Closure Properties

Given M1 = (K1,Σ1, δ1, s1, F1) and

M2 = (K2,Σ2, δ2, s2, F2), create M such that

L[M ] = L[M1] ∩ L[M2]

K = K1 ×K2

Σ = Σ1 = Σ2

δ = {(((q1, q2), a), (q
′

1, q
′

2)) : ((q1, a), q
′

1) ∈
δ1, ((q2, a), q

′

2) ∈ δ2}

s = (s1, s2)

F = {(f1, f2) : f1 ∈ F1, f2 ∈ F2}



07-29: State Minimization

Possible to have several different DFA that all
accept the same language

Redundant states – duplicate the effort of other
states



07-30: State Minimization

b

3 4

b

a,b
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What is L[M ]?



07-31: State Minimization
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07-32: State Minimization

3 4

a,b

7

a

a

1

2

0

a

a

b

a

b
5 6

a

a

b

b b

b

b



07-33: State Minimization

Two states q1 and q2 are equivalent if:

Every string that drives q1 to an accept state
also drives q2 to an accept state

Every string that drives q2 to an accept state
also drives q1 to an accept state



07-34: State Minimization

Two states q1 and q2 of DFA M are equivalent if:

∀w ∈ Σ∗, ((q1, w) 7→
∗

M (f1, ǫ)∧
(q2, w) 7→

∗

M (f2, ǫ) ∧f1 ∈ FM) ⇒ f2 ∈ FM



07-35: State Minimization

Two states q1 and q2 are equivalent with respect to
a string w if and only if

((q1, w) 7→
∗

M (f1, ǫ)∧
(q2, w) 7→

∗

M (f2, ǫ) ∧f1 ∈ FM) ⇒ f2 ∈ FM

and
((q1, w) 7→

∗

M (q3, ǫ)∧
(q2, w) 7→

∗

M (q4, ǫ) ∧q3 6∈ FM) ⇒ q4 6∈ FM

Two states q1 and q2 are equivalent if they are
equivalent with respect to all strings w ∈ Σ∗



07-36: State Minimization

How do we determine if two states q1 and q2 are
equivalent?

Check to see if they are equivalent with respect
to strings of length 0



07-37: State Minimization

How do we determine if two states q1 and q2 are
equivalent?

Check to see if they are equivalent with respect
to strings of length 0

Check to see if they are equivalent with respect
to strings of length 1



07-38: State Minimization

How do we determine if two states q1 and q2 are
equivalent?

Check to see if they are equivalent with respect
to strings of length 0

Check to see if they are equivalent with respect
to strings of length 1

Check to see if they are equivalent with respect
to strings of length 2
.. and so on



07-39: State Minimization

When are q1 and q2 equivalent with respect to all
strings of length 0?



07-40: State Minimization

When are q1 and q2 equivalent with respect to all
strings of length 0?

Both q1 and q2 are accept states, or neither q1 nor
q2 are accept states



07-41: State Minimization

Two states q1 and q2 are equivalent with respect to
all strings of length n if ..

Hint: Think inductively



07-42: State Minimization

Two states q1 and q2 are equivalent with respect to
all strings of length n if ..

Hint: Think inductively

Hint 2: If we knew which states were equivalent
with respect to all strings of length n− 1 ...



07-43: State Minimization

Two states q1 and q2 are equivalent with respect to
all strings of length n if, for all a ∈ Σ

((q1, a), q3) ∈ δ [δ(q1, a) = q3]

((q2, a), q4) ∈ δ [δ(q2, a) = q4]

q3 and q4 are equivalent with respect to all
strings of length n− 1



07-44: State Minimization

Equivalence matrix E(i):

E(i)[i, j] = 1 iff qi and qj are equivalent with

respect to all strings of length ≤ i

Only need to calculate upper triangle of matrix
(why?)

E(∗)[i, j] = 1 iff q1 and qj are equivalent with

respect to all strings (that is, if q1 and qj are

equivalent)



07-45: State Minimization

E(0):

E(0)[i, j] = ...



07-46: State Minimization

E(0):

E(0)[i, j] = 1 if qi and qj are both accept states,
or both non-accept states

E(0)[i, j] = 0 if qi is an accept state, and qj is
not an accept state

E(0)[i, j] = 0 if qi is not an accept state, and qj
is an accept state



07-47: State Minimization

E(n)[i, j] = 1 if, for all a ∈ Σ

((qi, a), qk) ∈ δ [δ(qi, a) = qk]

((qj, a), ql) ∈ δ [δ(qj, a) = ql]

E(n−1)[qk, ql] = 1



07-48: State Minimization

Creating E(∗):

First, create E(0)

for i = 0 to n
for j = (i+ 1) to n

if (qi ∈ F ∧ qj ∈ F ) ∨ (qi 6∈ F ∧ qj 6∈ F )
E[i, j] = 1

else
E[i, j] = 0



07-49: State Minimization

Repeat:
for i = 0 to n

for j = (i+ 1) to n
for each a ∈ Σ

k = δ(i, a)
l = δ(j, a)
if E[k, l] == 0

set E[i, j] = 0

Until no changes are made



07-50: State Minimization

Given any DFA M , we can create an equivalent
DFA with the minimum number of states as follows:

Calculate E(∗), to find equivalent states

While there is a pair qi, qj of equivalent states in

M
Change all transitions into qj to transitions to
qi
Remove qj and all transitions out of qj

Finally do a DFS form the initial state, and
remove all states not reachable from the initial
state



07-51: State Minimization Example
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07-52: State Minimization Example

0 1 2 3 4 5 6

0 0 1 1 0 1 1

1 0 0 1 0 0
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4 0 0
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07-53: State Minimization Example

0 1 2 3 4 5 6

0 0 0 1 0 0 0

1 0 0 1 0 0
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4 0 0
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07-54: State Minimization Example

0 1 2 3 4 5 6

0 0 0 1 0 0 0

1 0 0 1 0 0

2 0 0 1 0

3 0 0 0

4 0 0
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07-55: State Minimization Example
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07-56: State Minimization Example

0 1 2
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07-57: State Minimization Example

0 1 2
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b a
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