## Automata Theory CS411-2015S-07

# Non-Regular Languages <br> Closure Properties of Regular Languages DFA State Minimization 

David Galles

Department of Computer Science
University of San Francisco

## 07-0: Fun with Finite Automata

- Create a Finite Automata (DFA or NFA) for the language:
- $L=\left\{0^{n} 1^{n}: n>0\right\}$
- $\{01,0011,000111,00001111, \ldots\}$


## 07-1: Fun with Finite Automata

- $L=\left\{0^{n} 1^{n}: n>0\right\}$ is not regular!
- Why?
- Need to keep track of how many 0's there are, and match 1's
- Only way to store information in DFA is through what state the machine is in
- Finite number of states (DFA)
- Unbounded number of 0's before the 1's


## 07-2: Non-Regular Languages

- If a DFA $M$ has $k$ states, and a string $w$ accepted by $M$ has $n$ characters, $n>k$, computation must include a loop

- Pigeonhole Principle:
- More transitions than states
- Some transition must enter the same state twice


## 07-3: Non-Regular Languages



- Break string into $w=x y z$
- If $w=x y z$ is accepted, then $w^{\prime}=x y y z$ will also be accepted
- If $w=x y z$ is accepted, then $w^{\prime}=x y y y z$ will also be accepted
- If $w=x y z$ is accepted, then $w^{\prime}=x z$ will also be accepted


## 07-4: Pumping Lemma

- If a language $L$ is regular, then:
- $\exists n \geq 1$ such that any string $w \in L$ with $|w| \geq n$ can be rewritten as $w=x y z$ such that
- $y \neq \epsilon$
- $|x y|<n$
- $x y^{i} z \in L$ for all $i \geq 0$


## 07-5: Using the Pumping Lemma

- Assume $L$ is regular
- Let $n$ be the constant of the pumping lemma
- Create a string $w$ such that $|w|>n$
- Show that for every legal decomposition of $w=x y z$ such that:
- $|x y|<n$
- $y \neq \epsilon$

There is an $i$ such that $x y^{i} z \notin L$

- Conclude that $L$ must not be regular


## 07-6: Using the Pumping Lemma

- Assume $L$ is regular
- Let $n$ be the constant of the pumping lemma
- Create a string $w$ such that $|w|>n$
- Show that for every legal decomposition of $w=x y z$ such that:
- $|x y|<n$
- $y \neq \epsilon$

There is an $i$ such that $x y^{i} z \notin L$

- Conclude that $L$ must not be regular
$L=\left\{0^{n} 1^{n}: n>0\right\}$


## 07-7: Using the Pumping Lemma

$$
L=\left\{0^{n} 1^{n}: n>0\right\}
$$

- Let $n$ be the constant of the pumping lemma
- Consider the string $w=0^{n} 1^{n}$
- If we break $w=x y z$ such that $|x y|<n,|y|>0$, then $x$ and $y$ must be all 0's
- $x=0^{j}, y=0^{k}, z=0^{n-k-j} 1^{n}$
- Consider $w^{\prime}=x y^{2} z=0^{n+k} 1^{n}$ for some $0<k<n$
- $w^{\prime} \notin L$
- $L$ is not regular (by the pumping lemma)


## 07-8: Using the Pumping Lemma

- Assume $L$ is regular
- Let $n$ be the constant of the pumping lemma
- Create a string $w$ such that $|w|>n$
- Show that for every legal decomposition of $w=x y z$ such that:
- $|x y|<n$
- $y \neq \epsilon$

There is an $i$ such that $x y^{i} z \notin L$

- Conclude that $L$ must not be regular

$$
L=\left\{w w: w \in(a+b)^{*}\right\}
$$

## 07-9: Using the Pumping Lemma

$$
L=\left\{w w: w \in(a+b)^{*}\right\}
$$

- Let $n$ be the constant of the pumping lemma
- Consider $w=a^{n} b a^{n} b \in L$
- If we break $w=x y z$ such that $|x y|<n,|y|>0$, then $x$ and $y$ must be all $a$ 's

$$
\text { - } x=a^{j}, y=a^{k}, z=a^{n-k-j} b a^{n}
$$

- Consider $w^{\prime}=x y^{2} z=a^{n+k} b a^{n} b$. As long as $k>0$, the first half of $w^{\prime}$ contains all $a^{\prime}$ 's, while the second half contains two $b$ 's. Thus $w^{\prime}$ is not of the form $w w$, and is not in $L$. Hence, $L$ is not regular by the pumping lemma.


## 07-10: Using the Pumping Lemma

You have an adversary who thinks $L$ is regular. You need to prove that your adversary is wrong.
you Language $L$ is not regular!
adv Yes it is! I have a DFA to prove it!
you Oh really? How many states are in your DFA?
adv $n$
you OK, here's a string $w \in L$ with $|w|>n$. Your machine must accept $w$ - but since $|w|>n$, there must be a loop in your computation. Where's the loop?
adv Right here! (breaks $w$ into $x y z$, where $y$ is the part of the string that goes through the loop)
you Ah hah! If we go through the loop 2 times instead of 1 , we get a string not in $L$ that your machine will accept!
adv Drat!

## 07-11: Using the Pumping Lemma

You have an adversary who thinks $L$ is regular. You need to prove that your adversary is wrong.

- Your adversary picks an $n$
- You pick a $w \in L$ (such that $|w|>n$ )
- Your adversary breaks $w$ into $x y z$ (subject to $|x y|<n,|y|>0$ )
- You pick an $i$ such that $x y^{i} z \notin L$


## 07-12: Using the Pumping Lemma

You have an adversary who thinks $L$ is regular. You need to prove that your adversary is wrong.

- Your adversary picks an $n$
- You pick a $w \in L$ (such that $|w|>n$ )
- Your adversary breaks $w$ into $x y z$ (subject to $|x y|<n,|y|>0$ )
- You pick an $i$ such that $x y^{i} z \notin L$

You don't really have an adversary, so you need to show that for any $n$, you can create a string $w$, and for any way that $w$ can be broken into $x y z$, there is an $i$ such that $x y^{i} z \notin L$

## 07-13: Using the Pumping Lemma

- Assume $L$ is regular
- Let $n$ be the constant of the pumping lemma
- Create a string $w$ such that $|w|>n$
- Show that for every legal decomposition of $w=x y z$ such that:
- $|x y|<n$
- $y \neq \epsilon$

There is an $i$ such that $x y^{i} z \notin L$

- Conclude that $L$ must not be regular
$L=\left\{w: w \in\left(a^{*} b^{*}\right) \wedge w\right.$ contains more $a$ 's than $b$ 's $\}$


## 07-14: Using the Pumping Lemma

## $L=\left\{w: w \in\left(a^{*} b^{*}\right) \wedge w\right.$ contains more $a$ 's than $b$ 's $\}$

- Let $n$ be the constant of the pumping lemma
- Consider $w=a^{n} b^{n-1} \in L$
- If we break $w=x y z$ such that $|x y|<n,|y|>0$, then $x$ and $y$ must be all $a$ 's

$$
\text { - } x=a^{j}, y=a^{k}, z=a^{n-k-j} b^{n-1}
$$

- Consider $w^{\prime}=x y^{0} z=a^{n-k} b^{n-1}$. As long as $k>0$, $w^{\prime}$ has at least as many $b$ 's as $a$ 's, and is not in $L$. Hence, $L$ is not regular, by the pumping lemma.


## 07-15: Using the Pumping Lemma

- Assume $L$ is regular
- Let $n$ be the constant of the pumping lemma
- Create a string $w$ such that $|w|>n$
- Show that for every legal decomposition of $w=x y z$ such that:
- $|x y|<n$
- $y \neq \epsilon$

There is an $i$ such that $x y^{i} z \notin L$

- Conclude that $L$ must not be regular
$L=\left\{w: w \in(a+b)^{*} \wedge w\right.$ has an even number of $a$ 's and an odd number of $b$ 's \}


## 07-16: Using the Pumping Lemma

$L=\left\{w: w \in(a+b)^{*} \wedge w\right.$ has an even number of $a$ 's and an odd number of $b$ 's $\}$

- Let $n$ be the constant of the pumping lemma
- Consider $w=a^{2 n} b \in L$
- If we break $w=x y z$ such that $|x y|<n,|y|>0$, then $x$ and $y$ must be all $a$ 's

$$
\text { - } x=a^{j}, y=a^{k}, z=a^{2 n-k-j} b
$$

- As long as k is even, $w^{\prime}=x y^{i} z \in L$ for all $i$

Remember, we don't get to choose how the string is broken into $x y z$ - need to show that for any way the string can be broken into $x y z$, there exists an $i$ such that $x y^{i} z \notin L$

## 07-17: Using the Pumping Lemma

$L=\left\{w: w \in(a+b)^{*} \wedge w\right.$ has an even number of $a$ 's and an odd number of $b$ 's $\}$

- We failed to prove $L$ is not regular. Does that mean that $L$ must be regular?


## 07-18: Using the Pumping Lemma

$L=\left\{w: w \in(a+b)^{*} \wedge w\right.$ has an even number of $a$ 's and an odd number of $b$ 's $\}$

- We failed to prove $L$ is not regular. Does that mean that $L$ must be regular?
- No! We may not have chosen a clever enough w
- Similarly, failing to create an NFA for a language does not prove that it is not regular.
- How can we prove that $L$ is regular?


## 07-19: Using the Pumping Lemma

$L=\left\{w: w \in(a+b)^{*} \wedge w\right.$ has an even number of $a$ 's and an odd number of $b$ 's $\}$

- We failed to prove $L$ is not regular. Does that mean that $L$ must be regular?
- No! We may not have chosen a clever enough w
- Similarly, failing to create an NFA for a language does not prove that it is not regular.
- How can we prove that $L$ is regular?
- Create a regular expression, DFA, or NFA that describes $L$


## 07-20: Closure Properties

Since some languages are regular, and some are not, we can consider closure properties of regular languages

- Is $L_{R E G}$ closed under union?
- Is $L_{R E G}$ closed under complementation?
- Is $L_{R E G}$ closed under intersection?


## 07-21: Closure Properties

- Is $L_{R E G}$ closed under union?


## 07-22: Closure Properties

- Is $L_{R E G}$ closed under union?

$$
\begin{aligned}
& L_{1}=L\left[r_{1}\right], L_{2}=L\left[r_{2}\right] \\
& L_{1} \cup L_{2}=L\left[\left(r_{1}+r_{2}\right)\right]
\end{aligned}
$$

## 07-23: Closure Properties

- Is $L_{R E G}$ closed under complementation?

Given any DFA $M=(K, \Sigma, \delta, s, F)$, create $M^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ such that $L\left[M^{\prime}\right]=\overline{L[M]}$

## 07-24: Closure Properties

- Is $L_{R E G}$ closed under complementation?

Given any DFA $M=(K, \Sigma, \delta, s, F)$, create $M^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ such that $L\left[M^{\prime}\right]=\overline{L[M]}$

- $K^{\prime}=K$
- $\Sigma^{\prime}=\Sigma$
- $\delta^{\prime}=\delta$
- $s^{\prime}=s$
- $F^{\prime}=K-F$


## 07-25: Closure Properties

- Is $L_{R E G}$ closed under intersection?


## 07-26: Closure Properties

- Is $L_{R E G}$ closed under intersection?
- $\overline{\bar{A} \cup \bar{B}}=A \cap B$
- (diagram on board)
- We can also use a direct construction
- $L_{1}=$ all strings over $\{a, b\}$ that begin with $a a$
- $L_{2}=$ all strings over $\{a, b\}$ that end with $a a$
- Construct $L_{1} \cap L_{2}$


## 07-27: Closure Properties

Given DFA $M_{1}=\left(K_{1}, \Sigma_{1}, \delta_{1}, s_{1}, F_{1}\right)$ and DFA $M_{2}=\left(K_{2}, \Sigma_{2}, \delta_{2}, s_{2}, F_{2}\right)$, create DFA $M$ such that $L[M]=L\left[M_{1}\right] \cap L\left[M_{2}\right]$

## 07-28: Closure Properties

Given $M_{1}=\left(K_{1}, \Sigma_{1}, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(K_{2}, \Sigma_{2}, \delta_{2}, s_{2}, F_{2}\right)$, create $M$ such that $L[M]=L\left[M_{1}\right] \cap L\left[M_{2}\right]$

- $K=K_{1} \times K_{2}$
- $\Sigma=\Sigma_{1}=\Sigma_{2}$
- $\delta=\left\{\left(\left(\left(q_{1}, q_{2}\right), a\right),\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right):\left(\left(q_{1}, a\right), q_{1}^{\prime}\right) \in\right.$ $\left.\delta_{1},\left(\left(q_{2}, a\right), q_{2}^{\prime}\right) \in \delta_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $F=\left\{\left(f_{1}, f_{2}\right): f_{1} \in F_{1}, f_{2} \in F_{2}\right\}$


## 07-29: State Minimization

- Possible to have several different DFA that all accept the same language
- Redundant states - duplicate the effort of other states


## 07-30: State Minimization



## 07-31: State Minimization



## 07-32: State Minimization



## 07-33: State Minimization

- Two states $q_{1}$ and $q_{2}$ are equivalent if:
- Every string that drives $q_{1}$ to an accept state also drives $q_{2}$ to an accept state
- Every string that drives $q_{2}$ to an accept state also drives $q_{1}$ to an accept state


## 07-34: State Minimization

- Two states $q_{1}$ and $q_{2}$ of DFA $M$ are equivalent if:
- $\forall w \in \Sigma^{*},\left(\left(q_{1}, w\right) \mapsto_{M}^{*}\left(f_{1}, \epsilon\right) \wedge\right.$
$\left.\left(q_{2}, w\right) \mapsto_{M}^{*}\left(f_{2}, \epsilon\right) \wedge f_{1} \in F_{M}\right) \Rightarrow f_{2} \in F_{M}$


## 07-35: State Minimization

- Two states $q_{1}$ and $q_{2}$ are equivalent with respect to a string $w$ if and only if

$$
\begin{aligned}
& \left(\left(q_{1}, w\right) \mapsto_{M}^{*}\left(f_{1}, \epsilon\right) \wedge\right. \\
& \left.\left(q_{2}, w\right) \mapsto_{M}^{*}\left(f_{2}, \epsilon\right) \wedge f_{1} \in F_{M}\right) \Rightarrow f_{2} \in F_{M} \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(q_{1}, w\right) \mapsto_{M}^{*}\left(q_{3}, \epsilon\right) \wedge\right. \\
& \left.\left(q_{2}, w\right) \mapsto_{M}^{*}\left(q_{4}, \epsilon\right) \wedge q_{3} \notin F_{M}\right) \Rightarrow q_{4} \notin F_{M}
\end{aligned}
$$

- Two states $q_{1}$ and $q_{2}$ are equivalent if they are equivalent with respect to all strings $w \in \Sigma^{*}$


## 07-36: State Minimization

- How do we determine if two states $q_{1}$ and $q_{2}$ are equivalent?
- Check to see if they are equivalent with respect to strings of length 0


## 07-37: State Minimization

- How do we determine if two states $q_{1}$ and $q_{2}$ are equivalent?
- Check to see if they are equivalent with respect to strings of length 0
- Check to see if they are equivalent with respect to strings of length 1


## 07-38: State Minimization

- How do we determine if two states $q_{1}$ and $q_{2}$ are equivalent?
- Check to see if they are equivalent with respect to strings of length 0
- Check to see if they are equivalent with respect to strings of length 1
- Check to see if they are equivalent with respect to strings of length 2
.. and so on


## 07-39: State Minimization

- When are $q_{1}$ and $q_{2}$ equivalent with respect to all strings of length 0 ?


## 07-40: State Minimization

- When are $q_{1}$ and $q_{2}$ equivalent with respect to all strings of length 0 ?
- Both $q_{1}$ and $q_{2}$ are accept states, or neither $q_{1}$ nor $q_{2}$ are accept states


## 07-41: State Minimization

- Two states $q_{1}$ and $q_{2}$ are equivalent with respect to all strings of length $n$ if ..
- Hint: Think inductively


## 07-42: State Minimization

- Two states $q_{1}$ and $q_{2}$ are equivalent with respect to all strings of length $n$ if ..
- Hint: Think inductively
- Hint 2: If we knew which states were equivalent with respect to all strings of length $n-1$...


## 07-43: State Minimization

- Two states $q_{1}$ and $q_{2}$ are equivalent with respect to all strings of length $n$ if, for all $a \in \Sigma$
- $\left(\left(q_{1}, a\right), q_{3}\right) \in \delta$

$$
\left[\delta\left(q_{1}, a\right)=q_{3}\right]
$$

- $\left(\left(q_{2}, a\right), q_{4}\right) \in \delta$
$\left[\delta\left(q_{2}, a\right)=q_{4}\right]$
- $q_{3}$ and $q_{4}$ are equivalent with respect to all strings of length $n-1$


## 07-44: State Minimization

- Equivalence matrix $E^{(i)}$ :
- $E^{(i)}[i, j]=1$ iff $q_{i}$ and $q_{j}$ are equivalent with respect to all strings of length $\leq i$
- Only need to calculate upper triangle of matrix (why?)
- $E^{(*)}[i, j]=1$ iff $q_{1}$ and $q_{j}$ are equivalent with respect to all strings (that is, if $q_{1}$ and $q_{j}$ are equivalent)


## 07-45: State Minimization

- $E^{(0)}$ :
- $E^{(0)}[i, j]=\ldots$


## 07-46: State Minimization

- $E^{(0)}$ :
- $E^{(0)}[i, j]=1$ if $q_{i}$ and $q_{j}$ are both accept states, or both non-accept states
- $E^{(0)}[i, j]=0$ if $q_{i}$ is an accept state, and $q_{j}$ is not an accept state
- $E^{(0)}[i, j]=0$ if $q_{i}$ is not an accept state, and $q_{j}$ is an accept state


## 07-47: State Minimization

- $E^{(n)}[i, j]=1$ if, for all $a \in \Sigma$
- $\left(\left(q_{i}, a\right), q_{k}\right) \in \delta$
$\left[\delta\left(q_{i}, a\right)=q_{k}\right]$
- $\left(\left(q_{j}, a\right), q_{l}\right) \in \delta$
$\left[\delta\left(q_{j}, a\right)=q_{l}\right]$
- $E^{(n-1)}\left[q_{k}, q_{l}\right]=1$


## 07-48: State Minimization

- Creating $E^{(*)}$ :
- First, create $E^{(0)}$
for $i=0$ to n
for $j=(i+1)$ to $n$
if $\left(q_{i} \in F \wedge q_{j} \in F\right) \vee\left(q_{i} \notin F \wedge q_{j} \notin F\right)$

$$
E[i, j]=1
$$

else

$$
E[i, j]=0
$$

## 07-49: State Minimization

Repeat:
for $i=0$ to n for $j=(i+1)$ to $n$ for each $a \in \Sigma$

$$
\begin{aligned}
& k=\delta(i, a) \\
& l=\delta(j, a) \\
& \text { if } E[k, l]==0 \\
& \quad \text { set } E[i, j]=0
\end{aligned}
$$

Until no changes are made

## 07-50: State Minimization

- Given any DFA $M$, we can create an equivalent DFA with the minimum number of states as follows:
- Calculate $E^{(*)}$, to find equivalent states
- While there is a pair $q_{i}, q_{j}$ of equivalent states in M
- Change all transitions into $q_{j}$ to transitions to $q_{i}$
- Remove $q_{j}$ and all transitions out of $q_{j}$
- Finally do a DFS form the initial state, and remove all states not reachable from the initial state


## 07-51: State Minimization Example



## 07-52: State Minimization Example



## 07-53: State Minimization Example



## 07-54: State Minimization Example



## 07-55: State Minimization Example



## 07-56: State Minimization Example



## 07-57: State Minimization Example



