Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 1

07-0: Fun with Finite Automata

e Create a Finite Automata (DFA or NFA) for the language:
o L={0"1":n>0}
e {01,0011,000111,00001111,...}

07-1: Fun with Finite Automata
e L ={0"1":n > 0} is not regular!
o Why?

e Need to keep track of how many 0’s there are, and match 1’s
e Only way to store information in DFA is through what state the machine is in
e Finite number of states (DFA)

e Unbounded number of 0’s before the 1°s
07-2: Non-Regular Languages

e If a DFA M has k states, and a string w accepted by M has n characters, n > k, computation must include a
loop

e Pigeonhole Principle:

e More transitions than states

e Some transition must enter the same state twice

07-3: Non-Regular Languages

e Break string into w = zyz

e If w = xyz is accepted, then w’ = xyyz will also be accepted
e If w = xyz is accepted, then w’' = xyyyz will also be accepted
o If w = zyz is accepted, then w’ = xz will also be accepted

07-4: Pumping Lemma

e If a language L is regular, then:

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization

e Jn > 1 such that any string w € L with |w| > n can be rewritten as w = zyz such that

o yFfe
o |zy| <n
o zy'z € Lforalli >0

07-5: Using the Pumping Lemma
e Assume L is regular
e Let n be the constant of the pumping lemma
e Create a string w such that |w| > n
e Show that for every legal decomposition of w = zyz such that:
o |zyl <n
o yFe
There is an ¢ such that 23’z & L
e Conclude that L must not be regular
07-6: Using the Pumping Lemma
e Assume L is regular
e Let n be the constant of the pumping lemma
e Create a string w such that |w| > n
o Show that for every legal decomposition of w = zyz such that:

o |zyl <n
o yFe

There is an ¢ such that 23’z & L

Conclude that L must not be regular

L={0"1":n >0}
07-7: Using the Pumping Lemma
L={0"1":n >0}

Let n be the constant of the pumping lemma

Consider the string w = 01"

If we break w = xyz such that |zy| < n, [y| > 0,
then = and y must be all 0’s
o x =0/, y=0Fz=0""FJ1"
e Consider v’ = zy%z = 0"*t*1" forsome 0 < k < n
e w &L

L is not regular (by the pumping lemma)

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 3

07-8: Using the Pumping Lemma

e Assume L is regular

e Let n be the constant of the pumping lemma

e Create a string w such that |w| > n

e Show that for every legal decomposition of w = zyz such that:
o |zyl <n
cyFe

There is an i such that zy’z & L

e Conclude that L must not be regular

L ={ww:we (a+b)*} 07-9: Using the Pumping Lemma
L={ww:we (a+b)*}

e Let n be the constant of the pumping lemma
e Consider w = a™ba™b € L

o If we break w = xyz such that |zy| < n, [y| > 0,

then x and y must be all a’s
e =0l y= ak, 2 = a"FIpgn
e Consider v’ = :vaZ = a"t*ba™b. As long as k > 0, the first half of w’ contains all a’s, while the second half

contains two b’s. Thus w’ is not of the form ww, and is not in L. Hence, L is not regular by the pumping lemma.

07-10: Using the Pumping Lemma You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

you Language L is not regular!

adv Yesitis! I have a DFA to prove it!

you Oh really? How many states are in your DFA?

adv. n

you OK, here’s astringw € L with |[w| > m. Your machine must accept w — but since |w| > n, there must be a loop in your computation. Where’s the loop?
adv Righthere! (breaks w into &y z, where y is the part of the string that goes through the loop)

you Ah hah! If we go through the loop 2 times instead of 1, we get a string not in L that your machine will accept!

adv Drat!

07-11: Using the Pumping Lemma
You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

e Your adversary picks an n
e You pick aw € L (such that |w| > n)
e Your adversary breaks w into xyz (subject to |zy| < n,|y| > 0)

e You pick an i such that zy’z & L

07-12: Using the Pumping Lemma
You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 4

Your adversary picks an n

You pick aw € L (such that |w| > n)

Your adversary breaks w into zyz (subject to |xy| < n,|y| > 0)

You pick an i such that zy’z € L

You don’t really have an adversary, so you need to show that for any n, you can create a string w, and for any way
that w can be broken into zyz, there is an 4 such that xy'z & L
07-13: Using the Pumping Lemma

e Assume L is regular
e Let n be the constant of the pumping lemma
e Create a string w such that |w| > n
o Show that for every legal decomposition of w = zyz such that:
o |zyl <n
e yFe
There is an ¢ such that 23’z & L

e Conclude that L must not be regular

L ={w: w € (a*b*) A w contains more a’s than b’s }
07-14: Using the Pumping Lemma
L ={w:w € (a*b*) A w contains more a’s than b’s }

e Let n be the constant of the pumping lemma
e Considerw = a"b" ! € L

o If we break w = zyz such that [zy| < n,|y| > 0,
then x and y must be all a’s
e x=al,y=a" z=a"FIpn!

e Consider w’ = 2y°2 = a"~*b"~1. Aslong as k > 0, w’ has at least as many b’s as a’s, and is not in L. Hence,
L is not regular, by the pumping lemma.

07-15: Using the Pumping Lemma

e Assume L is regular

e Let n be the constant of the pumping lemma

e Create a string w such that |w| > n

e Show that for every legal decomposition of w = zyz such that:

o |zyl <n
o yFfe

There is an i such that zy'z & L

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 5

e Conclude that L must not be regular

L ={w:w € (a+b)* A whas an even number of ¢’s and an odd number of b’s }
07-16: Using the Pumping Lemma
L ={w:w € (a+ b)* A w has an even number of a’s and an odd number of b’s }

e Let n be the constant of the pumping lemma
e Considerw = a*"b € L

o If we break w = xyz such that |zy| < n, [y| > 0,
then x and y must be all a’s

k 2n—k—jb

ex=ad,y=a" z2=a
e Aslongaskis even, w = xy'z € L forall i

Remember, we don’t get to choose how the string is broken into xyz — need to show that for any way the string can be broken

into xyz, there exists an 4 such that zy‘z ¢ L
07-17: Using the Pumping Lemma
L ={w:w € (a+b)* A whas an even number of ¢’s and an odd number of b’s }

e We failed to prove L is not regular. Does that mean that L must be regular?

07-18: Using the Pumping Lemma
L ={w:w € (a+b)* A whas an even number of ¢’s and an odd number of b’s }

e We failed to prove L is not regular. Does that mean that L must be regular?

e No! We may not have chosen a clever enough w

e Similarly, failing to create an NFA for a language does not prove that it is not regular.
e How can we prove that L is regular?

07-19: Using the Pumping Lemma
L ={w:w € (a+b)* A whas an even number of ¢’s and an odd number of b’s }

e We failed to prove L is not regular. Does that mean that L must be regular?

e No! We may not have chosen a clever enough w

e Similarly, failing to create an NFA for a language does not prove that it is not regular.
e How can we prove that L is regular?

e Create a regular expression, DFA, or NFA that describes L

07-20: Closure Properties
Since some languages are regular, and some are not, we can consider closure properties of regular languages

e Is Lrga closed under union?
e Is Lrrq closed under complementation?

e Is Lrpc closed under intersection?

07-21: Closure Properties

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 6

e Is Lrgq closed under union?
07-22: Closure Properties

e Is Lrpq closed under union?

Ll = L[’I’l], L2 = L[TQ]
Ly U Ly = L[(r1 +72)]

07-23: Closure Properties

e Is Lrrq closed under complementation?

Given any DFA M = (K, X%, 0,5, F), create M' = (K', %/, 6', s', F') such that L[M'] = L[M]
07-24: Closure Properties

e Is Lrrq closed under complementation?

Given any DFA M = (K, X, 6, s, F), create M' = (K', %', ¢, ', F’) such that L[M'] = L[M]

e K'=K

e Y =X

e =9

e s'=3s

e F"=K—-F

07-25: Closure Properties
e Is Lrpc closed under intersection?
07-26: Closure Properties

e Is Lrpc closed under intersection?

e AUB=ANB

e (diagram on board)

e We can also use a direct construction

e [, = all strings over {a, b} that begin with aa
e Lo = all strings over {a, b} that end with aa

e Construct L1 N Lo

07-27: Closure Properties

Given DFA M, = (Kl, Y1, 01, 81, Fl) and DFA M, = (Kz, Yo, 02, 82, Fg), create DFA M such that L[M] =
LIMy] (N L[Mo)]
07-28: Closure Properties

Given Ml = (Kl, 21, 51, S1, Fl) and M2 = (KQ, 22, 52, S92, FQ), create M such that L[M] = L[Ml] n L[MQ]

Non-Regular Languages
Closure Properties of Regular Languages

CS411-2015S-07 DFA State Minimization
e K =K, x Ky
e Y=Y, =3,

o 0 ={(((q1,92),0), (@1, 42)) : ((q1,0), q1) € 61, ((g2, 0), @3) € J2}
e 5= (s1,82)
o F={(f1,f2): fLr € F1, f2 € 3}
07-29: State Minimization
e Possible to have several different DFA that all accept the same language
e Redundant states — duplicate the effort of other states

07-30: State Minimization

What is L[M]? 07-31: State Minimization

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization

07-32: State Minimization

07-33: State Minimization

e Two states ¢; and go are equivalent if:

e Every string that drives ¢; to an accept state also drives g2 to an accept state

e Every string that drives g5 to an accept state also drives g; to an accept state
07-34: State Minimization

e Two states ¢q; and g2 of DFA M are equivalent if:

* Vuw S E*? ((qlvw) }_)}FW (flve)/\
(q2,w) =3y (fo,) ANfL € Fy) = fa € Fiy

07-35: State Minimization

e Two states ¢q; and g are equivalent with respect to a string w if and only if

((q1, w) =3y (f1,0)A
(q2,w) =3y (fo,€) Afi € Fy) = fo € Fiy

and

(g1, w) =3 (g3, €)N
(q2,w) =73y (q4,€) ANg3 & Fr) = qa & Fur

e Two states ¢; and g2 are equivalent if they are equivalent with respect to all strings w € ¥*
07-36: State Minimization

e How do we determine if two states g; and g9 are equivalent?

o Check to see if they are equivalent with respect to strings of length 0

07-37: State Minimization

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization

e How do we determine if two states ¢; and g2 are equivalent?

e Check to see if they are equivalent with respect to strings of length 0

e Check to see if they are equivalent with respect to strings of length 1
07-38: State Minimization

e How do we determine if two states g; and g9 are equivalent?

o Check to see if they are equivalent with respect to strings of length 0
e Check to see if they are equivalent with respect to strings of length 1

e Check to see if they are equivalent with respect to strings of length 2
.. and so on

07-39: State Minimization
e When are ¢; and g2 equivalent with respect to all strings of length 0?
07-40: State Minimization
e When are ¢; and g2 equivalent with respect to all strings of length 0?7
e Both ¢; and ¢» are accept states, or neither g; nor g are accept states
07-41: State Minimization
e Two states ¢; and g» are equivalent with respect to all strings of length n if ..
e Hint: Think inductively
07-42: State Minimization

e Two states ¢; and g» are equivalent with respect to all strings of length n if ..

e Hint: Think inductively

e Hint 2: If we knew which states were equivalent with respect to all strings of lengthn — 1 ...
07-43: State Minimization

e Two states ¢; and gz are equivalent with respect to all strings of length n if, forall a € X

i ((QLG)aQS) €d [6(q11a) = CIS]
i ((QQv CL), Q4) €d [6(q25 a) = Q4]
e g3 and g4 are equivalent with respect to all strings of length n — 1

07-44: State Minimization

e Equivalence matrix F(9):

o E [¢, j] = 1iff ¢; and g; are equivalent with respect to all strings of length < i

e Only need to calculate upper triangle of matrix (why?)

e E™ [i, j] = 1iff ¢1 and g; are equivalent with respect to all strings (that is, if ¢; and ¢; are equivalent)

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization 10

07-45: State Minimization
o EO):

o EOi 4] =..

07-46: State Minimization
N OF

e EO [i, 7] = 1if ¢; and g; are both accept states, or both non-accept states
e EO [i, 7] = 0if ¢; is an accept state, and g; is not an accept state

e EO [, 7] = 0if ¢; is not an accept state, and g; is an accept state
07-47: State Minimization
e EM[i j] =1if, foralla € ©

e ((gi;a),qr) €0 [0(gi,a) = qx]
hd ((qjva)an) €0 [6(%7@) = Ql]
o E Vg, q] =1

07-48: State Minimization

e Creating E*):
e First, create E(©

fori=0ton
forj=(i+1)ton
if(€ FANg €F)V (e € FNg; € F)
Eli,jl=1
else
Eli,j]=0

07-49: State Minimization
Repeat:

fori =0ton
forj=(i+1)ton
foreacha € X

k=4(i,a)

l=4(j,a

if Elk,l]==0
set E[i,j] =0

Until no changes are made 07-50: State Minimization

e Given any DFA M, we can create an equivalent DFA with the minimum number of states as follows:

e Calculate E™), to find equivalent states

Non-Regular Languages
Closure Properties of Regular Languages
CS411-2015S-07 DFA State Minimization

11

e While there is a pair g;, g; of equivalent states in M

e Change all transitions into g; to transitions to g;
e Remove g; and all transitions out of g;

e Finally do a DFS form the initial state, and remove all states not reachable from the initial state

07-51: State Minimization Example

07-52: State Minimization Example

[« Neol Bl el SN

Of = = O =] n

6
1
0
1
1
0
1

w| Al = O

07-53: State Minimization Example

CS411-2015S-07

Non-Regular Languages
Closure Properties of Regular Languages
DFA State Minimization

12

07-54: State Minimization Example

07-55: State Minimization Example

ol1|23]4]5]6
0 0ojoj1]0l0]O
1 0]0]1]0]0
2 0]0[1]1
3 0]0]0
4 0]0
5 1

ol1|2|3]4]5]6
0 0ojoj1]0l0]O
1 0]0]1]0]0
2 0]0|1]0
3 0]0]0
4 0]0
5 0

CS411-2015S-07

Non-Regular Languages
Closure Properties of Regular Languages
DFA State Minimization

13

07-56: State Minimization Example

