
CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 1

07-0: Fun with Finite Automata

• Create a Finite Automata (DFA or NFA) for the language:

• L = {0n1n : n > 0}

• {01, 0011, 000111, 00001111, . . .}

07-1: Fun with Finite Automata

• L = {0n1n : n > 0} is not regular!

• Why?

• Need to keep track of how many 0’s there are, and match 1’s

• Only way to store information in DFA is through what state the machine is in

• Finite number of states (DFA)

• Unbounded number of 0’s before the 1’s

07-2: Non-Regular Languages

• If a DFA M has k states, and a string w accepted by M has n characters, n > k, computation must include a

loop

...
...

• Pigeonhole Principle:

• More transitions than states

• Some transition must enter the same state twice

07-3: Non-Regular Languages

...
...

x
z

y

• Break string into w = xyz

• If w = xyz is accepted, then w′ = xyyz will also be accepted

• If w = xyz is accepted, then w′ = xyyyz will also be accepted

• If w = xyz is accepted, then w′ = xz will also be accepted

07-4: Pumping Lemma

• If a language L is regular, then:

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 2

• ∃n ≥ 1 such that any string w ∈ L with |w| ≥ n can be rewritten as w = xyz such that

• y 6= ǫ

• |xy| < n

• xyiz ∈ L for all i ≥ 0

07-5: Using the Pumping Lemma

• Assume L is regular

• Let n be the constant of the pumping lemma

• Create a string w such that |w| > n

• Show that for every legal decomposition of w = xyz such that:

• |xy| < n

• y 6= ǫ

There is an i such that xyiz 6∈ L

• Conclude that L must not be regular

07-6: Using the Pumping Lemma

• Assume L is regular

• Let n be the constant of the pumping lemma

• Create a string w such that |w| > n

• Show that for every legal decomposition of w = xyz such that:

• |xy| < n

• y 6= ǫ

There is an i such that xyiz 6∈ L

• Conclude that L must not be regular

L = {0n1n : n > 0}
07-7: Using the Pumping Lemma

L = {0n1n : n > 0}

• Let n be the constant of the pumping lemma

• Consider the string w = 0n1n

• If we break w = xyz such that |xy| < n, |y| > 0,

then x and y must be all 0’s

• x = 0j , y = 0k, z = 0n−k−j1n

• Consider w′ = xy2z = 0n+k1n for some 0 < k < n

• w′ 6∈ L

• L is not regular (by the pumping lemma)

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 3

07-8: Using the Pumping Lemma

• Assume L is regular

• Let n be the constant of the pumping lemma

• Create a string w such that |w| > n

• Show that for every legal decomposition of w = xyz such that:

• |xy| < n

• y 6= ǫ

There is an i such that xyiz 6∈ L

• Conclude that L must not be regular

L = {ww : w ∈ (a+ b)∗} 07-9: Using the Pumping Lemma

L = {ww : w ∈ (a+ b)∗}

• Let n be the constant of the pumping lemma

• Consider w = anbanb ∈ L

• If we break w = xyz such that |xy| < n, |y| > 0,

then x and y must be all a’s

• x = aj , y = ak, z = an−k−jban

• Consider w′ = xy2z = an+kbanb. As long as k > 0, the first half of w′ contains all a’s, while the second half

contains two b’s. Thus w′ is not of the form ww, and is not in L. Hence, L is not regular by the pumping lemma.

07-10: Using the Pumping Lemma You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

you Language L is not regular!

adv Yes it is! I have a DFA to prove it!

you Oh really? How many states are in your DFA?

adv n

you OK, here’s a string w ∈ L with |w| > n. Your machine must accept w – but since |w| > n, there must be a loop in your computation. Where’s the loop?

adv Right here! (breaks w into xyz, where y is the part of the string that goes through the loop)

you Ah hah! If we go through the loop 2 times instead of 1, we get a string not in L that your machine will accept!

adv Drat!

07-11: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

• Your adversary picks an n

• You pick a w ∈ L (such that |w| > n)

• Your adversary breaks w into xyz (subject to |xy| < n, |y| > 0)

• You pick an i such that xyiz 6∈ L

07-12: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 4

• Your adversary picks an n

• You pick a w ∈ L (such that |w| > n)

• Your adversary breaks w into xyz (subject to |xy| < n, |y| > 0)

• You pick an i such that xyiz 6∈ L

You don’t really have an adversary, so you need to show that for any n, you can create a string w, and for any way

that w can be broken into xyz, there is an i such that xyiz 6∈ L

07-13: Using the Pumping Lemma

• Assume L is regular

• Let n be the constant of the pumping lemma

• Create a string w such that |w| > n

• Show that for every legal decomposition of w = xyz such that:

• |xy| < n

• y 6= ǫ

There is an i such that xyiz 6∈ L

• Conclude that L must not be regular

L = {w : w ∈ (a∗b∗) ∧ w contains more a’s than b’s }
07-14: Using the Pumping Lemma

L = {w : w ∈ (a∗b∗) ∧ w contains more a’s than b’s }

• Let n be the constant of the pumping lemma

• Consider w = anbn−1 ∈ L

• If we break w = xyz such that |xy| < n, |y| > 0,

then x and y must be all a’s

• x = aj , y = ak, z = an−k−jbn−1

• Consider w′ = xy0z = an−kbn−1. As long as k > 0, w′ has at least as many b’s as a’s, and is not in L. Hence,

L is not regular, by the pumping lemma.

07-15: Using the Pumping Lemma

• Assume L is regular

• Let n be the constant of the pumping lemma

• Create a string w such that |w| > n

• Show that for every legal decomposition of w = xyz such that:

• |xy| < n

• y 6= ǫ

There is an i such that xyiz 6∈ L

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 5

• Conclude that L must not be regular

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s and an odd number of b’s }
07-16: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s and an odd number of b’s }

• Let n be the constant of the pumping lemma

• Consider w = a2nb ∈ L

• If we break w = xyz such that |xy| < n, |y| > 0,

then x and y must be all a’s

• x = aj , y = ak, z = a2n−k−jb

• As long as k is even, w′ = xyiz ∈ L for all i

Remember, we don’t get to choose how the string is broken into xyz – need to show that for any way the string can be broken

into xyz, there exists an i such that xyiz 6∈ L

07-17: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s and an odd number of b’s }

• We failed to prove L is not regular. Does that mean that L must be regular?

07-18: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s and an odd number of b’s }

• We failed to prove L is not regular. Does that mean that L must be regular?

• No! We may not have chosen a clever enough w

• Similarly, failing to create an NFA for a language does not prove that it is not regular.

• How can we prove that L is regular?

07-19: Using the Pumping Lemma

L = {w : w ∈ (a+ b)∗ ∧ w has an even number of a’s and an odd number of b’s }

• We failed to prove L is not regular. Does that mean that L must be regular?

• No! We may not have chosen a clever enough w

• Similarly, failing to create an NFA for a language does not prove that it is not regular.

• How can we prove that L is regular?

• Create a regular expression, DFA, or NFA that describes L

07-20: Closure Properties

Since some languages are regular, and some are not, we can consider closure properties of regular languages

• Is LREG closed under union?

• Is LREG closed under complementation?

• Is LREG closed under intersection?

07-21: Closure Properties

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 6

• Is LREG closed under union?

07-22: Closure Properties

• Is LREG closed under union?

L1 = L[r1], L2 = L[r2]

L1 ∪ L2 = L[(r1 + r2)]

07-23: Closure Properties

• Is LREG closed under complementation?

Given any DFA M = (K,Σ, δ, s, F), create M ′ = (K ′,Σ′, δ′, s′, F ′) such that L[M ′] = L[M]
07-24: Closure Properties

• Is LREG closed under complementation?

Given any DFA M = (K,Σ, δ, s, F), create M ′ = (K ′,Σ′, δ′, s′, F ′) such that L[M ′] = L[M]

• K ′ = K

• Σ′ = Σ

• δ′ = δ

• s′ = s

• F ′ = K − F

07-25: Closure Properties

• Is LREG closed under intersection?

07-26: Closure Properties

• Is LREG closed under intersection?

• A ∪B = A ∩B

• (diagram on board)

• We can also use a direct construction

• L1 = all strings over {a, b} that begin with aa

• L2 = all strings over {a, b} that end with aa

• Construct L1 ∩ L2

07-27: Closure Properties

Given DFA M1 = (K1,Σ1, δ1, s1, F1) and DFA M2 = (K2,Σ2, δ2, s2, F2), create DFA M such that L[M] =
L[M1] ∩ L[M2]
07-28: Closure Properties

Given M1 = (K1,Σ1, δ1, s1, F1) and M2 = (K2,Σ2, δ2, s2, F2), create M such that L[M] = L[M1] ∩ L[M2]

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 7

• K = K1 ×K2

• Σ = Σ1 = Σ2

• δ = {(((q1, q2), a), (q
′

1, q
′

2)) : ((q1, a), q
′

1) ∈ δ1, ((q2, a), q
′

2) ∈ δ2}

• s = (s1, s2)

• F = {(f1, f2) : f1 ∈ F1, f2 ∈ F2}

07-29: State Minimization

• Possible to have several different DFA that all accept the same language

• Redundant states – duplicate the effort of other states

07-30: State Minimization

b

3 4

b

a,b

5

a

a

1

2

0

a

b

a

b

a

b

What is L[M]? 07-31: State Minimization

b

3 4

b

a,b

5

a

a

1

2

0

a

b

a

b

a

b

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 8

07-32: State Minimization

3 4

a,b

7

a

a

1

2

0

a

a

b

a

b
5 6

a

a

b

b b

b

b

07-33: State Minimization

• Two states q1 and q2 are equivalent if:

• Every string that drives q1 to an accept state also drives q2 to an accept state

• Every string that drives q2 to an accept state also drives q1 to an accept state

07-34: State Minimization

• Two states q1 and q2 of DFA M are equivalent if:

• ∀w ∈ Σ∗, ((q1, w) 7→
∗

M (f1, ǫ)∧

(q2, w) 7→
∗

M (f2, ǫ) ∧f1 ∈ FM) ⇒ f2 ∈ FM

07-35: State Minimization

• Two states q1 and q2 are equivalent with respect to a string w if and only if

((q1, w) 7→
∗

M (f1, ǫ)∧

(q2, w) 7→
∗

M (f2, ǫ) ∧f1 ∈ FM) ⇒ f2 ∈ FM

and

((q1, w) 7→
∗

M (q3, ǫ)∧

(q2, w) 7→
∗

M (q4, ǫ) ∧q3 6∈ FM) ⇒ q4 6∈ FM

• Two states q1 and q2 are equivalent if they are equivalent with respect to all strings w ∈ Σ∗

07-36: State Minimization

• How do we determine if two states q1 and q2 are equivalent?

• Check to see if they are equivalent with respect to strings of length 0

07-37: State Minimization

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 9

• How do we determine if two states q1 and q2 are equivalent?

• Check to see if they are equivalent with respect to strings of length 0

• Check to see if they are equivalent with respect to strings of length 1

07-38: State Minimization

• How do we determine if two states q1 and q2 are equivalent?

• Check to see if they are equivalent with respect to strings of length 0

• Check to see if they are equivalent with respect to strings of length 1

• Check to see if they are equivalent with respect to strings of length 2

.. and so on

07-39: State Minimization

• When are q1 and q2 equivalent with respect to all strings of length 0?

07-40: State Minimization

• When are q1 and q2 equivalent with respect to all strings of length 0?

• Both q1 and q2 are accept states, or neither q1 nor q2 are accept states

07-41: State Minimization

• Two states q1 and q2 are equivalent with respect to all strings of length n if ..

• Hint: Think inductively

07-42: State Minimization

• Two states q1 and q2 are equivalent with respect to all strings of length n if ..

• Hint: Think inductively

• Hint 2: If we knew which states were equivalent with respect to all strings of length n− 1 ...

07-43: State Minimization

• Two states q1 and q2 are equivalent with respect to all strings of length n if, for all a ∈ Σ

• ((q1, a), q3) ∈ δ [δ(q1, a) = q3]

• ((q2, a), q4) ∈ δ [δ(q2, a) = q4]

• q3 and q4 are equivalent with respect to all strings of length n− 1

07-44: State Minimization

• Equivalence matrix E(i):

• E(i)[i, j] = 1 iff qi and qj are equivalent with respect to all strings of length ≤ i

• Only need to calculate upper triangle of matrix (why?)

• E(∗)[i, j] = 1 iff q1 and qj are equivalent with respect to all strings (that is, if q1 and qj are equivalent)

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 10

07-45: State Minimization

• E(0):

• E(0)[i, j] = ...

07-46: State Minimization

• E(0):

• E(0)[i, j] = 1 if qi and qj are both accept states, or both non-accept states

• E(0)[i, j] = 0 if qi is an accept state, and qj is not an accept state

• E(0)[i, j] = 0 if qi is not an accept state, and qj is an accept state

07-47: State Minimization

• E(n)[i, j] = 1 if, for all a ∈ Σ

• ((qi, a), qk) ∈ δ [δ(qi, a) = qk]

• ((qj , a), ql) ∈ δ [δ(qj , a) = ql]

• E(n−1)[qk, ql] = 1

07-48: State Minimization

• Creating E(∗):

• First, create E(0)

for i = 0 to n

for j = (i+ 1) to n

if (qi ∈ F ∧ qj ∈ F) ∨ (qi 6∈ F ∧ qj 6∈ F)
E[i, j] = 1

else

E[i, j] = 0

07-49: State Minimization

Repeat:

for i = 0 to n

for j = (i+ 1) to n

for each a ∈ Σ
k = δ(i, a)
l = δ(j, a)
if E[k, l] == 0

set E[i, j] = 0

Until no changes are made 07-50: State Minimization

• Given any DFA M , we can create an equivalent DFA with the minimum number of states as follows:

• Calculate E(∗), to find equivalent states

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 11

• While there is a pair qi, qj of equivalent states in M

• Change all transitions into qj to transitions to qi

• Remove qj and all transitions out of qj

• Finally do a DFS form the initial state, and remove all states not reachable from the initial state

07-51: State Minimization Example

0 1

4

2

53

6

a

b

a

b

b

b

b
a

a

a

a

b

a,b

07-52: State Minimization Example

0 1 2 3 4 5 6

0 0 1 1 0 1 1

1 0 0 1 0 0

2 1 0 1 1

3 0 1 1

4 0 0

5 1

0 1

4

2

53

6

a

b

a

b

b

b

b
a

a

a

a

b

a,b

07-53: State Minimization Example

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 12

0 1 2 3 4 5 6

0 0 0 1 0 0 0

1 0 0 1 0 0

2 0 0 1 1

3 0 0 0

4 0 0

5 1

0 1

4

2

53

6

a

b

a

b

b

b

b
a

a

a

a

b

a,b

07-54: State Minimization Example

0 1 2 3 4 5 6

0 0 0 1 0 0 0

1 0 0 1 0 0

2 0 0 1 0

3 0 0 0

4 0 0

5 0

0 1

4

2

53

6

a

b

a

b

b

b

b
a

a

a

a

b

a,b

07-55: State Minimization Example

CS411-2015S-07

Non-Regular Languages

Closure Properties of Regular Languages

DFA State Minimization 13

0 1

4

2

53

6

a

b

a

b

b

b

b
a

a

a

a

b

a,b

07-56: State Minimization Example

0 1 2

6

b

a

b

b
a

a

a,b

07-57: State Minimization Example

0 1 2
b

a

b a

a,b

