Automata Theory CS411-2015F-08
 Context-Free Grammars

David Galles

Department of Computer Science
University of San Francisco

08-0: Context-Free Grammars

- Set of Terminals (Σ)
- Set of Non-Terminals
- Set of Rules, each of the form:
$<$ Non-Terminal $>\rightarrow<$ Terminals \& Non-Terminals>
- Special Non-Terminal - Initial Symbol

08-1: Generating Strings with CFGs

- Start with the initial symbol
- Repeat:
- Pick any non-terminal in the string
- Replace that non-terminal with the right-hand side of some rule that has that non-terminal as a left-hand side
Until all elements in the string are terminals

08-2: CFG Example

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow B b \\
& B \rightarrow c B \\
& B \rightarrow \epsilon
\end{aligned}
$$

Generating a string:
$S \quad$ replace S with $a S$
$a S \quad$ replace S wtih $B b$
$a B b \quad$ replace B wtih $c B$ $a c B b$ replace B wtih ϵ
$a c b \quad$ Final String

08-3: CFG Example

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow B b \\
& B \rightarrow c B \\
& B \rightarrow \epsilon
\end{aligned}
$$

Generating a string:

S
replace S with $a S$
$a S \quad$ replace S wtih $a S$
$a a S \quad$ replace S wtih $B b$
$a a B b \quad$ replace B wtih $c B$
$a a c B b \quad$ replace B wtih $c B$
aacc $B b$ replace B wtih ϵ
aaccb Final String

08-4: CFG Example

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow B b \\
& B \rightarrow c B \\
& B \rightarrow \epsilon
\end{aligned}
$$

Regular Expression equivalent to this CFG:

08-5: CFG Example

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow B b \\
& B \rightarrow c B \\
& B \rightarrow \epsilon
\end{aligned}
$$

Regular Expression equivalent to this CFG:
$a^{*} c^{*} b$

08-6: CFG Example

CFG for $L=\left\{0^{n} 1^{n}: n>0\right\}$

08-7: CFG Example

CFG for $L=\left\{0^{n} 1^{n}: n>0\right\}$
$S \rightarrow 0 S 1 \quad$ or $\quad S \rightarrow 0 S 1 \mid 01$
$S \rightarrow 01$
(note - can write:
$A \rightarrow \alpha$
$A \rightarrow \beta$
as
$A \rightarrow \alpha \mid \beta)$
(examples: 01, 0011, 000111)

08-8: CFG Formal Definition

$$
G=(V, \Sigma, R, S)
$$

- $V=$ Set of symbols, both terminals \& non-terminals
- $\Sigma \subset V$ set of terminals (alphabet for the language being described)
- $R \subset\left((V-\Sigma) \times V^{*}\right)$ Finite set of rules
- $S \in(V-\Sigma)$ Start symbol

08-9: CFG Formal Definition

Example:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow 01
\end{aligned}
$$

Set theory Definition:

$$
G=(V, \Sigma, R, S)
$$

- $V=\{S, 0,1\}$
- $\Sigma \subset V=\{0,1\}$
- $R \subset\left((V-\Sigma) \times V^{*}\right)=\{(S, 0 S 0),(S, 01)\}$
- $S \in(V-\Sigma)=S$

08-10: Derivation

A Derivation is a listing of how a string is generated showing what the string looks like after every replacement.

$$
\begin{aligned}
S & \rightarrow A B \\
A & \rightarrow a A \mid \epsilon \\
B & \rightarrow b B \mid \epsilon \\
S & \Rightarrow A B \\
& \Rightarrow a A B \\
& \Rightarrow a A b B \\
& \Rightarrow a b B \\
& \Rightarrow a b b B \\
& \Rightarrow a b b
\end{aligned}
$$

08-11: Parse Tree

A Parse Tree is a graphical representation of a derivation.

$$
\begin{aligned}
S & \Rightarrow A B \\
& \Rightarrow a A B \\
& \Rightarrow a A b B \\
& \Rightarrow a b B \\
& \Rightarrow a b b B \\
& \Rightarrow a b b
\end{aligned}
$$

08-12: Parse Tree

A Parse Tree is a graphical representation of a derivation.

$$
\begin{aligned}
S & \Rightarrow A B \\
& \Rightarrow A b B \\
& \Rightarrow a A b B \\
& \Rightarrow a a A b B \\
& \Rightarrow a a A b \\
& \Rightarrow a a b
\end{aligned}
$$

08-13: Fun with CFGs

- Create a Context-Free Grammar for all strings over \{a,b\} which contain the substring "aba"

08-14: Fun with CFGs

- Create a Context-Free Grammar for all strings over $\{a, b\}$ which contain the substring "aba"

$$
\begin{aligned}
& S \rightarrow A \mathrm{aba} A \\
& A \rightarrow \mathrm{a} A \\
& A \rightarrow \mathrm{~b} A \\
& A \rightarrow \epsilon
\end{aligned}
$$

- Give a parse tree for the string: bbabaa

08-15: Fun with CFGs

- Create a Context-Free Grammar for all strings over \{a,b\} that begin or end with the substring bba (inclusive or)

08-16: Fun with CFGs

- Create a Context-Free Grammar for all strings over \{a,b\} that begin or end with the substring bba (inclusive or)
$S \rightarrow \mathrm{bba} A$
$S \rightarrow A \mathrm{bba}$
$A \rightarrow \mathrm{~b} A$
$A \rightarrow \mathbf{a} A$
$A \rightarrow \epsilon$

08-17: $L_{C F G}$
The Context-Free Languages, $L_{C F G}$, is the set of all languages that can be described by some CFG:

- $L_{C F G}=\{L: \exists \mathrm{CFG} G \wedge L[G]=L\}$

We already know $L_{C F G} \nsubseteq L_{R E G}$ (why)?

- $L_{R E G} \subset L_{C F G}$?

08-18: $L_{R E G} \subseteq L_{C F G}$
We will prove $L_{R E G} \subseteq L_{C F G}$ in two different ways:

- Prove by induction that, given any regular expression r, we create a CFG G such that $L[G]=L[r]$
- Given any NFA M, we create a CFG G such that $L[G]=L[M]$

08-19: $L_{R E G} \subseteq L_{C F G}$

- To Prove: Given any regular expression r, we can create a CFG G such that $L[G]=L[r]$
- By induction on the structure of r

08-20: $L_{R E G} \subseteq L_{C F G}$
Base Cases:

- $r=a, a \in \Sigma$

08-21: $L_{R E G} \subseteq L_{C F G}$
Base Cases:

- $r=\mathbf{a}, \mathbf{a} \in \Sigma$
$S \rightarrow \mathbf{a}$

08-22: $L_{R E G} \subseteq L_{C F G}$

Base Cases:

- $r=\epsilon$

08-23: $L_{R E G} \subseteq L_{C F G}$
Base Cases:

- $r=\epsilon$
$S \rightarrow \epsilon$

08-24: $L_{R E G} \subseteq L_{C F G}$

Base Cases:

- $r=\emptyset$

08-25: $L_{R E G} \subseteq L_{C F G}$
Base Cases:

- $r=\emptyset$
$S \rightarrow S S$

08-26: $L_{R E G} \subseteq L_{C F G}$

Recursive Cases:

- $r=\left(r_{1} r_{2}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$ $L\left[G_{2}\right]=L\left[r_{2}\right]$, Start symbol of $G_{2}=S_{2}$

08-27: $L_{R E G} \subseteq L_{C F G}$

Recursive Cases:

- $r=\left(r_{1} r_{2}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$
$L\left[G_{2}\right]=L\left[r_{2}\right]$, Start symbol of $G_{2}=S_{2}$
$G=$ all rules from G_{1} and G_{2}, plus plus new non-terminal S, and new rule:
$S \rightarrow S_{1} S_{2}$
New start symbol S

08-28: $L_{R E G} \subseteq L_{C F G}$

Recursive Cases:

- $r=\left(r_{1}+r_{2}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$ $L\left[G_{2}\right]=L\left[r_{2}\right]$, Start symbol of $G_{2}=S_{2}$

08-29: $L_{R E G} \subseteq L_{C F G}$

Recursive Cases:

- $r=\left(r_{1}+r_{2}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$
$L\left[G_{2}\right]=L\left[r_{2}\right]$, Start symbol of $G_{2}=S_{2}$
$G=$ all rules from G_{1} and G_{2}, plus new non-terminal S, and new rules:
$S \rightarrow S_{1}$
$S \rightarrow S_{2}$
Start symbol $=S$

08-30: $L_{R E G} \subseteq L_{C F G}$
Recursive Cases:

- $r=\left(r_{1}^{*}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$

08-31: $L_{R E G} \subseteq L_{C F G}$

Recursive Cases:

- $r=\left(r_{1}^{*}\right)$
$L\left[G_{1}\right]=L\left[r_{1}\right]$, Start symbol of $G_{1}=S_{1}$
$G=$ all rules from G_{1}, plus new non-terminal S, and new rules:
$S \rightarrow S_{1} S$
$S \rightarrow \epsilon$
Start symbol = S
(Example)

08-32: $L_{R E G} \subseteq L_{C F G}$ II

- Given any NFA
- $M=(K, \Sigma, \Delta, s, F)$
- Create a grammar
- $G=(V, \Sigma, R, S)$ such that $L[G]=L[M]$
- Idea: Derivations like "backward NFA configurations", showing past instead of future
- Example for all strings over $\{a, b\}$ that contain aa, not bb

08-33: $L_{R E G} \subseteq L_{C F G}$ II

- $M=(K, \Sigma, \Delta, s, F)$
- $G=\left(V, \Sigma^{\prime}, R, S\right)$
- V
- Σ^{\prime}
- R
- S

08-34: $L_{R E G} \subseteq L_{C F G}$ II

- $M=(K, \Sigma, \Delta, s, F)$
- $G=\left(V, \Sigma^{\prime}, R, S\right)$
- $V=K \bigcup \Sigma$
- $\Sigma^{\prime}=\Sigma$
- $R=\left\{\left(q_{1} \rightarrow a q_{2}\right): q_{1}, q_{2} \in K(\right.$ and $V)$, $\left.a \in \Sigma,\left(\left(q_{1}, a\right), q_{2}\right) \in \Delta\right\} \cup$

$$
\{(q \rightarrow \epsilon): q \in F\}
$$

- $S=s$
(Example)

08.35: CFG - Ambiguity

- A CFG is ambiguous if there exists at least one string generated by the grammar that has >1 different parse tree
- Previous CFG is ambiguous (examples)
$S \rightarrow$ Aaba A
$A \rightarrow \mathrm{a} A$
$A \rightarrow \mathrm{~b} A$
$A \rightarrow \epsilon$

08.36: CFG - Ambiguity

- Consider the following CFG:

$$
\begin{aligned}
& E \rightarrow E+E|E-E| E * E \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- Is this CFG ambiguous?
- Why is this a problem?

08-37: CFG - Ambiguity

$$
\begin{aligned}
& E \rightarrow E+E|E-E| E * E \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

08.-8: CFG - Ambiguity

$$
\begin{aligned}
& E \rightarrow E+E|E-E| E * E \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- If all we care about is removing ambiguity, there is a (relatively) easy way to make this unambiguous (make all operators right-associative)

08-39: CFG - Ambiguity

$$
\begin{aligned}
& E \rightarrow E+E|E-E| E * E \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Non-ambiguous:

$$
E \rightarrow N|N+E| N-E \mid N * E
$$

$$
N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

- If we were writing a compiler, would this be a good CFG?
- How can we get correct associativity

08-40: CFG - Ambiguity

- Ambiguous:

$$
\begin{aligned}
& E \rightarrow E+E|E-E| E * E \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- Unambiguous:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * N \mid N \\
& N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Can add parentheses, other operators, etc. (More in Compilers)

08-41: Fun with CFGs

- Create a CFG for all strings over $\{()$,$\} that form$ balanced parenthesis
- ()
- ()()
- (()())((()()()))
- (((()))))

08-42: Fun with CFGs

- Create a CFG for all strings over $\{()$,$\} that form$ balanced parenthesis

$$
\begin{aligned}
& S \rightarrow(S) \\
& S \rightarrow S S \\
& S \rightarrow \epsilon
\end{aligned}
$$

- Is this grammar ambiguous?

08-43: Fun with CFGs

- Create a CFG for all strings over $\{()$,$\} that form$ balanced parenthesis

$$
\begin{aligned}
& S \rightarrow(S) \\
& S \rightarrow S S \\
& S \rightarrow \epsilon
\end{aligned}
$$

- Is this grammar ambiguous?
- YES! (examples)

08-44: Fun with CFGs

- Create an unambiguous CFG for all strings over $\{()$,$\} that form balanced parenthesis$

08-45: Fun with CFGs

- Create an unambiguous CFG for all strings over $\{()$,$\} that form balanced parenthesis$

$$
\begin{aligned}
& S \rightarrow A S \\
& S \rightarrow \epsilon \\
& A \rightarrow(S)
\end{aligned}
$$

08-46: Ambiguous Languages

- A language L is ambiguous if all CFGs G that generate it are ambiguous
- Example:
- $L_{1}=\left\{a^{i} b^{i} c^{j} d^{j} \mid i, j>0\right\}$
- $L_{2}=\left\{a^{i} b^{j} c^{j} d^{i} \mid i, j>0\right\}$
- $L_{3}=L_{1} \cup L_{2}$
- L_{3} is inherently ambiguous
(Create a CFG for L_{3})

08-47: Ambiguous Languages

- $L_{1}=\left\{a^{i} b^{i} c^{j} d^{j} \mid i, j>0\right\}$
- $L_{2}=\left\{a^{i} b^{j} c^{j} d^{i} \mid i, j>0\right\}$
- $L_{3}=L_{1} \cup L_{2}$
$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow A B$
$A \rightarrow a A b \mid a b$
$B \rightarrow c B d \mid c d$
$S_{2} \rightarrow a S_{2} d \mid a C d$
$C \rightarrow b C c \mid b c$
What happens when $i=j$?

08-48: (More) Fun with CFGs

- Create an CFG for all strings over $\{a, b\}$ that have the same number of a's as b's (can be ambiguous)

08-49: (More) Fun with CFGs

- Create an CFG for all strings over $\{a, b\}$ that have the same number of a's as b's (can be ambiguous)

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow b S a \\
& S \rightarrow S S \\
& S \rightarrow \epsilon
\end{aligned}
$$

08-50: (More) Fun with CFGs

- Create an CFG for $L=\left\{w w^{R}: w \in(a+b)^{*}\right\}$

08-51: (More) Fun with CFGs

- Create an CFG for $L=\left\{w w^{R}: w \in(a+b)^{*}\right\}$

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow \epsilon
\end{aligned}
$$

08-52: (More) Fun with CFGs

- Create an CFG for all palindromes over $\{a, b\}$. That is, create a CFG for:
- $L=\left\{w: w \in(a+b)^{*}, w=w^{R}\right\}$

08-53: (More) Fun with CFGs

- Create an CFG for all palindromes over $\{a, b\}$. That is, create a CFG for:

$$
\text { - } L=\left\{w: w \in(a+b)^{*}, w=w^{R}\right\}
$$

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow \epsilon \\
& S \rightarrow a \\
& S \rightarrow b
\end{aligned}
$$

08-54: (More) Fun with CFGs

- Create an CFG for $L=\left\{a^{i} b^{j} c^{k}: j>i+k\right\}$

08-55: (More) Fun with CFGs

- Create an CFG for $L=\left\{a^{i} b^{j} c^{k}: j>i+k\right\}$

HINT: We may wish to break this down into 3 different langauges ...

08-56: (More) Fun with CFGs

- Create an CFG for $L=\left\{a^{i} b^{j} c^{k}: j>i+k\right\}$

$$
\begin{aligned}
& S \rightarrow A B C \\
& A \rightarrow a A b \\
& A \rightarrow \epsilon \\
& B \rightarrow b B \\
& B \rightarrow b \\
& C \rightarrow b C c \mid \epsilon
\end{aligned}
$$

08-57: (More) Fun with CFGs

- Create an CFG for all strings over $\{0,1\}$ that have the an even number of 0 's and an odd number of 1's.
- HINT: It may be easier to come up with 4 CFGs - even 0's, even 1's, odd 0's odd 1's, even 0's odd 1's, odd 1's, even 0's - and combine them ...

08-58: (More) Fun with CFGs

- Create an CFG for all strings over $\{0,1\}$ that have the an even number of 0 's and an odd number of 1's.
$S_{1}=$ Even 0's Even 1's
$S_{2}=$ Even 0's Odd 1's
$S_{3}=$ Odd O's Even 1's
$S_{4}=$ Odd 0's Odd 1's
$S_{1} \rightarrow 0 S_{3} \mid 1 S_{2}$
$S_{2} \rightarrow 0 S_{4} \mid 1 S_{1}$
$S_{3} \rightarrow 0 S_{1} \mid 1 S_{4}$
$S_{4} \rightarrow 0 S_{2} \mid 1 S_{3}$

