Automata Theory CS411-2015S-FR Final Review

David Galles

Department of Computer Science University of San Francisco

FR-0: Sets & Functions

- Sets
 - Membership:
 - $a \in \{a, b, c\}$
 - $a \in \{b, c\}$
 - $a \in \{b, \{a, b, c\}, d\}$
 - $\{a, b, c\} \in \{b, \{a, b, c\}, d\}$

FR-1: Sets & Functions

- Sets
 - Membership:
 - $a \in \{a, b, c\}$
 - $\bullet \ a \not\in \{b,c\}$
 - $a \notin \{b, \{a, b, c\}, d\}$
 - $\{a, b, c\} \in \{b, \{a, b, c\}, d\}$

FR-2: Sets & Functions

- Sets
 - Subset:
 - $\{a\} \subseteq \mathbb{P}\{a, b, c\}$
 - $\{a\} \subseteq \{b, c, \{a\}\}$
 - $\{a, b\} \subseteq \{a, b, c, d\}$
 - $\{a, b\} \subseteq \mathbb{P}\{a, \overline{b}\}$
 - $\{\} \subseteq \{a, b, c, d\}$

FR-3: Sets & Functions

- Sets
 - Subset:
 - $\{a\} \subseteq \{a, b, c\}$ • $\{a\} \not\subseteq \{b, c, \{a\}\}$ • $\{a, b\} \subseteq \{a, b, c, d\}$
 - $\{a, b\} \subseteq \{a, b\}$
 - $\{\} \subseteq \{a, b, c, d\}$

FR-4: Sets & Functions

- Sets
 - Cross Product:
 - $A \times B = \{(a, b) : a \in A, b \in B\}$
 - $\{a,b\} \times \{a,b\} =$
 - $\{a, b\} \times \{\{a, b\}\} =$

FR-5: Sets & Functions

- Sets
 - Cross Product:
 - $A \times B = \{(a, b) : a \in A, b \in B\}$
 - $\{a,b\} \times \{a,b\} = \{(a,a), (a,b), (b,a), (b,b)\}$
 - $\{a,b\} \times \{\{a,b\}\} = \{(a,\{a,b\}), (b,\{a,b\})\}$

FR-6: Sets & Functions

- Sets
 - Power Set:
 - $2^A = \{S : S \subseteq A\}$
 - $2^{\{a,b\}} =$
 - $2^{\{a\}} =$
 - $2^{2^{\{a\}}} =$

FR-7: Sets & Functions

- Sets
 - Power Set:
 - $2^A = \{S : S \subseteq A\}$
 - $2^{\{a,b\}} = \{\{\}, \{a\}, \{b\}, \{a,b\}\}$
 - $2^{\{a\}} = \{\{\}, \{a\}\}$
 - $2^{2^{\{a\}}} = \{\{\}, \{\{\}\}, \{\{a\}\}, \{\{\}\}, \{a\}\}\}$

FR-8: Sets – Partition

 Π is a partition of S if:

- $\Pi \subset 2^S$
- $\{\} \notin \Pi$
- $\forall (X, Y \in \Pi), X \neq Y \implies X \cap Y = \{\}$

• $\bigcup \Pi = S$

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}
{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}

FR-9: Sets – Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

• All the partitions of the set {a, b, c}?

FR-10: Sets – Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

- All the partitions of the set {a, b, c}?
 - {{a, b, c}}, {{a, b}, {c}}, {{a, c}, {b}}, {{a}, {b, c}}, {{a}, {b}}, {c}}, {{a}, {b}}, {c}}

FR-11: Sets & Functions

- Relation
 - A relation R is a set of ordered pairs
 - That's *all* that a relation is
 - Relation Graphs

FR-12: Sets & Functions

Properties of Relations

- Reflexive
- Symmetric
- Transitive
- Antisymmetric
- Equivalence Relation: Reflexive, Symmetric, Transitive
- Partial Order: Reflexive, Antisymmetric, Transitive
- Total Order: Partial order, for each $a, a' \in A$, either $(a, a') \in R$ or $(a', a) \in R$

FR-13: Sets & Functions

- What does a graph of an Equivalence relation look like?
- What does a graph of a Total Order look like
- What does a graph of a Partial Order look like?

FR-14: Closure

- A set $A \subseteq B$ is closed under a relation $R \subseteq ((B \times B) \times B)$ if:
 - $a_1, a_2 \in A \land ((a_1, a_2), c) \in R \implies c \in A$
 - That is, if a_1 and a_2 are both in A, and $((a_1, a_2), c)$ is in the relation, then c is also in A
- $\bullet~\mathbf{N}$ is closed under addtion
- $\bullet~\mathbf{N}$ is not closed under subtraction or division

FR-15: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^\prime
 - Each element of *R*′ is an ordered triple of ordered pairs!

FR-16: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^\prime
 - Each element of *R*′ is an ordered triple of ordered pairs!
- Example:
 - $R \subseteq A \times A$
 - $R' = \{(((a,b),(b,c)),(a,c)) : a,b,c \in A\}$
 - If R is closed under R', then . . .

FR-17: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^\prime
 - Each element of *R*′ is an ordered triple of ordered pairs!
- Example:
 - $R \subseteq A \times A$
 - $R' = \{(((a, b), (b, c)), (a, c)) : a, b, c \in A\}$
 - If R is closed under R', then R is transitive!

FR-18: Closure

- Reflexive closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is reflexive
 - Add self-loop to every node in relation
 - Add (a,a) to R for every $a \in A$
- Transitive Closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is transitive
 - Add direct link for every path of length 2.
 - $\forall (a, b, c \in A) \text{ if } (a, b) \in R \land (b, c) \in R \text{ add}$ (a, c) to R.

(examples on board)

FR-19: Sets & Functions

- Functions
 - Relation R over $A \times B$
 - For each $a \in A$:
 - Exactly one element $(x, y) \in R$ with x = a

FR-20: Sets & Functions

- For a function f over $(A \times A)$, what does the graph look like?
- For a function f over $(A \times B)$, what does the graph look like?

FR-21: Sets & Functions

- Functions
 - one-to-one: $f(a) \neq f(a')$ when $a \neq a'$ (nothing is mapped to twice)
 - onto: for each $b \in B$, $\exists a$ such that f(a) = b (everything is mapped to)
 - bijection: Both one-to-one and onto

FR-22: Sets & Functions

- For a function f over $(A \times B)$
 - What does the graph look like for a one-to-one function?
 - What does the graph look like for an onto function?
 - What does the graph look like for a bijection?

FR-23: Sets & Functions

• Infinite sets

- Countable, Countably infinite
 - Bijection with the Natural Numbers
- Uncountable, uncountable infinite
 - Infinite
 - No bijection with the Natural Numbers

FR-24: Infinite Sets

- We can show that a set is countable infinite by giving a bjiection between that set an the natural numbers
- Same thing as as imposing an ordering on an infinite set

FR-25: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Even elements of N?

FR-26: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Even elements of N?

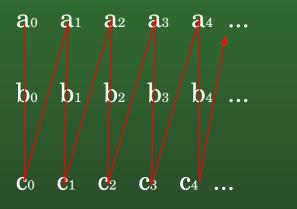
•
$$f(x) = 2x$$

FR-27: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Integers (Z)?

FR-28: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Integers (Z)?


•
$$f(x) = \left\lceil \frac{x}{2} \right\rceil * (-1)^x$$

FR-29: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Union of 3 (disjoint) countable sets A, B, C?

FR-30: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Union of 3 (disjoint) countable sets A, B, C?

•
$$f(x) = \begin{cases} a_{\frac{x}{3}} & \text{if x mod } 3 = 0\\ b_{\frac{x-1}{3}} & \text{if x mod } 3 = 1\\ c_{\frac{x-2}{3}} & \text{if x mod } 3 = 2 \end{cases}$$

FR-31: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - $\mathbf{N} \times \mathbf{N}$?
- (0,0) (0,1) (0,2) (0,3) (0,4) ...
- (1,0) (1,1) (1,2) (1,3) (1,4) ...
- (2,0) (2,1) (2,2) (2,3) (2,4) ...
- (3,0) (3,1) (3,2) (3,3) (3,4) ...
- (4,0) (4,1) (4,2) (4,3) (4,4) ...

FR-32: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
- N × N? (0,0) (0,1) (0,2) (0,3) (0,4) ... (1,0) (1,1) (1,2) (1,3) (1,4) ... (2,0) (2,1) (2,2) (2,3) (2,4) ... (3,0) (3,1) (3,2) (3,3) (3,4) ... (4,0) (4,1) (4,2) (4,3) (4,4) ... \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

•
$$f((x,y)) = \frac{(x+y)*(x+y+1)}{2} + x$$

FR-33: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with N.
 - Real numbers between 0 and 1 (exclusive)?

FR-34: Uncountable R

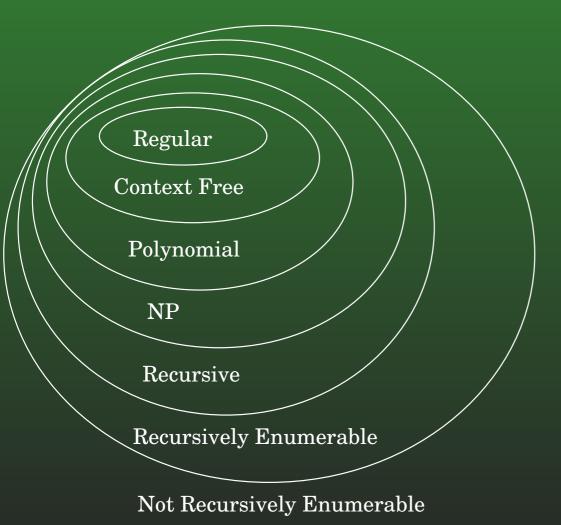
- Proof by contradiction
 - Assume that R between 0 and 1 (exclusive) is countable
 - (that is, assume that there is some bijection from ${\bf N}$ to ${\bf R}$ between 0 and 1)
 - Show that this leads to a contradiction
 - Find some element of R between 0 and 1 that is not mapped to by any element in N

FR-35: Uncountable R

- Assume that there is some bijection from N to R between 0 and 1

FR-36: Uncountable R

- Assume that there is some bijection from N to R between 0 and 1


Consider: 0.425055...

FR-37: Formal Languages

- Alphabet Σ : Set of symbols
 - $\{0,1\}, \{a,b,c\}, etc$
- String w: Sequence of symbols
 - cat, dog, firehouse etc
- Language L: Set of strings
 - {cat, dog, firehouse}, {a, aa, aaa, ...}, etc
- Language class: Set of Languages
 - Regular languages, P, NP, etc.

FR-38: Formal Languages

• Language Hierarchy.

FR-39: Regular Expressions

- Regular expressions are a way to describe formal languages
- Regular expressions are defined recursively
 - Base case simple regular expressions
 - Recursive case how to build more complex regular expressions from simple regular expressions

FR-40: Regular Expressions

- ϵ is a regular expression, representing $\{\epsilon\}$
- Ø is a regular expression, representing {}
- $\forall a \in \Sigma$, a is a regular expression representing {a}
- if r_1 and r_2 are regular expressions, then (r_1r_2) is a regular expression

• $L[(r_1r_2)] = L[r_1] \circ L[r_2]$

• if r_1 and r_2 are regular expressions, then $(r_1 + r_2)$ is a regular expression

• $L[(r_1 + r_2)] = L[r_1] \cup L[r_2]$

• if r is regular expressions, then (r^*) is a regular expression

• $L[(r^*)] = (L[r])^*$

FR-41: r.e. Precedence

From highest to Lowest:

Kleene Closure * Concatenation Alternation +

 $ab^{*}c + e = (a(b^{*})c) + e$

(We will still need parentheses for some regular expressions: (a+b)(a+b))

FR-42: Regular Expressions

• Intuitive Reading of Regular Expressions

- Concatenation == "is followed by"
- + == "or"
- * == "zero or more occurances"
- (a+b)(a+b)(a+b)
- (a+b)*
- aab(aa)*

FR-43: Regular Languages

- A language *L* is regular if there exists a regular expression which generates it
- Give a regular expression for:
 - All strings over $\{a, b\}$ that have an odd # of a's

FR-44: Regular Languages

- A language *L* is regular if there exists a regular expression which generates it
- Give a regular expression for:
 - All strings over $\{a, b\}$ that have an odd # of a's $b^*a(b^*ab^*a)^*b^*$
 - All strings over {*a*, *b*} that contain exactly two occurrences of *bb* (*bbb* counts as 2 occurrences!)

FR-45: Regular Languages

- A language *L* is regular if there exists a regular expression which generates it
- Give a regular expression for:
 - All strings over $\{a, b\}$ that have an odd # of a's $b^*a(b^*ab^*a)^*b^*$
 - All strings over {a, b} that contain exactly two occurrences of bb (bbb counts as 2 occurrences!)
 a*(baa*)*bb(aa*b)*aa*bb(aa*b)*a* + a*(baa*)*bbb(aa*b)*a*

FR-46: Regular Languages

- All strings over {0, 1} that begin (or end) with 11
- All strings over {0, 1} that begin (or end) with 11, but not both

FR-47: Regular Languages

- All strings over {0, 1} that begin (or end) with 11
 11 (0+1)* 11 + 11
- All strings over {0, 1} that begin (or end) with 11, but not both
 - 11(0+1)*0 + 11(0+1)*01 + 0(0+1)*11 + 10(0+1*)11

FR-48: Regular Languages

- Shortest string not described by following regular expressions?
 - a*b*a*b*
 - a*(ab)*(ba)*b*a*
 - a*b*(ab)*b*a*

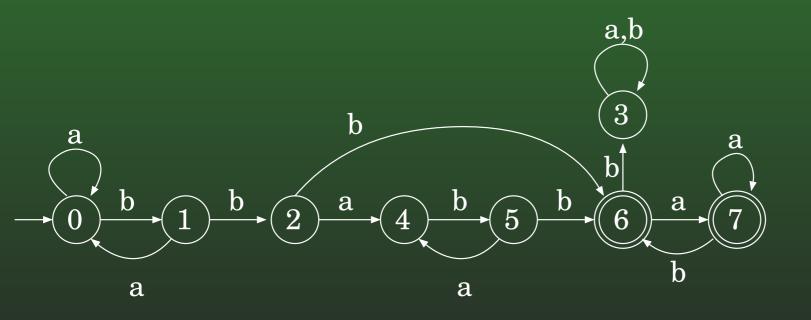
FR-49: Regular Languages

- Shortest string not described by following regular expressions?
 - a*b*a*b*
 - baba
 - a*(ab)*(ba)*b*a*
 - baab
 - a*b*(ab)*b*a*
 - baab

FR-50: Regular Languages

- English descriptions of following regular expressions:
 - (aa+aaa)*
 - b(a+b)*b + a(a+b)*a + a + b
 - a*(baa*)*bb(aa*b)*a*

FR-51: Regular Languages

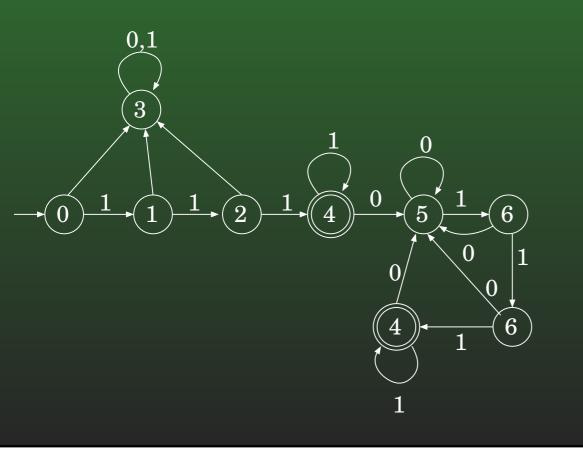

- A language *L* is regular if there exists a DFA which accepts it
 - DFA for all strings with exactly 2 occurrences of bb

FR-52: DFA Definition

- A DFA is a 5-tuple $M = (K, \Sigma, \delta, s, F)$
 - *K* Set of states
 - Σ Alphabet
 - $\delta: (K \times \Sigma) \mapsto K$ is a Transition function
 - $s \in K$ Initial state
 - $F \subseteq K$ Final states

FR-53: Regular Languages

- A language L is regular if there exists a DFA which accepts it
 - DFA for all strings with exactly 2 occurrences of bb

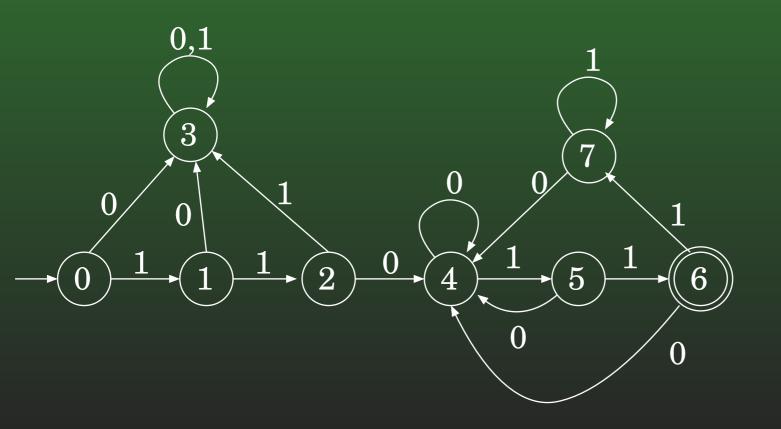


FR-54: Regular Languages

- A language *L* is regular if there exists a DFA which accepts it
 - DFA for all strings over {0,1} that start and end with 111

FR-55: Regular Languages

- A language *L* is regular if there exists a DFA which accepts it
 - DFA for all strings over {0,1} that start and end with 111



FR-56: Regular Languages

- A language *L* is regular if there exists a DFA which accepts it
 - DFA for all strings over {0,1} that start with 110, end with 011

FR-57: Regular Languages

- A language L is regular if there exists a DFA which accepts it
 - DFA for all strings over {0,1} that start with 110, end with 011

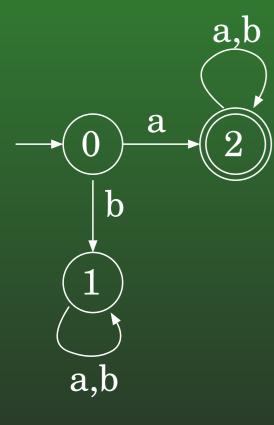
FR-58: Regular Languages

- Give a DFA for all strings over {0,1} that begin or end with 11
- Give a DFA for all strings over {0,1} that begin or end with 11 (but not both)

FR-59: Regular Languages

- Give a DFA for all strings over {0,1} that contain 101010
- Give a DFA for all strings over {0,1} that contain 101 or 010
- Give a DFA for all strings over {0,1} that contain 010 and 101

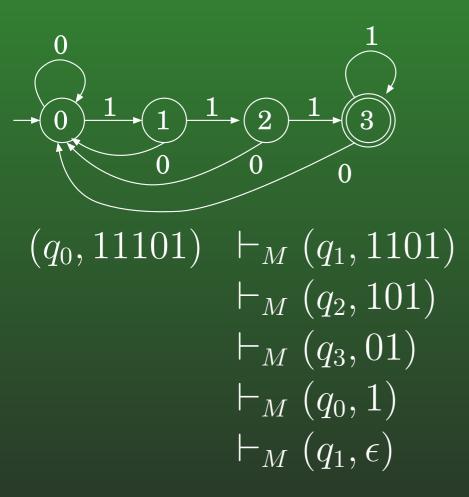
FR-60: **DFA Configuration &** \vdash_M

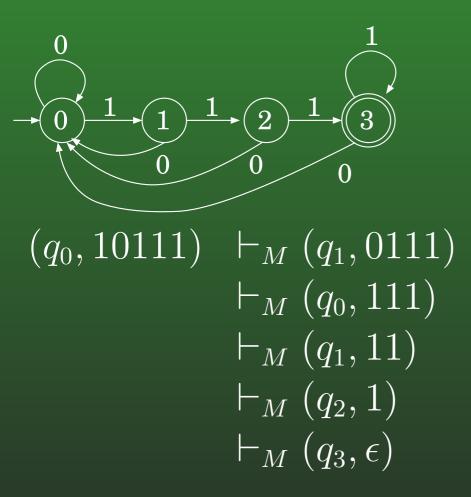

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
 - $\bullet \ \in K \times \Sigma^*$
 - $(q_2, abba)$ Machine is in state q_2 , has abba left to process
 - (q_8, bba) Machine is in state q_8 , has bba left to process
 - (q_4, ϵ) Machine is in state q_4 at the end of the computation (accept iff $q_4 \in F$)

FR-61: **DFA Configuration &** \vdash_M

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
 - $\bullet \ \in K \times \Sigma^*$
- Binary relation \vdash_M : What machine M yields in one step
 - $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$
 - $\vdash_M = \{((q_1, aw), (q_2, w)) : q_1, q_2 \in K_M, w \in \Sigma_M^*, a \in \Sigma_M, ((q_1, a), q_2) \in \delta_M\}$

FR-62: **DFA Configuration &** \vdash_M


Given the following machine M:


• $((q_0, abba), (q_2, bba)) \in \vdash_M$

• can also be written $(q_0, abba) \vdash_M (q_2, bba)$

FR-63: **DFA Configuration &** \vdash_M

FR-64: **DFA Configuration &** \vdash_M

FR-65: **DFA Configuration &** \vdash_M^*

- \vdash_M^* is the reflexive, transitive closure of \vdash_M
 - Smallest superset of \vdash_M that is both reflexive and transitive
 - "yields in 0 or more steps"
- Machine M accepts string w if: $(s_M, w) \vdash^*_M (f, \epsilon)$ for some $f \in F_M$

FR-66: DFA & Languages

- Language accepted by a machine M = L[M]
 - $\{w: (s_M, w) \vdash^*_M (f, \epsilon) \text{ for some } f \in F_M\}$
- DFA Languages, L_{DFA}
 - Set of all languages that can be defined by a DFA
 - $L_{DFA} = \{L : \exists M, L[M] = L\}$
- To think about: How does $L_{DFA} = L_{REG}$

FR-67: NFA Definition

- Difference between a DFA and an NFA
 - DFA has exactly only transition for each state/symbol pair
 - Transition function: $\delta : (K \times \Sigma) \mapsto K$
 - NFA has 0, 1 or more transitions for each state/symbol pair
 - Transition relation: $\Delta \subseteq ((K \times \Sigma) \times K)$

FR-68: NFA Definition

- A NFA is a 5-tuple $M = (K, \Sigma, \Delta, s, F)$
 - K Set of states
 - Σ Alphabet
 - $\Delta : (K \times \Sigma) \times K$ is a Transition relation
 - $s \in K$ Initial state
 - $F \subseteq K$ Final states

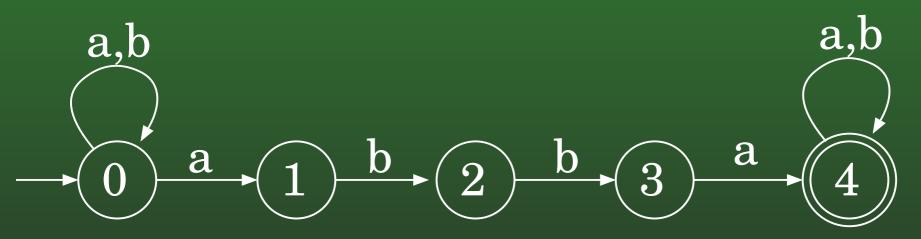
FR-69: Fun with NFA

Create an NFA for:

 All strings over {a, b} that start with a and end with b

(also create a DFA, and regular expression)

FR-70: Fun with NFA

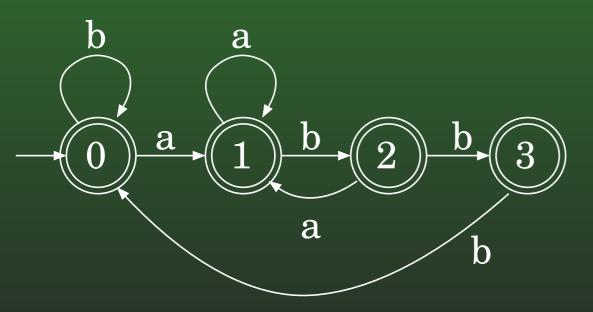

- Create an NFA for:
 - All strings over {a, b} that contain 010 or 101

FR-71: Regular Languages

- A language *L* is regular if there exists an NFA which accepts it
 - NFA for all strings over $\{a, b\}$ that contain abba

FR-72: Regular Languages

- A language L is regular if there exists an NFA which accepts it
 - NFA for all strings over $\{a, b\}$ that contain *abba*



FR-73: Regular Languages

- A language *L* is regular if there exists an NFA which accepts it
 - NFA for all strings over $\{a, b\}$ that do not contain abba

FR-74: Regular Languages

- A language L is regular if there exists an NFA which accepts it
 - NFA for all strings over $\{a, b\}$ that do not contain abba

FR-75: Regular Expression & NFA

 Give a regular expression for all strings over {a,b} that have an even number of a's, and a number of b's divisible by 3

FR-76: Pumping Lemma

- Not all languages are Regular
- *L* = all strings over {*a*, *b*, *c*} that contain more *a*'s than *b*'s and *c*'s combined

FR-77: Pumping Lemma

- To show that a language *L* is not regular, using the pumping lemma:
 - Let n be the constant of the pumping lemma
 - Create a string $w \in L$, such that |w| > n
 - For each way of breaking w = xyz such that $|xy| \le n$, |y| > 0:
 - Show that there is some i such that $xy^i z \not\in L$
 - By the pumping lemma, L is not regular

FR-78: Pumping Lemma

- Prove L = all strings over {a, b, c} that contain more a's than b's and c's combined is not regular
- Let *n* be the constant of the pumping lemma
- Consider $w = b^n a^{n+1} \in L$
- If we break w = xyz such that $|xy| \le n$, then y must be all b's. Let |y| = k
- Consider $w' = xy^2x = b^{n+k}a^n$. $w' \notin L$ for any k > 0, thus by the pumping lemma, L is not regular

FR-79: Context-Free Languages

A language is context-free if a CFG generates it
All strings over {a, b, c} with same # of a's as b's

FR-80: Context-Free Languages

- A language is context-free if a CFG generates it
 All strings over {a, b, c} with same # of a's as b's
- $S \rightarrow aSb$
- $S \rightarrow bSa$
- $S \rightarrow SS$
- $S \rightarrow cS$
- $S \rightarrow Sc$
- $S \to \epsilon$

FR-81: Context-Free Languages

A language is context-free if a CFG generates it
All strings over {a, b, c} with more a's than b's

FR-82: Context-Free Languages

- A language is context-free if a CFG generates it
 All strings over {a, b, c} with more a's than b's
- $S \rightarrow cS|Sc$
- $S \rightarrow aSb|bSa$
- $S \rightarrow aA|Aa$
- $S \rightarrow SA$
- $A \rightarrow aAb$
- $A \rightarrow bAa$
- $A \rightarrow AA$
- $A \rightarrow cA|Ac$
- $A \rightarrow aA|Aa$
- $A \rightarrow \epsilon$

FR-83: Context-Free Languages

- A language is context-free if a PDA accepts it
 - All strings over $\{a, b, c\}$ that contain more *a*'s than *b*'s and *c*'s combined

FR-84: Context-Free Languages

- A language is context-free if a PDA accepts it
 - All strings over {*a*, *b*, *c*} that contain more *a*'s than *b*'s and *c*'s combined

$$(a,\varepsilon,\varepsilon) (b,\varepsilon,X)$$

$$(a,\varepsilon,A) (b,A,\varepsilon)$$

$$(a,\varepsilon,A) (c,\varepsilon,X)$$

$$(c,A,\varepsilon)$$

$$(c,A,\varepsilon)$$

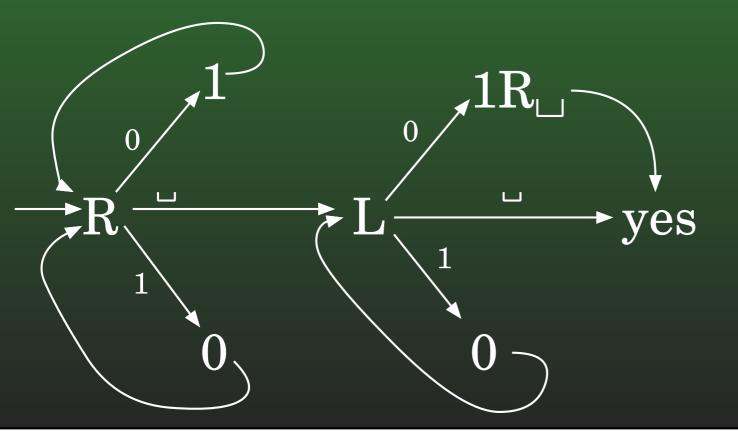
$$(\varepsilon,\varepsilon,X) = (\varepsilon,\varepsilon,X)$$

$$(\varepsilon,\varepsilon,X) = (1)$$

FR-85: Recursive Languages

- A language *L* is recursive if an always-halting Turing Machine accepts it
 - In other words, a Turing Machine decides L
- Create a Turing Machine for all strings over $\{a, b, c\}$ with an equal number of *a*'s, *b*'s and *c*'s.

FR-86: Recursive Languages


- Computing functions with TMs
 - Give a TM that computes negation, for a 2's complement binary number
 - (flip bits, add one, discard overflow)

FR-87: Recursive Languages

- Computing functions with TMs
 - Give a TM that computes negation, for a 2's complement binary number

FR-88: Recursive Languages

- Computing functions with TMs
 - Give a TM that computes negation, for a 2's complement binary number
 - (flip bits, add one, discard overflow)

FR-89: r.e. Languages

- A language *L* is recursively enumerable if there is some Turing Machine *M* that halts and accepts everything in *L*, and runs forever on everything not in *L*
- Give a TM that semi-decides $L = a^n b^n$
 - Note that this language is also context-free context-free languages are a subset of the r.e. languages

FR-90: r.e. Languages

- Enumeration Machines
 - Create a Turing Machine that enumerate the language:

L =all strings of the form wcw, $w \in (a + b)^*$

FR-91: Counter Machines

- Finite automata with a counter (never negative)
- Add one, subtract 1, check for zero
- Create a 1-counter machine for all strings over {a,b} that contain the same number of a's as b's

FR-92: Unrestricted Grammars

$G = (V, \Sigma, R, S)$

- V =Set of symbols, both terminals & non-terminals
- $\Sigma \subset V$ set of terminals (alphabet for the language being described)
- $R \subset (V^*(V \Sigma)V^* \times V^*)$ Set of rules
- $S \in (V \Sigma)$ Start symbol

FR-93: Unrestricted Grammars

- $R \subset (V^*(V \Sigma)V^* \times V^*)$ Set of rules
- In an Unrestricted Grammar, the left-hand side of a rule contains a string of terminals and non-terminals (at least one of which must be a non-terminal)
- Rules are applied just like CFGs:
 - Find a substring that matches the LHS of some rule
 - Replace with the RHS of the rule

FR-94: Unrestricted Grammars

- To generate a string with an Unrestricted Grammar:
 - Start with the initial symbol
 - While the string contains at least one non-terminal:
 - Find a substring that matches the LHS of some rule
 - Replace that substring with the RHS of the rule

FR-95: Unrestricted Grammars

- Example: Grammar for $L = \{a^n b^n c^n : n > 0\}$
 - First, generate $(ABC)^*$
 - Next, non-deterministically rearrange string
 - Finally, convert to terminals $(A \to a, B \to b,$ etc.), ensuring that string was reordered to form $a^*b^*c^*$

FR-96: Unrestricted Grammars

- Example: Grammar for $L = \{a^n b^n c^n : n > 0\}$
 - $S \rightarrow ABCS$ $S \rightarrow T_C$ $CA \rightarrow AC$ $BA \rightarrow AB$ $CB \rightarrow BC$ $CT_C \rightarrow T_C c$ $T_C \rightarrow T_B$ $BT_B \rightarrow T_B b$ $T_B \rightarrow T_A$ $AT_A \rightarrow T_A a$ $T_A \rightarrow \epsilon$

FR-97: Unrestricted Grammars

 $S \Rightarrow \overline{ABCS}$ $\Rightarrow ABCABCS$ $\Rightarrow ABACBCS$ $\Rightarrow AABCBCS$ $\Rightarrow AABBCCS$ $\Rightarrow AABBCCT_C$ $\Rightarrow AABBCT_{C}c$ $\Rightarrow AABBT_Ccc$ $\Rightarrow AABBT_Bcc$ $\Rightarrow AABT_Bbcc$ $\Rightarrow AAT_Bbbcc$

 $\Rightarrow AAT_Abbcc$ $\Rightarrow AT_Aabbcc$ $\Rightarrow T_Aaabbcc$ $\Rightarrow aabbcc$

FR-98: Unrestricted Grammars

 $\Rightarrow \overline{ABCS}$ $\Rightarrow ABCABCS$ $\Rightarrow ABCABCABCS$ $\Rightarrow ABACBCABCS$ $\Rightarrow AABCBCABCS$ $\Rightarrow AABCBACBCS$ $\Rightarrow AABCABCBCS$ $\Rightarrow AABACBCBCS$ $\Rightarrow AAABCBCBCS$ $\Rightarrow AAABBCCBCS$ $\Rightarrow AAABBCBCCS$ $\Rightarrow AAABBBCCCS$

S

 $\Rightarrow AAABBBBCCCT_{C}$ $\Rightarrow AAABBBCCT_{C}c$ $\Rightarrow AAABBBCT_{C}cc$ $\Rightarrow AAABBBT_{C}ccc$ $\Rightarrow AAABBBT_{B}ccc$ $\Rightarrow AAABBT_Bbccc$ $\Rightarrow AAABT_Bbbccc$ $\Rightarrow AAAT_Bbbbccc$ $\Rightarrow AAAT_Abbbcccc$ $\Rightarrow AAT_A abbbccc$ $\Rightarrow AT_A aabbbcccc$ $\Rightarrow T_A aaabbbcccc \Rightarrow aaabbbcccc$