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FR-0: Sets & Functions

Sets

Membership:
a ∈?{a, b, c}
a ∈?{b, c}
a ∈?{b, {a, b, c}, d}
{a, b, c} ∈?{b, {a, b, c}, d}



FR-1: Sets & Functions

Sets

Membership:
a ∈ {a, b, c}
a 6∈ {b, c}
a 6∈ {b, {a, b, c}, d}
{a, b, c} ∈ {b, {a, b, c}, d}



FR-2: Sets & Functions

Sets

Subset:
{a} ⊆?{a, b, c}
{a} ⊆?{b, c, {a}}
{a, b} ⊆?{a, b, c, d}
{a, b} ⊆?{a, b}
{} ⊆ {a, b, c, d}



FR-3: Sets & Functions

Sets

Subset:
{a} ⊆ {a, b, c}
{a} 6⊆ {b, c, {a}}
{a, b} ⊆ {a, b, c, d}
{a, b} ⊆ {a, b}
{} ⊆ {a, b, c, d}



FR-4: Sets & Functions

Sets

Cross Product:
A× B = {(a, b) : a ∈ A, b ∈ B}
{a, b} × {a, b} =
{a, b} × {{a, b}} =



FR-5: Sets & Functions

Sets

Cross Product:
A× B = {(a, b) : a ∈ A, b ∈ B}
{a, b} × {a, b} = {(a, a), (a, b), (b, a), (b, b)}
{a, b} × {{a, b}} = {(a, {a, b}), (b, {a, b})}



FR-6: Sets & Functions

Sets

Power Set:
2A = {S : S ⊆ A}
2{a,b} =
2{a} =
22

{a}

=



FR-7: Sets & Functions

Sets

Power Set:
2A = {S : S ⊆ A}
2{a,b} = {{}, {a}, {b}, {a, b}}
2{a} = {{}, {a}}

22
{a}

= {{}, {{}}, {{a}}, {{}, {a}}



FR-8: Sets – Partition

Π is a partition of S if:

Π ⊂ 2S

{} 6∈ Π

∀(X,Y ∈ Π), X 6= Y =⇒ X ∩ Y = {}
⋃

Π = S

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}
{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}



FR-9: Sets – Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

All the partitions of the set {a, b, c}?



FR-10: Sets – Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

All the partitions of the set {a, b, c}?

{{a, b, c}}, {{a, b}, {c}}, {{a, c}, {b}}, {{a},{b, c}},
{{a}, {b}, {c}}



FR-11: Sets & Functions

Relation

A relation R is a set of ordered pairs

That’s all that a relation is

Relation Graphs



FR-12: Sets & Functions

Properties of Relations

Reflexive

Symmetric

Transitive

Antisymmetric

Equivalence Relation: Reflexive, Symmetric,
Transitive

Partial Order: Reflexive, Antisymmetric, Transitive

Total Order: Partial order, for each a, a′ ∈ A, either
(a, a′) ∈ R or (a′, a) ∈ R



FR-13: Sets & Functions

What does a graph of an Equivalence relation look
like?

What does a graph of a Total Order look like

What does a graph of a Partial Order look like?



FR-14: Closure

A set A ⊆ B is closed under a relation
R ⊆ ((B × B)× B) if:

a1, a2 ∈ A ∧ ((a1, a2), c) ∈ R =⇒ c ∈ A

That is, if a1 and a2 are both in A, and
((a1, a2), c) is in the relation, then c is also in A

N is closed under addtion

N is not closed under subtraction or division



FR-15: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!



FR-16: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!

Example:

R ⊆ A×A

R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

If R is closed under R′, then . . .



FR-17: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!

Example:

R ⊆ A×A

R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

If R is closed under R′, then R is transitive!



FR-18: Closure

Reflexive closure of a relation R ⊆ A× A is the
smallest possible superset of R which is reflexive

Add self-loop to every node in relation

Add (a,a) to R for every a ∈ A

Transitive Closure of a relation R ⊆ A× A is
the smallest possible superset of R which is
transitive

Add direct link for every path of length 2.

∀(a, b, c ∈ A) if (a, b) ∈ R ∧ (b, c) ∈ R add

(a, c) to R.

(examples on board)



FR-19: Sets & Functions

Functions

Relation R over A× B

For each a ∈ A:
Exactly one element (x, y) ∈ R with x = a



FR-20: Sets & Functions

For a function f over (A×A), what does the graph
look like?

For a function f over (A× B), what does the
graph look like?



FR-21: Sets & Functions

Functions

one-to-one: f(a) 6= f(a′) when a 6= a′ (nothing
is mapped to twice)

onto: for each b ∈ B, ∃a such that f(a) = b
(everything is mapped to)

bijection: Both one-to-one and onto



FR-22: Sets & Functions

For a function f over (A× B)

What does the graph look like for a one-to-one
function?

What does the graph look like for an onto
function?

What does the graph look like for a bijection?



FR-23: Sets & Functions

Infinite sets

Countable, Countably infinite
Bijection with the Natural Numbers

Uncountable, uncountable infinite
Infinite
No bijection with the Natural Numbers



FR-24: Infinite Sets

We can show that a set is countable infinite by
giving a bjiection between that set an the natural
numbers

Same thing as as imposing an ordering on an
infinite set



FR-25: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Even elements of N?



FR-26: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Even elements of N?

f(x) = 2x



FR-27: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Integers (Z)?



FR-28: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Integers (Z)?

f(x) = ⌈x

2
⌉ ∗ (−1)x

-4    -3    -2    -1    0    1    2    3    4 

...



FR-29: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Union of 3 (disjoint) countable sets A, B, C?



FR-30: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Union of 3 (disjoint) countable sets A, B, C?
a0   a1   a2   a3   a4  ...

b0   b1   b2   b3   b4  ...

c0   c1   c2   c3   c4  ...

f(x) =











ax

3
if x mod 3 = 0

bx−1

3

if x mod 3 = 1

cx−2

3

if x mod 3 = 2



FR-31: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

N×N?
(0,0)    (0,1)    (0,2)    (0,3)    (0,4)   ...

(1,0)    (1,1)    (1,2)    (1,3)    (1,4)   ...

(2,0)    (2,1)    (2,2)    (2,3)    (2,4)   ...

(3,0)    (3,1)    (3,2)    (3,3)    (3,4)   ...

(4,0)    (4,1)    (4,2)    (4,3)    (4,4)   ...

...

......

...

...

...



FR-32: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

N×N?
(0,0)    (0,1)    (0,2)    (0,3)    (0,4)   ...

(1,0)    (1,1)    (1,2)    (1,3)    (1,4)   ...

(2,0)    (2,1)    (2,2)    (2,3)    (2,4)   ...

(3,0)    (3,1)    (3,2)    (3,3)    (3,4)   ...

(4,0)    (4,1)    (4,2)    (4,3)    (4,4)   ...

...

......

...

...

...
f((x, y)) = (x+y)∗(x+y+1)

2
+ x



FR-33: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Real numbers between 0 and 1 (exclusive)?



FR-34: Uncountable R

Proof by contradiction

Assume that R between 0 and 1 (exclusive) is
countable

(that is, assume that there is some bijection
from N to R between 0 and 1)

Show that this leads to a contradiction
Find some element of R between 0 and 1
that is not mapped to by any element in N



FR-35: Uncountable R

Assume that there is some bijection from N to R
between 0 and 1

0      0.3412315569...
1      0.0123506541...
2      0.1143216751...
3      0.2839143215...
4      0.2311459412...
5      0.8381441234...
6      0.7415296413...

...

...



FR-36: Uncountable R

Assume that there is some bijection from N to R
between 0 and 1

0      0.3412315569...
1      0.0123506541...
2      0.1143216751...
3      0.2839143215...
4      0.2311459412...
5      0.8381441234...
6      0.7415296413...

...

...

...

Consider: 0.425055...



FR-37: Formal Languages

Alphabet Σ: Set of symbols

{0, 1}, {a, b, c}, etc

String w: Sequence of symbols

cat, dog, firehouse etc

Language L: Set of strings

{cat, dog, firehouse}, {a, aa, aaa, . . .}, etc

Language class: Set of Languages

Regular languages, P, NP, etc.



FR-38: Formal Languages

Language Hierarchy.

Regular 

Context Free 

Polynomial

NP

Recursive

Recursively Enumerable

Not Recursively Enumerable



FR-39: Regular Expressions

Regular expressions are a way to describe formal
languages

Regular expressions are defined recursively

Base case – simple regular expressions

Recursive case – how to build more complex
regular expressions from simple regular
expressions



FR-40: Regular Expressions

ǫ is a regular expression, representing {ǫ}

∅ is a regular expression, representing {}

∀a ∈ Σ, a is a regular expression representing {a}

if r1 and r2 are regular expressions, then (r1r2) is a
regular expression

L[(r1r2)] = L[r1] ◦ L[r2]

if r1 and r2 are regular expressions, then (r1 + r2)
is a regular expression

L[(r1 + r2)] = L[r1] ∪ L[r2]

if r is regular expressions, then (r∗) is a regular
expression

L[(r∗)] = (L[r])∗



FR-41: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expres-

sions: (a+b)(a+b))



FR-42: Regular Expressions

Intuitive Reading of Regular Expressions

Concatenation == “is followed by”

+ == “or”

* == “zero or more occurances”

(a+b)(a+b)(a+b)

(a+b)*

aab(aa)*



FR-43: Regular Languages

A language L is regular if there exists a regular
expression which generates it

Give a regular expression for:

All strings over {a, b} that have an odd # of a’s



FR-44: Regular Languages

A language L is regular if there exists a regular
expression which generates it

Give a regular expression for:

All strings over {a, b} that have an odd # of a’s

b∗a(b∗ab∗a)∗b∗

All strings over {a, b} that contain exactly two
occurrences of bb (bbb counts as 2
occurrences!)



FR-45: Regular Languages

A language L is regular if there exists a regular
expression which generates it

Give a regular expression for:

All strings over {a, b} that have an odd # of a’s

b∗a(b∗ab∗a)∗b∗

All strings over {a, b} that contain exactly two
occurrences of bb (bbb counts as 2
occurrences!)
a∗(baa∗)∗bb(aa∗b)∗aa∗bb(aa∗b)∗a∗ +
a∗(baa∗)∗bbb(aa∗b)∗a∗



FR-46: Regular Languages

All strings over {0, 1} that begin (or end) with 11

All strings over {0, 1} that begin (or end) with 11,
but not both



FR-47: Regular Languages

All strings over {0, 1} that begin (or end) with 11

11 (0+1)* 11 + 11

All strings over {0, 1} that begin (or end) with 11,
but not both

11(0+1)*0 + 11(0+1)*01 + 0(0+1)*11 +
10(0+1*)11



FR-48: Regular Languages

Shortest string not described by following regular
expressions?

a*b*a*b*

a*(ab)*(ba)*b*a*

a*b*(ab)*b*a*



FR-49: Regular Languages

Shortest string not described by following regular
expressions?

a*b*a*b*
baba

a*(ab)*(ba)*b*a*
baab

a*b*(ab)*b*a*
baab



FR-50: Regular Languages

English descriptions of following regular
expressions:

(aa+aaa)*

b(a+b)*b + a(a+b)*a + a + b

a*(baa*)*bb(aa*b)*a*



FR-51: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings with exactly 2 occurrences of
bb



FR-52: DFA Definition

A DFA is a 5-tuple M = (K,Σ, δ, s, F )

K Set of states

Σ Alphabet

δ : (K × Σ) 7→ K is a Transition function

s ∈ K Initial state

F ⊆ K Final states



FR-53: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings with exactly 2 occurrences of
bb

b

a

0
b

1
a

2 4 6
b

a

b
5

a

7
a

b

a
3

a,b

b

b



FR-54: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings over {0,1} that start and end
with 111



FR-55: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings over {0,1} that start and end
with 111

0 1 2 4 6
0

3

0,1

1
5

1 1

1

1

0

0

64

1

1

0

1

0



FR-56: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings over {0,1} that start with 110,
end with 011



FR-57: Regular Languages

A language L is regular if there exists a DFA which
accepts it

DFA for all strings over {0,1} that start with 110,
end with 011

0 1 2 4 6
1

3

0,1

1
5

1 1

0

0

0
0

7

1

0
10 0

1



FR-58: Regular Languages

Give a DFA for all strings over {0,1} that begin or
end with 11

Give a DFA for all strings over {0,1} that begin or
end with 11 (but not both)



FR-59: Regular Languages

Give a DFA for all strings over {0,1} that contain
101010

Give a DFA for all strings over {0,1} that contain
101 or 010

Give a DFA for all strings over {0,1} that contain
010 and 101



FR-60: DFA Configuration & ⊢M

Way to describe the computation of a DFA

Configuration: What state the DFA is currently
in, and what string is left to process

∈ K × Σ∗

(q2, abba) Machine is in state q2, has abba left to
process

(q8, bba) Machine is in state q8, has bba left to
process

(q4, ǫ) Machine is in state q4 at the end of the
computation (accept iff q4 ∈ F )



FR-61: DFA Configuration & ⊢M

Way to describe the computation of a DFA

Configuration: What state the DFA is currently
in, and what string is left to process

∈ K × Σ∗

Binary relation ⊢M : What machine M yields in one
step

⊢M⊆ (K × Σ∗)× (K × Σ∗)

⊢M= {((q1, aw), (q2, w)) : q1, q2 ∈ KM , w ∈
Σ∗

M , a ∈ ΣM , ((q1, a), q2) ∈ δM}



FR-62: DFA Configuration & ⊢M

Given the following machine M :

a

a,b

b

a,b

0

1

2

((q0, abba), (q2, bba)) ∈⊢M

can also be written (q0, abba) ⊢M (q2, bba)



FR-63: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 11101) ⊢M (q1, 1101)

⊢M (q2, 101)

⊢M (q3, 01)

⊢M (q0, 1)

⊢M (q1, ǫ)



FR-64: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 10111) ⊢M (q1, 0111)

⊢M (q0, 111)

⊢M (q1, 11)

⊢M (q2, 1)

⊢M (q3, ǫ)



FR-65: DFA Configuration & ⊢∗
M

⊢∗
M is the reflexive, transitive closure of ⊢M

Smallest superset of ⊢M that is both reflexive
and transitive

“yields in 0 or more steps”

Machine M accepts string w if:

(sM , w) ⊢∗
M (f, ǫ) for some f ∈ FM



FR-66: DFA & Languages

Language accepted by a machine M = L[M ]

{w : (sM , w) ⊢∗
M (f, ǫ) for some f ∈ FM}

DFA Languages, LDFA

Set of all languages that can be defined by a
DFA

LDFA = {L : ∃M,L[M ] = L}

To think about: How does LDFA = LREG



FR-67: NFA Definition

Difference between a DFA and an NFA

DFA has exactly only transition for each
state/symbol pair

Transition function: δ : (K × Σ) 7→ K

NFA has 0, 1 or more transitions for each
state/symbol pair

Transition relation: ∆ ⊆ ((K × Σ)×K)



FR-68: NFA Definition

A NFA is a 5-tuple M = (K,Σ,∆, s, F )

K Set of states

Σ Alphabet

∆ : (K × Σ)×K is a Transition relation

s ∈ K Initial state

F ⊆ K Final states



FR-69: Fun with NFA

Create an NFA for:

All strings over {a, b} that start with a and end with
b

(also create a DFA, and regular expression)



FR-70: Fun with NFA

Create an NFA for:

All strings over {a, b} that contain 010 or 101



FR-71: Regular Languages

A language L is regular if there exists an NFA
which accepts it

NFA for all strings over {a, b} that contain abba



FR-72: Regular Languages

A language L is regular if there exists an NFA
which accepts it

NFA for all strings over {a, b} that contain abba

0 1 2 3 4
aa b b

a,b a,b



FR-73: Regular Languages

A language L is regular if there exists an NFA
which accepts it

NFA for all strings over {a, b} that do not
contain abba



FR-74: Regular Languages

A language L is regular if there exists an NFA
which accepts it

NFA for all strings over {a, b} that do not
contain abba

0 1 2 3
a b b

b a

a
b



FR-75: Regular Expression & NFA

Give a regular expression for all strings over {a,b}
that have an even number of a’s, and a number of
b’s divisible by 3



FR-76: Pumping Lemma

Not all languages are Regular

L = all strings over {a, b, c} that contain more a’s
than b’s and c’s combined



FR-77: Pumping Lemma

To show that a language L is not regular, using the
pumping lemma:

Let n be the constant of the pumping lemma

Create a string w ∈ L, such that |w| > n

For each way of breaking w = xyz such that

|xy| ≤ n, |y| > 0:

Show that there is some i such that xyiz 6∈ L

By the pumping lemma, L is not regular



FR-78: Pumping Lemma

Prove L = all strings over {a, b, c} that contain
more a’s than b’s and c’s combined is not regular

Let n be the constant of the pumping lemma

Consider w = bnan+1 ∈ L

If we break w = xyz such that |xy| ≤ n, then y

must be all b’s. Let |y| = k

Consider w′ = xy2x = bn+kan. w′ 6∈ L for any
k > 0, thus by the pumping lemma, L is not regular



FR-79: Context-Free Languages

A language is context-free if a CFG generates it

All strings over {a, b, c} with same # of a’s as b’s



FR-80: Context-Free Languages

A language is context-free if a CFG generates it

All strings over {a, b, c} with same # of a’s as b’s

S → aSb

S → bSa

S → SS

S → cS

S → Sc

S → ǫ



FR-81: Context-Free Languages

A language is context-free if a CFG generates it

All strings over {a, b, c} with more a’s than b’s



FR-82: Context-Free Languages

A language is context-free if a CFG generates it

All strings over {a, b, c} with more a’s than b’s

S → cS|Sc

S → aSb|bSa

S → aA|Aa

S → SA

A → aAb

A → bAa

A → AA

A → cA|Ac

A → aA|Aa

A → ǫ



FR-83: Context-Free Languages

A language is context-free if a PDA accepts it

All strings over {a, b, c} that contain more a’s
than b’s and c’s combined



FR-84: Context-Free Languages

A language is context-free if a PDA accepts it

All strings over {a, b, c} that contain more a’s
than b’s and c’s combined

0 1
(ε,ε,X)

(a,ε,ε)

(a,ε,A)

(a,X,ε)

(b,ε,X)

(b,A,ε)

(c,ε,X)

(c,A,ε)



FR-85: Recursive Languages

A language L is recursive if an always-halting
Turing Machine accepts it

In other words, a Turing Machine decides L

Create a Turing Machine for all strings over

{a, b, c} with an equal number of a’s, b’s and c’s.



FR-86: Recursive Languages

Computing functions with TMs

Give a TM that computes negation, for a 2’s
complement binary number

(flip bits, add one, discard overflow)



FR-87: Recursive Languages

Computing functions with TMs

Give a TM that computes negation, for a 2’s
complement binary number



FR-88: Recursive Languages

Computing functions with TMs

Give a TM that computes negation, for a 2’s
complement binary number

(flip bits, add one, discard overflow)

R

1

0

L

0

1R

0

0

1
1

yes



FR-89: r.e. Languages

A language L is recursively enumerable if there is
some Turing Machine M that halts and accepts
everything in L, and runs forever on everything not
in L

Give a TM that semi-decides L = anbn

Note that this language is also context-free –
context-free languages are a subset of the r.e.
languages



FR-90: r.e. Languages

Enumeration Machines

Create a Turing Machine that enumerate the
language:

L = all strings of the form wcw, w ∈ (a+ b)∗



FR-91: Counter Machines

Finite automata with a counter (never negative)

Add one, subtract 1, check for zero

Create a 1-counter machine for all strings over
{a,b} that contain the same number of a’s as b’s



FR-92: Unrestricted Grammars

G = (V,Σ, R, S)

V = Set of symbols, both terminals & non-terminals

Σ ⊂ V set of terminals (alphabet for the language
being described)

R ⊂ (V ∗(V − Σ)V ∗ × V ∗) Set of rules

S ∈ (V − Σ) Start symbol



FR-93: Unrestricted Grammars

R ⊂ (V ∗(V − Σ)V ∗ × V ∗) Set of rules

In an Unrestricted Grammar, the left-hand side of a
rule contains a string of terminals and
non-terminals (at least one of which must be a
non-terminal)

Rules are applied just like CFGs:

Find a substring that matches the LHS of some
rule

Replace with the RHS of the rule



FR-94: Unrestricted Grammars

To generate a string with an Unrestricted
Grammar:

Start with the initial symbol

While the string contains at least one
non-terminal:

Find a substring that matches the LHS of
some rule
Replace that substring with the RHS of the
rule



FR-95: Unrestricted Grammars

Example: Grammar for L = {anbncn : n > 0}

First, generate (ABC)∗

Next, non-deterministically rearrange string

Finally, convert to terminals (A → a,B → b,
etc.), ensuring that string was reordered to form
a∗b∗c∗



FR-96: Unrestricted Grammars

Example: Grammar for L = {anbncn : n > 0}

S → ABCS

S → TC

CA → AC

BA → AB

CB → BC

CTC → TCc

TC → TB

BTB → TBb

TB → TA

ATA → TAa

TA → ǫ



FR-97: Unrestricted Grammars

S ⇒ ABCS ⇒ AATAbbcc

⇒ ABCABCS ⇒ ATAabbcc

⇒ ABACBCS ⇒ TAaabbcc

⇒ AABCBCS ⇒ aabbcc

⇒ AABBCCS

⇒ AABBCCTC

⇒ AABBCTCc

⇒ AABBTCcc

⇒ AABBTBcc

⇒ AABTBbcc

⇒ AATBbbcc



FR-98: Unrestricted Grammars

S ⇒ ABCS ⇒ AAABBBBCCCTC

⇒ ABCABCS ⇒ AAABBBCCTCc

⇒ ABCABCABCS ⇒ AAABBBCTCcc

⇒ ABACBCABCS ⇒ AAABBBTCccc

⇒ AABCBCABCS ⇒ AAABBBTBccc

⇒ AABCBACBCS ⇒ AAABBTBbccc

⇒ AABCABCBCS ⇒ AAABTBbbccc

⇒ AABACBCBCS ⇒ AAATBbbbccc

⇒ AAABCBCBCS ⇒ AAATAbbbccc

⇒ AAABBCCBCS ⇒ AATAabbbccc

⇒ AAABBCBCCS ⇒ ATAaabbbccc

⇒ AAABBBCCCS ⇒ TAaaabbbccc ⇒ aaabbbccc
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