FR-0: Sets \& Functions

- Sets
- Membership:
- $a \in ?\{a, b, c\}$
- $a \in ?\{b, c\}$
- $a \in ?\{b,\{a, b, c\}, d\}$
- $\{a, b, c\} \in ?\{b,\{a, b, c\}, d\}$

FR-1: Sets \& Functions

- Sets
- Membership:
- $a \in\{a, b, c\}$
- $a \notin\{b, c\}$
- $a \notin\{b,\{a, b, c\}, d\}$
- $\{a, b, c\} \in\{b,\{a, b, c\}, d\}$

FR-2: Sets \& Functions

- Sets
- Subset:
- $\{a\} \subseteq ?\{a, b, c\}$
- $\{a\} \subseteq ?\{b, c,\{a\}\}$
- $\{a, b\} \subseteq ?\{a, b, c, d\}$
- $\{a, b\} \subseteq ?\{a, b\}$
- $\} \subseteq\{a, b, c, d\}$

FR-3: Sets \& Functions

- Sets
- Subset:
- $\{a\} \subseteq\{a, b, c\}$
- $\{a\} \nsubseteq\{b, c,\{a\}\}$
- $\{a, b\} \subseteq\{a, b, c, d\}$
- $\{a, b\} \subseteq\{a, b\}$
- $\} \subseteq\{a, b, c, d\}$

FR-4: Sets \& Functions

- Sets
- Cross Product:
- $A \times B=\{(a, b): a \in A, b \in B\}$
- $\{a, b\} \times\{a, b\}=$
- $\{a, b\} \times\{\{a, b\}\}=$

FR-5: Sets \& Functions

- Sets
- Cross Product:
- $A \times B=\{(a, b): a \in A, b \in B\}$
- $\{a, b\} \times\{a, b\}=\{(a, a),(a, b),(b, a),(b, b)\}$
- $\{a, b\} \times\{\{a, b\}\}=\{(a,\{a, b\}),(b,\{a, b\})\}$

FR-6: Sets \& Functions

- Sets
- Power Set:
- $2^{A}=\{S: S \subseteq A\}$
- $2^{\{a, b\}}=$
- $2^{\{a\}}=$
- $2^{2^{\{a\}}}=$

FR-7: Sets \& Functions

- Sets
- Power Set:
- $2^{A}=\{S: S \subseteq A\}$
- $2^{\{a, b\}}=\{\{ \},\{a\},\{b\},\{a, b\}\}$
- $2^{\{a\}}=\{\{ \},\{a\}\}$
- $2^{2^{\{a\}}}=\{\{ \},\{\{ \}\},\{\{a\}\},\{\{ \},\{a\}\}$

FR-8: Sets - Partition

Π is a partition of S if:

- $\Pi \subset 2^{S}$
- $\} \notin \Pi$
- $\forall(X, Y \in \Pi), X \neq Y \Longrightarrow X \cap Y=\{ \}$
- $\cup \Pi=S$
$\{\{a, c\},\{b, d, e\},\{f\}\}$ is a partition of $\{a, b, c, d, e, f\}$
$\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}\}$ is a partition of $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$
$\{\{a, b, c\},\{d, e, f\}\}$ is a partition of $\{a, b, c, d, e, f\}$
FR-9: Sets - Partition
In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.
- All the partitions of the set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$?

FR-10: Sets - Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

- All the partitions of the $\operatorname{set}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$?
- $\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\},\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\},\{\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\},\{\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\},\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}\}$

FR-11: Sets \& Functions

- Relation
- A relation R is a set of ordered pairs
- That's all that a relation is
- Relation Graphs

FR-12: Sets \& Functions

- Properties of Relations
- Reflexive
- Symmetric
- Transitive
- Antisymmetric
- Equivalence Relation: Reflexive, Symmetric, Transitive
- Partial Order: Reflexive, Antisymmetric, Transitive
- Total Order: Partial order, for each $a, a^{\prime} \in A$, either $\left(a, a^{\prime}\right) \in R$ or $\left(a^{\prime}, a\right) \in R$

FR-13: Sets \& Functions

- What does a graph of an Equivalence relation look like?
- What does a graph of a Total Order look like
- What does a graph of a Partial Order look like?

FR-14: Closure

- A set $A \subseteq B$ is closed under a relation $R \subseteq((B \times B) \times B)$ if:
- $a_{1}, a_{2} \in A \wedge\left(\left(a_{1}, a_{2}\right), c\right) \in R \Longrightarrow c \in A$
- That is, if a_{1} and a_{2} are both in A, and $\left(\left(a_{1}, a_{2}\right), c\right)$ is in the relation, then c is also in A
- \mathbf{N} is closed under addtion
- \mathbf{N} is not closed under subtraction or division

FR-15: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!

FR-16: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!
- Example:
- $R \subseteq A \times A$
- $R^{\prime}=\{(((a, b),(b, c)),(a, c)): a, b, c \in A\}$
- If R is closed under R^{\prime}, then ...

FR-17: Closure

- Relations are also sets (of ordered pairs)
- We can talk about a relation R being closed over another relation R^{\prime}
- Each element of R^{\prime} is an ordered triple of ordered pairs!
- Example:
- $R \subseteq A \times A$
- $R^{\prime}=\{(((a, b),(b, c)),(a, c)): a, b, c \in A\}$
- If R is closed under R^{\prime}, then R is transitive!

FR-18: Closure

- Reflexive closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is reflexive
- Add self-loop to every node in relation
- Add (a,a) to R for every $a \in A$
- Transitive Closure of a relation $R \subseteq A \times A$ is the smallest possible superset of R which is transitive
- Add direct link for every path of length 2.
- $\forall(a, b, c \in A)$ if $(a, b) \in R \wedge(b, c) \in R$ add (a, c) to R.
(examples on board) FR-19: Sets \& Functions
- Functions
- Relation R over $A \times B$
- For each $a \in A$:
- Exactly one element $(x, y) \in R$ with $x=a$

FR-20: Sets \& Functions

- For a function f over $(A \times A)$, what does the graph look like?
- For a function f over $(A \times B)$, what does the graph look like?

FR-21: Sets \& Functions

- Functions
- one-to-one: $f(a) \neq f\left(a^{\prime}\right)$ when $a \neq a^{\prime}$ (nothing is mapped to twice)
- onto: for each $b \in B, \exists a$ such that $f(a)=b$ (everything is mapped to)
- bijection: Both one-to-one and onto

FR-22: Sets \& Functions

- For a function f over $(A \times B)$
- What does the graph look like for a one-to-one function?
- What does the graph look like for an onto function?
- What does the graph look like for a bijection?

FR-23: Sets \& Functions

- Infinite sets
- Countable, Countably infinite
- Bijection with the Natural Numbers
- Uncountable, uncountable infinite
- Infinite
- No bijection with the Natural Numbers

FR-24: Infinite Sets

- We can show that a set is countable infinite by giving a bjiection between that set an the natural numbers
- Same thing as as imposing an ordering on an infinite set

FR-25: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Even elements of \mathbf{N} ?

FR-26: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Even elements of \mathbf{N} ?
- $f(x)=2 x$

FR-27: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Integers (Z)?

FR-28: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Integers (Z)?
- $f(x)=\left\lceil\frac{x}{2}\right\rceil *(-1)^{x}$

FR-29: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Union of 3 (disjoint) countable sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$?

FR-30: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Union of 3 (disjoint) countable sets A, B, C?

- $f(x)= \begin{cases}a_{\frac{x}{3}} & \text { if } \mathrm{x} \bmod 3=0 \\ b_{\frac{x-1}{3}} & \text { if } \mathrm{x} \bmod 3=1 \\ c_{\frac{x-2}{3}} & \text { if } \mathrm{x} \bmod 3=2\end{cases}$

FR-31: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- $\mathbf{N} \times \mathbf{N}$?

$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	\ldots
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	\ldots
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	\ldots
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	\ldots
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

FR-32: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- $\mathbf{N} \times \mathbf{N}$?

FR-33: Countable Sets

- A set is countable infinite (or just countable) if it is equinumerous with \mathbf{N}.
- Real numbers between 0 and 1 (exclusive)?

FR-34: Uncountable R

- Proof by contradiction
- Assume that R between 0 and 1 (exclusive) is countable
- (that is, assume that there is some bijection from \mathbf{N} to \mathbf{R} between 0 and 1)
- Show that this leads to a contradiction
- Find some element of \mathbf{R} between 0 and 1 that is not mapped to by any element in \mathbf{N}

FR-35: Uncountable R

- Assume that there is some bijection from \mathbf{N} to \mathbf{R} between 0 and 1

0 0.3412315569...
1 0.0123506541...
2 0.1143216751...
3 0.2839143215...
4 0.2311459412...
5 0.8381441234...
6 0.7415296413...
$\vdots \quad \vdots$
FR-36: Uncountable R

- Assume that there is some bijection from \mathbf{N} to \mathbf{R} between 0 and 1

0 0.3412315569...
1 0.0123506541...
2 0.1143216751...
3 0.2899 43215...
4 0.2311459412...
5 0.8381441234...
6 0.7415296413...
! \quad :
Consider: 0.425055...
FR-37: Formal Languages

- Alphabet Σ : Set of symbols
- $\{0,1\},\{a, b, c\}$, etc
- String w : Sequence of symbols
- cat, dog, firehouse etc
- Language L : Set of strings
- \{cat, dog, firehouse $\},\{\mathrm{a}, \mathrm{aa}$, aaa, $\ldots\}$, etc
- Language class: Set of Languages
- Regular languages, $\mathbf{P}, \mathbf{N P}$, etc.

FR-38: Formal Languages

- Language Hierarchy.

FR-39: Regular Expressions

- Regular expressions are a way to describe formal languages
- Regular expressions are defined recursively
- Base case - simple regular expressions
- Recursive case - how to build more complex regular expressions from simple regular expressions

FR-40: Regular Expressions

- ϵ is a regular expression, representing $\{\epsilon\}$
- \emptyset is a regular expression, representing $\}$
- $\forall \mathrm{a} \in \Sigma, \mathrm{a}$ is a regular expression representing $\{\mathrm{a}\}$
- if r_{1} and r_{2} are regular expressions, then $\left(r_{1} r_{2}\right)$ is a regular expression
- $L\left[\left(r_{1} r_{2}\right)\right]=L\left[r_{1}\right] \circ L\left[r_{2}\right]$
- if r_{1} and r_{2} are regular expressions, then $\left(r_{1}+r_{2}\right)$ is a regular expression
- $L\left[\left(r_{1}+r_{2}\right)\right]=L\left[r_{1}\right] \cup L\left[r_{2}\right]$
- if r is regular expressions, then $\left(r^{*}\right)$ is a regular expression
- $L\left[\left(r^{*}\right)\right]=(L[r])^{*}$

FR-41: r.e. Precedence

From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +
$a b^{*} c+e=\left(a\left(b^{*}\right) c\right)+e$
(We will still need parentheses for some regular expressions: $(a+b)(a+b)$) FR-42: Regular Expressions

- Intuitive Reading of Regular Expressions
- Concatenation $==$ "is followed by"
- + == "or"
- * == "zero or more occurances"
- $(a+b)(a+b)(a+b)$
- $(a+b)^{*}$
- $\operatorname{aab}(\mathrm{aa})^{*}$

FR-43: Regular Languages

- A language L is regular if there exists a regular expression which generates it
- Give a regular expression for:
- All strings over $\{a, b\}$ that have an odd \# of a 's

FR-44: Regular Languages

- A language L is regular if there exists a regular expression which generates it
- Give a regular expression for:
- All strings over $\{a, b\}$ that have an odd \# of a 's $b^{*} a\left(b^{*} a b^{*} a\right)^{*} b^{*}$
- All strings over $\{a, b\}$ that contain exactly two occurrences of $b b$ ($b b b$ counts as 2 occurrences!)

FR-45: Regular Languages

- A language L is regular if there exists a regular expression which generates it
- Give a regular expression for:
- All strings over $\{a, b\}$ that have an odd \# of a 's $b^{*} a\left(b^{*} a b^{*} a\right)^{*} b^{*}$
- All strings over $\{a, b\}$ that contain exactly two occurrences of $b b$ ($b b b$ counts as 2 occurrences!) $a^{*}\left(b a a^{*}\right)^{*} b b\left(a a^{*} b\right)^{*} a a^{*} b b\left(a a^{*} b\right)^{*} a^{*}+a^{*}\left(b a a^{*}\right)^{*} b b b\left(a a^{*} b\right)^{*} a^{*}$

FR-46: Regular Languages

- All strings over $\{0,1\}$ that begin (or end) with 11
- All strings over $\{0,1\}$ that begin (or end) with 11 , but not both

FR-47: Regular Languages

- All strings over $\{0,1\}$ that begin (or end) with 11
- $11(0+1) * 11+11$
- All strings over $\{0,1\}$ that begin (or end) with 11, but not both
- $11(0+1) * 0+11(0+1) * 01+0(0+1) * 11+10(0+1 *) 11$

FR-48: Regular Languages

- Shortest string not described by following regular expressions?
- $a^{*} b^{*} a^{*} b^{*}$
- $a^{*}(a b) *(b a)^{*} b^{*} a^{*}$
- $a^{*} b^{*}(a b) * b^{*} a^{*}$

FR-49: Regular Languages

- Shortest string not described by following regular expressions?
- $a^{*} b^{*} a^{*} b^{*}$
- baba
- $a^{*}(a b) *(b a) * b^{*} a^{*}$
- baab
- $a^{*} b^{*}(a b) * b^{*} a^{*}$
- baab

FR-50: Regular Languages

- English descriptions of following regular expressions:
- (aa+aaa)*
- $b(a+b) * b+a(a+b) * a+a+b$
- $a^{*}\left(b a a^{*}\right) * b b\left(a a^{*} b\right) * a^{*}$

FR-51: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings with exactly 2 occurrences of $b b$

FR-52: DFA Definition

- A DFA is a 5-tuple $M=(K, \Sigma, \delta, s, F)$
- K Set of states
- Σ Alphabet
- $\delta:(K \times \Sigma) \mapsto K$ is a Transition function
- $s \in K$ Initial state
- $F \subseteq K$ Final states

FR-53: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings with exactly 2 occurrences of $b b$

FR-54: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings over $\{0,1\}$ that start and end with 111

FR-55: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings over $\{0,1\}$ that start and end with 111

FR-56: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings over $\{0,1\}$ that start with 110 , end with 011

FR-57: Regular Languages

- A language L is regular if there exists a DFA which accepts it
- DFA for all strings over $\{0,1\}$ that start with 110 , end with 011

FR-58: Regular Languages

- Give a DFA for all strings over $\{0,1\}$ that begin or end with 11
- Give a DFA for all strings over $\{0,1\}$ that begin or end with 11 (but not both)

FR-59: Regular Languages

- Give a DFA for all strings over $\{0,1\}$ that contain 101010
- Give a DFA for all strings over $\{0,1\}$ that contain 101 or 010
- Give a DFA for all strings over $\{0,1\}$ that contain 010 and 101

FR-60: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- $\left(q_{2}, a b b a\right)$ Machine is in state q_{2}, has $a b b a$ left to process
- $\left(q_{8}, b b a\right)$ Machine is in state q_{8}, has $b b a$ left to process
- $\left(q_{4}, \epsilon\right)$ Machine is in state q_{4} at the end of the computation (accept iff $q_{4} \in F$)

FR-61: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

- Way to describe the computation of a DFA
- Configuration: What state the DFA is currently in, and what string is left to process
- $\in K \times \Sigma^{*}$
- Binary relation \vdash_{M} : What machine M yields in one step
- $\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right) \times\left(K \times \Sigma^{*}\right)$
- $\vdash_{M}=\left\{\left(\left(q_{1}, a w\right),\left(q_{2}, w\right)\right): q_{1}, q_{2} \in K_{M}, w \in \Sigma_{M}^{*}, a \in \Sigma_{M},\left(\left(q_{1}, a\right), q_{2}\right) \in \delta_{M}\right\}$

FR-62: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

Given the following machine M :

- $\left(\left(q_{0}\right.\right.$, abba $),\left(q_{2}\right.$, bba $\left.)\right) \in \vdash_{M}$
- can also be written $\left(q_{0}\right.$, abba $) \vdash_{M}\left(q_{2}\right.$, bba $)$

FR-63: DFA Configuration $\boldsymbol{\&} \vdash_{M}$

$\left(q_{0}, 10111\right) \quad \vdash_{M}\left(q_{1}, 0111\right)$
$\vdash_{M}\left(q_{0}, 111\right)$
$\vdash_{M}\left(q_{1}, 11\right) \quad$ FR-65: DFA Configuration $\boldsymbol{\&} \vdash^{*}{ }_{M}$
$\vdash_{M}\left(q_{2}, 1\right)$
$\vdash_{M}\left(q_{3}, \epsilon\right)$

- \vdash_{M}^{*} is the reflexive, transitive closure of \vdash_{M}
- Smallest superset of \vdash_{M} that is both reflexive and transitive
- "yields in 0 or more steps"
- Machine M accepts string w if:
$\left(s_{M}, w\right) \vdash^{*}(f, \epsilon)$ for some $f \in F_{M}$

FR-66: DFA \& Languages

- Language accepted by a machine $M=L[M]$
- $\left\{w:\left(s_{M}, w\right) \vdash^{*}(f, \epsilon)\right.$ for some $\left.f \in F_{M}\right\}$
- DFA Languages, $L_{D F A}$
- Set of all languages that can be defined by a DFA
- $L_{D F A}=\{L: \exists M, L[M]=L\}$
- To think about: How does $L_{D F A}=L_{R E G}$

FR-67: NFA Definition

- Difference between a DFA and an NFA
- DFA has exactly only transition for each state/symbol pair
- Transition function: $\delta:(K \times \Sigma) \mapsto K$
- NFA has 0,1 or more transitions for each state/symbol pair
- Transition relation: $\Delta \subseteq((K \times \Sigma) \times K)$

FR-68: NFA Definition

- A NFA is a 5-tuple $M=(K, \Sigma, \Delta, s, F)$
- K Set of states
- Σ Alphabet
- $\Delta:(K \times \Sigma) \times K$ is a Transition relation
- $s \in K$ Initial state
- $F \subseteq K$ Final states

FR-69: Fun with NFA

Create an NFA for:

- All strings over $\{a, b\}$ that start with a and end with b
(also create a DFA, and regular expression) FR-70: Fun with NFA Create an NFA for:
- All strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain 010 or 101

FR-71: Regular Languages

- A language L is regular if there exists an NFA which accepts it
- NFA for all strings over $\{a, b\}$ that contain $a b b a$

FR-72: Regular Languages

- A language L is regular if there exists an NFA which accepts it
- NFA for all strings over $\{a, b\}$ that contain $a b b a$

FR-73: Regular Languages

- A language L is regular if there exists an NFA which accepts it
- NFA for all strings over $\{a, b\}$ that do not contain $a b b a$

FR-74: Regular Languages

- A language L is regular if there exists an NFA which accepts it
- NFA for all strings over $\{a, b\}$ that do not contain $a b b a$

FR-75: Regular Expression \& NFA

- Give a regular expression for all strings over $\{a, b\}$ that have an even number of a's, and a number of b's divisible by 3

FR-76: Pumping Lemma

- Not all languages are Regular
- $L=$ all strings over $\{a, b, c\}$ that contain more a 's than b 's and c 's combined

FR-77: Pumping Lemma

- To show that a language L is not regular, using the pumping lemma:
- Let n be the constant of the pumping lemma
- Create a string $w \in L$, such that $|w|>n$
- For each way of breaking $w=x y z$ such that $|x y| \leq n,|y|>0$:
- Show that there is some i such that $x y^{i} z \notin L$
- By the pumping lemma, L is not regular

FR-78: Pumping Lemma

- Prove $L=$ all strings over $\{a, b, c\}$ that contain more a 's than b 's and c 's combined is not regular
- Let n be the constant of the pumping lemma
- Consider $w=b^{n} a^{n+1} \in L$
- If we break $w=x y z$ such that $|x y| \leq n$, then y must be all b 's. Let $|y|=k$
- Consider $w^{\prime}=x y^{2} x=b^{n+k} a^{n}$. $w^{\prime} \notin L$ for any $k>0$, thus by the pumping lemma, L is not regular

FR-79: Context-Free Languages

- A language is context-free if a CFG generates it
- All strings over $\{a, b, c\}$ with same \# of a 's as b 's

FR-80: Context-Free Languages

- A language is context-free if a CFG generates it
- All strings over $\{a, b, c\}$ with same \# of a 's as b 's
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow c S$
$S \rightarrow S c$
$S \rightarrow \epsilon$

FR-81: Context-Free Languages

- A language is context-free if a CFG generates it
- All strings over $\{a, b, c\}$ with more a 's than b 's

FR-82: Context-Free Languages

- A language is context-free if a CFG generates it
- All strings over $\{a, b, c\}$ with more a 's than b 's
$S \rightarrow c S \mid S c$
$S \rightarrow a S b \mid b S a$
$S \rightarrow a A \mid A a$
$S \rightarrow S A$
$A \rightarrow a A b$
$A \rightarrow b A a$
$A \rightarrow A A$
$A \rightarrow c A \mid A c$
$A \rightarrow a A \mid A a$
$A \rightarrow \epsilon$

FR-83: Context-Free Languages

- A language is context-free if a PDA accepts it
- All strings over $\{a, b, c\}$ that contain more a 's than b 's and c 's combined

FR-84: Context-Free Languages

- A language is context-free if a PDA accepts it
- All strings over $\{a, b, c\}$ that contain more a 's than b 's and c 's combined

FR-85: Recursive Languages

- A language L is recursive if an always-halting Turing Machine accepts it
- In other words, a Turing Machine decides L
- Create a Turing Machine for all strings over $\{a, b, c\}$ with an equal number of a 's, b 's and c 's.

FR-86: Recursive Languages

- Computing functions with TMs
- Give a TM that computes negation, for a 2's complement binary number
- (flip bits, add one, discard overflow)

FR-87: Recursive Languages

- Computing functions with TMs
- Give a TM that computes negation, for a 2's complement binary number

FR-88: Recursive Languages

- Computing functions with TMs
- Give a TM that computes negation, for a 2's complement binary number
- (flip bits, add one, discard overflow)

FR-89: r.e. Languages

- A language L is recursively enumerable if there is some Turing Machine M that halts and accepts everything in L, and runs forever on everything not in L
- Give a TM that semi-decides $L=a^{n} b^{n}$
- Note that this language is also context-free - context-free languages are a subset of the r.e. languages

FR-90: r.e. Languages

- Enumeration Machines
- Create a Turing Machine that enumerate the language:
$L=$ all strings of the form $w c w, w \in(a+b)^{*}$

FR-91: Counter Machines

- Finite automata with a counter (never negative)
- Add one, subtract 1 , check for zero
- Create a 1-counter machine for all strings over $\{a, b\}$ that contain the same number of a's as b's

FR-92: Unrestricted Grammars

$$
G=(V, \Sigma, R, S)
$$

- $V=$ Set of symbols, both terminals \& non-terminals
- $\Sigma \subset V$ set of terminals (alphabet for the language being described)
- $R \subset\left(V^{*}(V-\Sigma) V^{*} \times V^{*}\right)$ Set of rules
- $S \in(V-\Sigma)$ Start symbol

FR-93: Unrestricted Grammars

- $R \subset\left(V^{*}(V-\Sigma) V^{*} \times V^{*}\right)$ Set of rules
- In an Unrestricted Grammar, the left-hand side of a rule contains a string of terminals and non-terminals (at least one of which must be a non-terminal)
- Rules are applied just like CFGs:
- Find a substring that matches the LHS of some rule
- Replace with the RHS of the rule

FR-94: Unrestricted Grammars

- To generate a string with an Unrestricted Grammar:
- Start with the initial symbol
- While the string contains at least one non-terminal:
- Find a substring that matches the LHS of some rule
- Replace that substring with the RHS of the rule

FR-95: Unrestricted Grammars

- Example: Grammar for $L=\left\{a^{n} b^{n} c^{n}: n>0\right\}$
- First, generate $(A B C)^{*}$
- Next, non-deterministically rearrange string
- Finally, convert to terminals ($A \rightarrow a, B \rightarrow b$, etc.), ensuring that string was reordered to form $a^{*} b^{*} c^{*}$

FR-96: Unrestricted Grammars

$$
\begin{aligned}
S & \rightarrow A B C S \\
S & \rightarrow T_{C} \\
C A & \rightarrow A C \\
B A & \rightarrow A B \\
C B & \rightarrow B C
\end{aligned}
$$

- Example: Grammar for $L=\left\{a^{n} b^{n} c^{n}: n>0\right\} \quad C T_{C} \quad \rightarrow T_{C} c$

$$
T_{C} \quad \rightarrow T_{B}
$$

$$
B T_{B} \quad \rightarrow T_{B} b
$$

$$
T_{B} \quad \rightarrow T_{A}
$$

$$
A T_{A} \quad \rightarrow T_{A} a
$$

$$
T_{A} \quad \rightarrow \epsilon
$$

FR-97: Unrestricted Grammars

$$
\begin{array}{rlrl}
S & \Rightarrow A B C S & & \Rightarrow A A T_{A} b b c c \\
& \Rightarrow A B C A B C S & & \Rightarrow A T_{A} a b b c c \\
& \Rightarrow A B A C B C S & & \Rightarrow T_{A} a a b b c c c \\
& \Rightarrow A A B C B C S & & \\
& \Rightarrow A A B B C c c \\
& \Rightarrow A A B B C C T_{C} & \\
& \Rightarrow A A B B C T_{C} c & \\
& \Rightarrow A A B B T_{C} c c & \\
& \Rightarrow A A B B T_{B} c c & \\
& \Rightarrow A A B T_{B} b c c & & \\
& \Rightarrow A A T_{B} b b c c & &
\end{array}
$$

$$
\begin{array}{rlrl}
S & \Rightarrow A B C S & \Rightarrow A A A B B B B C C C T_{C} \\
& \Rightarrow A B C A B C S & & \Rightarrow A A A B B B C C T_{C} c \\
& \Rightarrow A B C A B C A B C S & & \Rightarrow A A A B B B C T_{C} c c \\
& \Rightarrow A B A C B C A B C S & & \Rightarrow A A A B B B T_{C} c c c \\
& \Rightarrow A A B C B C A B C S & & \Rightarrow A A A B B B T_{B} c c c \\
& \Rightarrow A A B C B A C B C S & & \Rightarrow A A A B B T_{B} b c c c \\
& \Rightarrow A A B C A B C B C S & & \Rightarrow A A A B T_{B} b b c c c \\
& \Rightarrow A A B A C B C B C S & & \Rightarrow A A A T_{B} b b b c c c \\
& \Rightarrow A A A B C B C B C S & & \Rightarrow A A A T_{A} b b b c c c \\
& \Rightarrow A A A B B C C B C S & & \Rightarrow A A T_{A} a b b b c c c \\
& \Rightarrow A A A B B C B C C S & & \Rightarrow A T_{A} a a b b b c c c \\
& \Rightarrow A A A B B B C C C S & & \Rightarrow T_{A} a a a b b b c c c \Rightarrow a a a b b b c c c
\end{array}
$$

