Automata Theory CS411-2015S-FR2 Final Review

David Galles

Department of Computer Science University of San Francisco

FR2-0: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine e(M) and an encoding of an input string e(w), and returns "yes" if M halts on w, and "no" if M does not halt on w.
- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input

FR2-1: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine e(M) and an encoding of an input string e(w), and returns "yes" if M halts on w, and "no" if M does not halt on w.
- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input
- How might the Java version work?
 - Check for loops
 - while (<test>) <body> Use program verification techniques to see if test can ever be false, etc.

FR2-2: Halting Problem

- The Halting Problem is Undecidable
 - There exists no Turing Machine that decides it
 - There is no Turing Machine that halts on all inputs, and always says "yes" if M halts on w, and always says "no" if M does not halt on w
- Prove Halting Problem is Undecidable by Contradiction:

FR2-3: Halting Problem

- Prove Halting Problem is Undecidable by Contradiction:
 - Assume that there is some Turing Machine that solves the halting problem.

• We can use this machine to create a new machine Q:

FR2-4: Halting Problem

FR2-5: Halting Problem

- Machine *Q* takes as input a Turing Machine *M*, and either halts, or runs forever.
- What happens if we run Q on e(Q)?
 - If M_{HALT} says Q should run forever on e(Q), Q halts
 - If M_{HALT} says Q should halt on e(Q), Q runs forever
- Q must not exist but Q is easy to build if M_{HALT} exists, so M_{HALT} must not exist

FR2-6: Halting Problem (Java)

- Quick sideline: Prove that there can be no Java program that takes as input two strings, one containing source code for a Java program, and one containing an input, and determines if that program will halt when run on the given input.
- boolean Halts(String SourceCode, String Input);

FR2-7: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {
 if (Halts(SourceCode, SourceCode))
 while (true);
 else

return;

FR2-8: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

```
void Contrarian(String SourceCode) {
    if (Halts(SourceCode, SourceCode))
        while (true);
    else
        return;
}
Contrarian("void Contrarian(String SourceCode { \
```

if (Halts(SourceCode, SourceCode)) \

} "); What happens?

FR2-9: Undecidable

- Once we have one undecidable problem, it is (easier) to find more
- Use a reduction

FR2-10: Reduction

Reduce Problem A to Problem B

- Convert instance of Problem A to an instance of Problem B
 - Problem A: Power x^y
 - Problem B: Multiplication -x * y
- If we can solve Problem B, we can solve Problem A
- If we can multiply two numbers, we can calculate the power x^y

FR2-11: Reduction

- If we can reduce Problem A to Problem B, and
- Problem A is undecidable, then:
- Problem B must also be undecidable
 - Because, if we could solve B, we could solve A

FR2-12: Reduction

- To prove a problem B is undecidable:
 - Start with a an instance of a known undecidable problem (like the Halting Problem)
 - Create an instance of Problem B, such that the answer to the instance of Problem B gives the answer to the undecidable problem
 - If we could solve Problem B, we could solve the halting problem . . .
 - ... thus Problem B must be undecidable

FR2-13: Reduction

- Professor Shadey has given a reduction from a problem P_{new} to the Halting Problem
 - Given any instance of P_{new} :
 - Create an instance of the halting problem
 - Use the solution to the halting problem to find a solution for ${\cal P}_{\it new}$
- What has Professor Shadey shown?

FR2-14: Reduction

- Professor Shadey has given a reduction from a problem P_{new} to the Halting Problem
 - Given any instance of P_{new} :
 - Create an instance of the halting problem
 - Use the solution to the halting problem to find a solution for ${\cal P}_{\it new}$
- What has Professor Shadey shown? NOTHING!

FR2-15: More Reductions ...

• Given two Turing Machines M_1 , M_2 , is $L[M_1] = L[M_2]$?

FR2-16: More Reductions ...

- Given two Turing Machines M_1 , M_2 , is $L[M_1] = L[M_2]$?
 - Start with an instance M, w of the halting problem
 - Create M_1 , which accepts everything
 - Create M_2 , which ignores its input, and runs M, w through the Universal Turing Machine. Accept if M halts on w.
- If M halts on w, then $L[M_2] = \Sigma^*$, and $L[M_1] = L[M_2]$
- If M does not halt on w, then $L[M_2] = \{\}$, and $L[M_1] \neq L[M_2]$

FR2-17: More Reductions ...

• Given two Turing Machines M_1 , M_2 , is $L[M_1] = L[M_2]$?

FR2-18: More Reductions ...

- If we had a machine M_{same} that took as input the encoding of two machines M_1 and M_2 , and determined if $L[M_1] = L[M_2]$, we could solve the halting problem for any pair M, w:
 - Create a Machine that accepts everything (easy!). Encode this machine.
 - Create a Machine that first erases its input, then writes e(M), e(w) on input, then runs Universal TM. Encode this machine
 - Feed encoded machines into M_{same} . If M_{same} says "yes", then M halts on w, otherwise M does not halt on w

FR2-19: Rice's Theorem

- Determining if the language accepted by a Turing machine has any non-trivial property is undecidable
- "Non-Trivial" property means:
 - At least one recursively enumerable language has the property
 - Not all recursively enumerable languages have the property
- Example: Is the language accepted by a Turing Machine *M* regular?

FR2-20: Rice's Theorem

- Problem: Is the language defined by the Turing Machine *M* recursively enumerable?
 - Is this problem decidable?

FR2-21: Rice's Theorem

- Problem: Is the language defined by the Turing Machine *M* recursively enumerable?
 - Is this problem decidable? YES!
- All recursively enumerable languages are recursively enumerable.
- The question is "trivial"

FR2-22: Rice's Theorem

- Problem: Does the Turing Machine *M* accept the string *w* in *k* computational steps?
 - Is this problem decidable?

FR2-23: Rice's Theorem

- Problem: Does the Turing Machine *M* accept the string *w* in *k* computational steps?
 - Is this problem decidable? YES!
 - Problem is not language related we're not asking a question about the language that is accepted, but about the language that is accepted *within a certain number of steps*

FR2-24: Rice's Theorem – Proof

- We will prove Rice's theorem by showing that, for any non-trivial property *P*, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property *P*.
- Given any Machine M, string w, and non-trivial property P, we will create a new machine M', such that either
 - L[M'] has property P if and only if M halts on w
 - L[M'] has property P if and only if M does not halt on w

FR2-25: Rice's Theorem – Proof

- Let *P* be some non-trivial property of a language.
- Two cases:
 - The empty language {} has the property
 - The empty language {} does not have the property

FR2-26: Rice's Theorem – Proof

- Properties that the empty language has:
 - Regular Languages
 - Languages that do not contain the string "aab"
 - Languages that are finite
- Properties that the empty language does not have:
 - Languages containing the string "aab"
 - Languages containing at least one string
 - Languages that are infinite

FR2-27: Rice's Theorem – Proof

- Let *M* be any Turing Machine, *w* be any input string, and *P* be any non-trivial property of a language, such that {} has property *P*.
- Let L_{NP} be some recursively enumerable language that does *not* have the property P, and let M_{NP} be a Turing Machine such that $L[M_{NP}] = L_{NP}$
- We will create a machine M' such that M' has property P if and only if M does not halt on w.

FR2-28: Rice's Theorem – Proof

- *M*':
 - Save input
 - Erase input, simulate running M on \boldsymbol{w}
 - Restore input
 - Simulates running M_{NP} on input

FR2-29: Rice's Theorem – Proof

- *M*':
 - Save input
 - Erase input, simulate running M on \boldsymbol{w}
 - Restore input
 - Simulates running M_{NP} on input
- If M halts on w, $L[M'] = L_{NP}$, and L[M'] does not have property P
- If M does not halt on w, $L[M'] = \{\},$ and L[M'] does have property P

FR2-30: Rice's Theorem – Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that {} does not have property P.
- Let L_{NP} be some recursively enumerable language that *does* have the property P, and let M_P be a Turing Machine such that $L[M_P] = L_P$
- We will create a machine M' such that M' has property P if and only if M does halt on w.

FR2-31: Rice's Theorem – Proof

- *M*':
 - Save input
 - Erase input, simulate running M on \boldsymbol{w}
 - Restore input
 - Simulates running M_P on input

FR2-32: Rice's Theorem – Proof

- *M*':
 - Save input
 - Erase input, simulate running M on \boldsymbol{w}
 - Restore input
 - Simulates running M_P on input
- If M halts on w, $L[M'] = L_P$, and L[M'] does have property P
- If M does not halt on w, $L[M'] = \{\}$, and L[M'] does not have property P

FR2-33: Language Class P

- A language *L* is polynomially decidable if there exists a polynomially bound Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
 - There exists some polynomial function p(n)
 - For any input string $w,\,M$ always halts within p(|w|) steps
- $\bullet\,$ The set of languages that are polynomially decidable is ${\bf P}\,$

FR2-34: Language Class NP

- A language *L* is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.
- A Non-Deterministic Turing Machine *M* is polynomially bound if:
 - There exists some polynomial function p(n)
 - For any input string $w,\,M$ always halts within p(|w|) steps, for all computational paths
- The set of languages that are non-deterministically polynomially decidable is NP

FR2-35: Language Class NP

- If a Language L is in NP:
 - There exists a non-deterministic Turing machine ${\cal M}$
 - M halts within p(|w|) steps for all inputs w, in all computational paths
 - If $w \in L$, then there is at least one computational path for w that accepts (and potentially several that reject)
 - If $w \notin L$, then all computational paths for w reject

Fr2-36: NP vs P

- A problem is in **P** if we can *generate* a solution quickly (that is, in polynomial time
- A problem is in NP if we can *check* to see if a potential solution is correct quickly
 - Non-deterministically create (guess) a potential solution
 - Check to see that the solution is correct

Fr2-37: NP vs P

- \bullet All problems in ${\bf P}$ are also in ${\bf NP}$
 - That is, $\mathbf{P}\subseteq\mathbf{NP}$
 - If you can generate correct solutions, you can check if a guessed solution is correct

FR2-38: Reduction Redux

- Given a problem instance P, if we can
 - Create an instance of a different problem P', in polynomial time, such that the solution to P' is the same as the solution to P
 - Solve the instance P' in polynomial time
- Then we can solve P in polynomial time

FR2-39: NP-Complete

- A language *L* is **NP**-Complete if:
 - L is in \mathbf{NP}
 - If we could decide L in polynomial time, then all NP languages could be decided in polynomial time
 - That is, we could reduce any NP problem to L in polynomial time

FR2-40: NP-Complete

- How do you show a problem is NP-Complete?
 - Given any polynomially-bound non-deterministic Turing machine M and string w:
 - Create an instance of the problem that has a solution if and only if M accepts \boldsymbol{w}

FR2-41: NP-Complete

• First NP-Complete Problem: Satisfiability (SAT)

- Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound p(n)
 - Create a boolean formula f, such that f is satisfiable if and only of M accepts w

FR2-42: More NP-Complete Problems

- So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
 - Including factoring large numbers ...
- Satisfiability is NP-Complete
- \bullet There are many $\mathbf{NP}\text{-}\mathsf{Complete}$ problems
 - Prove NP-Completeness using a reduction

FR2-43: Proving NP-Complete

- To prove that a problem P_{new} is NP-Complete
 - Start with an instance of a known NP-Complete problem NP
 - Use this instance of NP to create an instance of P_{new} , such that the solution of P_{new} gives us a solution to the instance of NP
 - If we could solve P_{new} in polynomial time, we could solve NP in polynomial time, hence P_{new} is NP-Complete

FR2-44: Proving NP-Complete

• What does it mean if I could reduce a new problem to a known NP-Complete problem?

FR2-45: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly

FR2-46: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly
 - But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly

FR2-47: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly
 - But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly
 - Haven't learned anything

FR2-48: Proving NP-Complete

- To prove P_{new} is NP-Complete:
 - Need to reduce a know NP-Complete problem to ${\cal P}_{\it new}$
 - Not the other way around
 - Can be confusion the first (or second) time you see it

FR2-49: NP-Complete Problems

Undirected Hamilton Cycle is NP-Complete
How would we show this?

FR2-50: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
 - Start with a known NP-Complete problem
 - Reduce the NP-Complete problem to Undirected Hamilton Cycle
 - What would be a good choice, given what we've already proven NP-Complete in this class?

FR2-51: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
 - Reduction from Directed Hamilton Cycle
 - Given any instance of Directed Hamilton Cycle:
 - Create an insance of Undirected Hamilon Cycle
 - Show that the solution to Undirected Hamilton Cycle gives solution to Directed Hamilton Cycle

FR2-52: Undir. Ham. Cycle

FR2-53: Undir. Ham. Cycle

