Automata Theory CS411-2015S-FR2

 Final Review

 Final Review}

David Galles

Department of Computer Science University of San Francisco

fr2-0: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns "yes" if M halts on w, and "no" if M does not halt on w.
- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input

fr2-1: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns "yes" if M halts on w, and "no" if M does not halt on w.
- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input
- How might the Java version work?
- Check for loops
- while (<test>) <body>

Use program verification techniques to see if test can ever be false, etc.

fr2-2: Halting Problem

- The Halting Problem is Undecidable
- There exists no Turing Machine that decides it
- There is no Turing Machine that halts on all inputs, and always says "yes" if M halts on w, and always says "no" if M does not halt on w
- Prove Halting Problem is Undecidable by Contradiction:

fr2-3: Halting Problem

- Prove Halting Problem is Undecidable by Contradiction:
- Assume that there is some Turing Machine that solves the halting problem.

$\mathrm{e}(\mathrm{M})$	Halting $\mathrm{e}(\mathrm{w})$	Hes Machine
no		

- We can use this machine to create a new machine Q :

fr2-4: Halting Problem

fr2-5: Halting Problem

- Machine Q takes as input a Turing Machine M, and either halts, or runs forever.
- What happens if we run Q on $e(Q)$?
- If $M_{H A L T}$ says Q should run forever on $e(Q), Q$ halts
- If $M_{H A L T}$ says Q should halt on $e(Q), Q$ runs forever
- Q must not exist - but Q is easy to build if $M_{H A L T}$ exists, so $M_{H A L T}$ must not exist

fr2-6: Halting Problem (Java)

- Quick sideline: Prove that there can be no Java program that takes as input two strings, one containig source code for a Java program, and one containing an input, and determines if that program will halt when run on the given input.
boolean Halts(String SourceCode, String Input);

fr2-7: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);
void Contrarian(String SourceCode) \{
if (Halts(SourceCode, SourceCode)) while (true);
else
return;
\}

fr2-8: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);
void Contrarian(String SourceCode) \{
if (Halts(SourceCode, SourceCode)) while (true);
else
return;
\}
Contrarian("void Contrarian(String SourceCode \{ \} if (Halts(SourceCode, SourceCode)) \}
\} ");
What happens?

FR2-9: Undecidable

- Once we have one undecidable problem, it is (easier) to find more
- Use a reduction

FR2-10: Reduction

- Reduce Problem A to Problem B
- Convert instance of Problem A to an instance of Problem B
- Problem A: Power - x^{y}
- Problem B: Multiplication $-x * y$
- If we can solve Problem B, we can solve Problem A
- If we can multiply two numbers, we can calculate the power x^{y}

fr2-11: Reduction

- If we can reduce Problem A to Problem B, and
- Problem A is undecidable, then:
- Problem B must also be undecidable
- Because, if we could solve B, we could solve A

FR2-12: Reduction

- To prove a problem B is undecidable:
- Start with a an instance of a known undecidable problem (like the Halting Problem)
- Create an instance of Problem B, such that the answer to the instance of Problem B gives the answer to the undecidable problem
- If we could solve Problem B, we could solve the halting problem . . .
- . . . thus Problem B must be undecidable

FR2-13: Reduction

- Professor Shadey has given a reduction from a problem $P_{\text {new }}$ to the Halting Problem
- Given any instance of $P_{\text {new }}$:
- Create an instance of the halting problem
- Use the solution to the halting problem to find a solution for $P_{\text {new }}$
- What has Professor Shadey shown?

FR2-14: Reduction

- Professor Shadey has given a reduction from a problem $P_{\text {new }}$ to the Halting Problem
- Given any instance of $P_{\text {new }}$:
- Create an instance of the halting problem
- Use the solution to the halting problem to find a solution for $P_{\text {new }}$
- What has Professor Shadey shown? NOTHING!

fR2-15: More Reductions ...

- Given two Turing Machines M_{1}, M_{2}, is $L\left[M_{1}\right]=L\left[M_{2}\right]$?

fr2-16: More Reductions

- Given two Turing Machines M_{1}, M_{2}, is $L\left[M_{1}\right]=L\left[M_{2}\right]$?
- Start with an instance M, w of the halting problem
- Create M_{1}, which accepts everything
- Create M_{2}, which ignores its input, and runs M, w through the Universal Turing Machine. Accept if M halts on w.
- If M halts on w, then $L\left[M_{2}\right]=\Sigma^{*}$, and $L\left[M_{1}\right]=L\left[M_{2}\right]$
- If M does not halt on w, then $L\left[M_{2}\right]=\{ \}$, and $L\left[M_{1}\right] \neq L\left[M_{2}\right]$

fr2-17: More Reductions

- Given two Turing Machines M_{1}, M_{2}, is

$$
L\left[M_{1}\right]=L\left[M_{2}\right] ?
$$

fr2-18: More Reductions

- If we had a machine $M_{\text {same }}$ that took as input the encoding of two machines M_{1} and M_{2}, and determined if $L\left[M_{1}\right]=L\left[M_{2}\right]$, we could solve the halting problem for any pair M, w :
- Create a Machine that accepts everything (easy!). Encode this machine.
- Create a Machine that first erases its input, then writes $e(M), e(w)$ on input, then runs Universal TM. Encode this machine
- Feed encoded machines into $M_{\text {same }}$. If $M_{\text {same }}$ says "yes", then M halts on w, otherwise M does not halt on w

fr2-19: Rice's Theorem

- Determining if the language accepted by a Turing machine has any non-trivial property is undecidable
- "Non-Trivial" property means:
- At least one recursively enumerable language has the property
- Not all recursively enumerable languages have the property
- Example: Is the language accepted by a Turing Machine M regular?

fr2-20: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
- Is this problem decidable?

FR2-21: Rice's Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
- Is this problem decidable? YES!
- All recursively enumerable languages are recursively enumerable.
- The question is "trivial"

fr22-22: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
- Is this problem decidable?

FR2-23: Rice's Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
- Is this problem decidable? YES!
- Problem is not language related - we're not asking a question about the language that is accepted, but about the language that is accepted within a certain number of steps

fr2-24: Rice's Theorem - Proof

- We will prove Rice's theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.
- Given any Machine M, string w, and non-trivial property P, we will create a new machine M^{\prime}, such that either
- $L\left[M^{\prime}\right]$ has property P if and only if M halts on w
- $L\left[M^{\prime}\right]$ has property P if and only if M does not halt on w

fr2-25: Rice's Theorem - Proof

- Let P be some non-trivial property of a language.
- Two cases:
- The empty language $\}$ has the property
- The empty language $\}$ does not have the property

fr2-26: Rice's Theorem - Proof

- Properties that the empty language has:
- Regular Languages
- Languages that do not contain the string "aab"
- Languages that are finite
- Properties that the empty language does not have:
- Languages containing the string "aab"
- Languages containing at least one string
- Languages that are infinite

fr2-27: Rice's Theorem - Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\}$ has property P.
- Let $L_{N P}$ be some recursively enumerable language that does not have the property P, and let $M_{N P}$ be a Turing Machine such that $L\left[M_{N P}\right]=L_{N P}$
- We will create a machine M^{\prime} such that M^{\prime} has property P if and only if M does not halt on w.

fr2-28: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running $M_{N P}$ on input

fR2-29: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running $M_{N P}$ on input
- If M halts on $w, L\left[M^{\prime}\right]=L_{N P}$, and $L\left[M^{\prime}\right]$ does not have property P
- If M does not halt on $w, L\left[M^{\prime}\right]=\{ \}$, and $L\left[M^{\prime}\right]$ does have property P

fr2-30: Rice's Theorem - Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that $\}$ does not have property P.
- Let $L_{N P}$ be some recursively enumerable language that does have the property P, and let M_{P} be a Turing Machine such that $L\left[M_{P}\right]=L_{P}$
- We will create a machine M^{\prime} such that M^{\prime} has property P if and only if M does halt on w.

fr2-31: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running M_{P} on input

fR2-32: Rice's Theorem - Proof

- M^{\prime} :
- Save input
- Erase input, simulate running M on w
- Restore input
- Simulates running M_{P} on input
- If M halts on $w, L\left[M^{\prime}\right]=L_{P}$, and $L\left[M^{\prime}\right]$ does have property P
- If M does not halt on $w, L\left[M^{\prime}\right]=\{ \}$, and $L\left[M^{\prime}\right]$ does not have property P

FR2-33: Language Class P

- A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps
- The set of languages that are polynomially decidable is \mathbf{P}

fr2-34: Language Class NP

- A language L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.
- A Non-Deterministic Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps, for all computational paths
- The set of languages that are non-deterministically polynomially decidable is NP

fr2-35: Language Class NP

- If a Language L is in NP:
- There exists a non-deterministic Turing machine M
- M halts within $p(|w|)$ steps for all inputs w, in all computational paths
- If $w \in L$, then there is at least one computational path for w that accepts (and potentially several that reject)
- If $w \notin L$, then all computational paths for w reject
- A problem is in P if we can generate a solution quickly (that is, in polynomial time
- A problem is in NP if we can check to see if a potential solution is correct quickly
- Non-deterministically create (guess) a potential solution
- Check to see that the solution is correct

FR2-37: NP Vs P

- All problems in P are also in NP
- That is, $\mathbf{P} \subseteq \mathbf{N P}$
- If you can generate correct solutions, you can check if a guessed solution is correct

fR2-38: Reduction Redux

- Given a problem instance P, if we can
- Create an instance of a different problem P^{\prime}, in polynomial time, such that the solution to P^{\prime} is the same as the solution to P
- Solve the instance P^{\prime} in polynomial time
- Then we can solve P in polynomial time

fr2-39: NP-Complete

- A language L is NP-Complete if:
- L is in NP
- If we could decide L in polynomial time, then all NP languages could be decided in polynomial time
- That is, we could reduce any NP problem to L in polynomial time

FR2-40: NP-Complete

- How do you show a problem is NP-Complete?
- Given any polynomially-bound non-deterministic Turing machine M and string $w:$
- Create an instance of the problem that has a solution if and only if M accepts w

FR2-41: NP-Complete

- First NP-Complete Problem: Satisfiability (SAT)
- Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound $p(n)$
- Create a boolean formula f, such that f is satisfiable if and only of M accepts w

fr2-42: More NP-Complete Problems

- So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
- Including factoring large numbers ...
- Satisfiability is NP-Complete
- There are many NP-Complete problems
- Prove NP-Completeness using a reduction

fr2-43: Proving NP-Complete

- To prove that a problem $P_{\text {new }}$ is NP-Complete
- Start with an instance of a known NP-Complete problem NP
- Use this instance of $N P$ to create an instance of $P_{\text {new }}$, such that the solution of $P_{\text {new }}$ gives us a solution to the instance of $N P$
- If we could solve $P_{\text {new }}$ in polynomial time, we could solve NP in polynomial time, hence $P_{\text {new }}$ is NP-Complete

fr2-44: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?

fr2-45: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
- If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly

fr2-46: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
- If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly
- But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly

fr2-47: Proving NP-Complete

- What does it mean if I could reduce a new problem to a known NP-Complete problem?
- If I could solve the NP-Complete problem quickly, I could solve the new poblem quickly
- But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly
- Haven't learned anything

fr2-48: Proving NP-Complete

- To prove $P_{\text {new }}$ is NP-Complete:
- Need to reduce a know NP-Complete problem to $P_{\text {new }}$
- Not the other way around
- Can be confusion the first (or second) time you see it

fr2-49: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
- How would we show this?

FR2-50: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
- Start with a known NP-Complete problem
- Reduce the NP-Complete problem to Undirected Hamilton Cycle
- What would be a good choice, given what we've already proven NP-Complete in this class?

Fr2-51: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
- Reduction from Directed Hamilton Cycle
- Given any instance of Directed Hamilton Cycle:
- Create an insance of Undirected Hamilon Cycle
- Show that the solution to Undirected Hamilton Cycle gives solution to Directed Hamilton Cycle
fr2-52: Undir. Ham. Cycle

fr2-53: Undir. Ham. Cycle

