Computer Science 245: Data Structres \& Algorithms Midterm 1 Problems Sheet Spring 2017

1. Give the $\Theta()$ running time of the following code fragments, in terms of n. Show your work! (Be careful, some of these are tricky!)
```
(a) for (i=0; i < n; i++)
    {
        for (j = n; j > 1; j--)
            sum++;
        for (j = n; j > 1; j = j - 3)
            sum++
    }
(b) for (i=1; i < n; i = i + 2)
    for (j = n; j > n / 2; j = j - 2)
            for (k = 1; k < n / 2; k = k * 2)
                sum++;
(c) for (i=1; i < n; i++)
    {
        for (j = 1; j < i; j++)
            sum++;
        for (j = 1; j < n; j++)
            sum++;
        for (j = 1; j < n; j = j * 2)
            sum++;
        for (j = 0; j < n; j = j + 2)
            sum++
    }
```

2. Consider the following function:
```
int recursive(int n)
{
    if (n <= 1)
    return 1;
    else
    return recursive(n - 1) + recursive(n - 1) + recursive(n - 1);
}
```

(a) What does this function calculate?
(b) Give a recurrence relation $(T(n)=\ldots$) for this function (be sure to include both base and recursive cases!)
(c) Solve the recurrence relation to get the $\Theta()$ running time of the function, in terms of n. Show your work, using either repeated substitution, the master method, or a recursion tree.

```
int recursive2(int n)
{
    if (n <= 1)
            return n;
        sum = 0;
        for (int i = 0; i < n; i++)
            sum++
        return recursive2(n/3) + recursive2(n/3) + recursve2(n/2) + sum;
}
```

(a) Give a recurrence relation $(T(n)=\ldots$) for this function (be sure to include both base and recursive cases!)
(b) Solve the recurrence relation to get the $\Theta()$ running time of the function, in terms of n. Show your work, using either repeated substitution, the master method, or a recursion tree.
3. Give an ordering to insert the elements A-G into a BST to create a tree that has the smallest possible height. Draw the tree. Is this ordering unique?
4. Heaps
(a) The following elements are inserted (in this order) into a heap.
$10,5,3,1,8,7,4,2$
Draw the resulting heap
(b) Call removeMin on this heap 3 times. Show the resulting heap after every call to removeMin

