Computer Science 245

Homework 3
Algorithm Analysis III

Due Wednesday, February 15th, 2017

1. Use the substitution method (that is, proof by induction) to prove the following bounds:
(a) (3 points) $O(n \lg n)$ bound for:

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =4 T(n / 4)+C_{2} n
\end{aligned}
$$

(b) (3 points) $O\left(2^{n}\right)$ bound for:

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =2 T(n-1)+C_{2}
\end{aligned}
$$

(Careful! You may need to subtract out a lower order term for this!)
(c) (3 points) $O(n)$ bound for:

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =T(n / 2)+2 T(n / 4)+C_{2}
\end{aligned}
$$

(Careful! You may need to subtract out a lower order term for this one as well!)
2. Use the master method to find Θ bounds for the following recurrence relations:
(a) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =8 T(n / 3)+n^{2}
\end{aligned}
$$

(b) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =16 T(n / 2)+n^{4}+2 n^{2}+n
\end{aligned}
$$

(c) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =4 T(n / 2)+n
\end{aligned}
$$

(d) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =4 T(n / 2)+n^{2}+n \lg n
\end{aligned}
$$

