
Data Structures and Algorithms
CS245-2017S-10

Huffman Codes

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


10-0: Text Files

All files are represented as binary digits – including
text files

Each character is represented by an integer code

ASCII – American Standard Code for
Information Interchange

Text file is a sequence of binary digits which
represent the codes for each character.



10-1: ASCII

Each character can be represented as an 8-bit
number

ASCII for a = 97 = 01100001

ASCII for b = 98 = 01100010

Text file is a sequence of 1’s and 0’s which
represent ASCII codes for characters in the file

File “aba” is 97, 97, 98

011000010110001001100001



10-2: ASCII

Each character in ASCII is represented as 8 bits

We need 8 bits to represent all possible
character combinations

(including control characters, and unprintable
characters)

Breaking up file into individual characters is
easy

Finding the kth character in a file is easy



10-3: ASCII

ASCII is not terribly efficient

All characters require 8 bits

Frequently used characters require the same
number of bits as infrequently used characters

We could be more efficient if frequently used
characters required fewer than 8 bits, and less
frequently used characters required more bits



10-4: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d
(instead of 256 characters)

How many bits are required for each code, if
each code has the same length?



10-5: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d
(instead of 256 characters)

How many bits are required for each code, if
each code has the same length?

2 bits are required, since there are 4 possible
options to distinguish



10-6: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d

Pick the following codes:

a: 00

b: 01

c: 10

d: 11

We can represent these codes as a tree

Characters are stored at the leaves of the tree

Code is represented by path to leaf



10-7: Representing Codes as Trees

a: 00, b: 01, c: 10, d:11

a b c d

0 1

0 01 1



10-8: Representing Codes as Trees

a: 01, b: 00, c: 11, d:10

ab cd

0 1

0 01 1



10-9: Prefix Codes

If no code is a prefix of any other code, then
decoding the file is unambiguous.

If all codes are the same length, then no code will
be a prefix of any other code (trivially)

We can create variable length codes, where no
code is a prefix of any other code



10-10: Variable Length Codes

Variable length code example:

a: 0, b: 100, c: 101, d: 11

Decoding examples:

100

10011

01101010010011



10-11: Prefix Codes & Trees

Any prefix code can be represented as a tree

a: 0, b: 100, c: 101, d: 11

c

d

0 1

0

0

1

1a

b



10-12: File Length

If we use the code:

a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20
characters?



10-13: File Length

If we use the code:

a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20
characters?

20 characters * 2 bits/character = 40 bits



10-14: File Length

If we use the code:

a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20
characters?



10-15: File Length

If we use the code:

a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20
characters?

It depends upon the number of a’s, b’s, c’s and d’s
in the file



10-16: File Length

If we use the code:

a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

11 a’s, 2 b’s, 2 c’s, and 5 d’s?



10-17: File Length

If we use the code:

a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

11 a’s, 2 b’s, 2 c’s, and 5 d’s?

11*1 + 2*3 + 2*3 + 5*2 = 33 < 40



10-18: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

c

d

0 1

0

0

1

1a

b

0111001010011



10-19: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

Finding the kth character in the file is more tricky



10-20: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

Finding the kth character in the file is more tricky

Need to decode the first (k-1) characters in the
file, to determine where the kth character is in
the file



10-21: File Compression

We can use variable length codes to compress files

Select an encoding such that frequently used
characters have short codes, less frequently
used characters have longer codes

Write out the file using these codes

(If the codes are dependent upon the contents
of the file itself, we will also need to write out the
codes at the beginning of the file for decoding)



10-22: File Compression

We need a method for building codes such that:

Frequently used characters are represented by
leaves high in the code tree

Less Frequently used characters are
represented by leaves low in the code tree

Characters of equal frequency have equal
depths in the code tree



10-23: Huffman Coding

For each code tree, we keep track of the total
number of times the characters in that tree appear
in the input file

We start with one code tree for each character that
appears in the input file

We combine the two trees with the lowest
frequency, until all trees have been combined into
one tree



10-24: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1



10-25: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1

 :16



10-26: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15

b:20

e:1

 :16

 :36



10-27: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66



10-28: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166



10-29: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10



10-30: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20



10-31: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20 :20



10-32: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10

e:10:20 :20

:30



10-33: Huffman Coding

Example: If the letters a-e have the frequencies:

a: 10, b: 10, c:10, d: 10, e: 10

a:10

d:10c:10

b:10 e:10

:20

:20

:30

:30



10-34: Huffman Trees & Tables

Once we have a Huffman tree, decoding a file is
straightforward – but encoding a tree requires a bit
more information.

Given just the tree, finding an encoding can be
difficult

... What would we like to have, to help with
encoding?



10-35: Encoding Tables

a 0

b 100

c 1010

d 11

e 1011

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166



10-36: Creating Encoding Table

Traverse the tree

Keep track of the path during the traversal

When a leaf is reached, store the path in the table



10-37: Huffman Coding

To compress a file using huffman coding:

Read in the file, and count the occurrence of
each character, and built a frequency table

Build the Huffman tree from the frequencies

Build the Huffman codes from the tree

Print the Huffman tree to the output file (for use
in decompression)

Print out the codes for each character



10-38: Huffman Coding

To uncompress a file using huffman coding:

Read in the Huffman tree from the input file

Read the input file bit by bit, traversing the
Huffman tree as you go

When a leaf is read, write the appropriate file to
an output file



10-39: Printing out Trees

To print out Huffman trees:

Print out nodes in pre-order traversal

Need a way of denoting which nodes are leaves
and which nodes are interior nodes

(Huffman trees are full – every node has 0 or
2 children)

For each interior node, print out a 0 (single bit).
For each leaf, print out a 1, followed by 8 bits for
the character at the leaf



10-40: Compression?

Is it possible that huffman compression would not
compress the file?

Is it possible that huffman compression could
actually make the file larger?

How?



10-41: Compression?

What happens if all the charcters have the same
frequency?

What does the tree look like?

What can we say about the lengths of the
codes for each character?

What does that mean for the file size?



10-42: Compression?

What happens if all the charcters have the same
frequency?

All nodes are at the same depth in the tree (that
is, 8)

Each code will have a length of 8

The encoded file will be the same size as the
original file – plus the size required to encode
the tree


	{small lecturenumber -	heblocknumber :} Text Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prefix Codesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variable Length Codesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prefix Codes & Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Compressionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Compressionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Trees & Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Encoding Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Creating Encoding Tableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Compression?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Compression?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Compression?addtocounter {blocknumber}{1}

