
CS245-2017S-11 Sorting in Θ(n lgn) 1

11-0: Merge Sort – Recursive Sorting

• Base Case:

• A list of length 1 or length 0 is already sorted

• Recursive Case:

• Split the list in half

• Recursively sort two halves

• Merge sorted halves together

Example: 5 1 8 2 6 4 3 7 11-1: Merging

• Merge lists into a new temporary list, T

• Maintain three pointers (indices) i, j, and n

• i is index of left hand list

• j is index of right hand list

• n is index of temporary list T

• If A[i] < A[j]

• T [n] = A[i], increment n and i

• else

• T [n] = A[j], increment n and j

Example: 1 2 5 8 and 3 4 6 7

11-2: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

11-3: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)
= nc3 + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)

11-4: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)
= nc3 + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)
= 2nc3 + 4(n/4c3 + 2T (n/8))
= 3nc3 + 8T (n/8))

11-5: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3



CS245-2017S-11 Sorting in Θ(n lgn) 2

T (n) = nc3 + 2T (n/2)
= nc3 + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)
= 2nc3 + 4(n/4c3 + 2T (n/8))
= 3nc3 + 8T (n/8))
= 3nc3 + 8(n/8c3 + 2T (n/16))
= 4nc3 + 16T (n/16)

11-6: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)
= nc3 + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)
= 2nc3 + 4(n/4c3 + 2T (n/8))
= 3nc3 + 8T (n/8))
= 3nc3 + 8(n/8c3 + 2T (n/16))
= 4nc3 + 16T (n/16)
= 5nc3 + 32T (n/32)

11-7: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)
= nc3 + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)
= 2nc3 + 4(n/4c3 + 2T (n/8))
= 3nc3 + 8T (n/8))
= 3nc3 + 8(n/8c3 + 2T (n/16))
= 4nc3 + 16T (n/16)
= 5nc3 + 32T (n/32)
= knc3 + 2kT (n/2k)

11-8: Θ() for Merge Sort

T (0) = c1
T (1) = c2
T (n) = knc3 + 2kT (n/2k)

Pick a value for k such that n/2k = 1:

n/2k = 1
n = 2k

lg n = k

T (n) = (lg n)nc3 + 2lgnT (n/2lgn)
= c3n lgn+ nT (n/n)
= c3n lgn+ nT (1)
= c3n lgn+ c2n
∈ O(n lg n)

11-9: Θ() for Merge Sort

T(n)
11-10: Θ() for Merge Sort



CS245-2017S-11 Sorting in Θ(n lgn) 3

c*n

T(n/2) T(n/2)
11-11: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)
11-12: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n... ... ... ...

11-13: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n

lg n
levels

... ... ... ...

11-14: Θ() for Merge Sort



CS245-2017S-11 Sorting in Θ(n lgn) 4

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n

lg n
levels

... ... ... ...

c*n lg nTotal time =
Θ(n lg n)

11-15: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = aT (n/b) + f(n)
a = 2, b = 2, f(n) = n
nlog

b
a = nlog

2
2 = n ∈ Θ(n)

By second case of the Master Method, T (n) ∈ Θ(n lgn)
11-16: Divide & Conquer

Merge Sort:

• Divide the list two parts

• No work required – just calculate midpoint

• Recursively sort two parts

• Combine sorted lists into one list

• Some work required – need to merge lists

11-17: Divide & Conquer

Quick Sort:

• Divide the list two parts

• Some work required – Small elements in left sublist, large elements in right sublist

• Recursively sort two parts

• Combine sorted lists into one list

• No work required!

11-18: Quick Sort

• Pick a pivot element



CS245-2017S-11 Sorting in Θ(n lgn) 5

• Reorder the list:

• All elements < pivot

• Pivot element

• All elements > pivot

• Recursively sort elements < pivot

• Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6

11-19: Quick Sort - Partitioning

Basic Idea:

• Swap pivot elememt out of the way (we’ll swap it back later)

• Maintain two pointers, i and j

• i points to the beginning of the list

• j points to the end of the list

• Move i and j in to the middle of the list – ensuring that all elements to the left of i are < the pivot, and all

elememnts to the right of j are greater than the pivot

• Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

• Pick a pivot index

• Swap A[pivotindex] and A[high]

• Set i← low, j ← high−1

• while (i <= j)

• while A[i] < A[pivot], increment i

• while A[j] > A[pivot], decrement i

• swap A[i] and A[j]

• increment i, decrement j

• swap A[i] and A[pivot]

11-21: Θ() for Quick Sort

• Coming up with a recurrence relation for quicksort is harder than mergesort

• How the problem is divided depends upon the data



CS245-2017S-11 Sorting in Θ(n lgn) 6

• Break list into:

size 0, size n− 1

size 1, size n− 2

. . .

size ⌊(n− 1)/2⌋, size ⌈(n− 1)/2⌉

. . .

size n− 2, size 1

size n− 1, size 0

11-22: Θ() for Quick Sort

Worst case performance occurs when break list into size n− 1 and size 0
T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + T (n− 1) + T (0) for some constant c3
T (n) = nc3 + T (n− 1) + T (0)

= T (n− 1) + nc3 + c2
11-23: Θ() for Quick Sort Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)
= T (n− 1) + nc3 + c2

11-24: Θ() for Quick Sort Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)
= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2

11-25: Θ() for Quick Sort Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)
= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2

11-26: Θ() for Quick Sort Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)
= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2
= T (n− 4) + (n+ (n− 1) + (n− 2) + (n− 3))c3 + 4c2

11-27: Θ() for Quick Sort Worst case: T (n) = T (n− 1) + nc3 + c2



CS245-2017S-11 Sorting in Θ(n lgn) 7

T (n)
= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2
= T (n− 4) + (n+ (n− 1) + (n− 2) + (n− 3))c3 + 4c2
. . .

= T (n− k) + (
∑

k−1

i=0 (n− i)c3) + kc2
11-28: Θ() for Quick Sort Worst case:

T (n) = T (n− k) + (
∑k−1

i=0 (n− i)c3) + kc2

Set k = n:

T (n) = T (n− k) + (
∑

k−1

i=0 (n− i)c3) + kc2
= T (n− n) + (

∑
n−1

i=0 (n− i)c3) + kc2
= T (0) + (

∑
n−1

i=0 (n− i)c3) + kc2
= T (0) + (

∑
n−1

i=0 ic3) + kc2
= c1 + c3n(n+ 1)/2 + kc2
∈ Θ(n2)

11-29: Θ() for Quick Sort

T(n) 

11-30: Θ() for Quick Sort

c*n 

T(n-1) T(0)
11-31: Θ() for Quick Sort

c*n 

c*(n-1) c2

T(n-2) T(0)
11-32: Θ() for Quick Sort

c*n 

c*(n-1) c2

c*(n-2) c2

T(n-3) T(0)
11-33: Θ() for Quick Sort



CS245-2017S-11 Sorting in Θ(n lgn) 8

c*n 

c*(n-1) c2

c*n

c*(n-1)+c2
n

levels
c*(n-2) c2 c*(n-2)+c2

c*(n-3) c2 c*(n-3)+c2

...
c*(n-k)+c2

11-34: Θ() for Quick Sort

c*n 

c*(n-1) c2

c*n

c*(n-1)+c2
n

levels

c*n*(n+1)/2 + nc2Total time =

c*(n-2) c2 c*(n-2)+c2

c*(n-3) c2 c*(n-3)+c2

...

Θ(n )2

c*(n-k)+c2

11-35: Θ() for Quick Sort

Best case performance occurs when break list into size ⌊(n− 1)/2⌋ and size ⌈(n− 1)/2⌉
T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

This is the same as Merge Sort: Θ(n lgn)
11-36: Quick Sort?

If Quicksort is Θ(n2) on some lists, why is it called quick?

• Most lists give running time of Θ(n lgn): The average case running time (assuming all permutations are equall

likely) is Θ(n lgn)

• We could prove this by finding the running time for each permutation of a list of length n, and averaging

them

• Math required to do this is a little beyond the prerequisites for this class



CS245-2017S-11 Sorting in Θ(n lgn) 9

• Consider what happens when the list is always partitioned into a list of length n/9 and a list of lenth 8n/9
(recursion tree, on whiteboard)

• Consider what happenswhen the list is always partitioned into a list of length n/k and a list of length

(k − 1)n/k, for any k

11-37: Quick Sort?

If Quicksort is Θ(n2) on some lists, why is it called quick?

• Most lists give running time of Θ(n lgn)

• Average case running time is Θ(n lgn)

• Constants are very small

• Constants don’t matter when complexity is different

• Constants do matter when complexity is the same

What lists will cause Quick Sort to have Θ(n2) performance?

11-38: Quick Sort - Worst Case

• Quick Sort has worst-case performance when:

• The list is sorted (or almost sorted)

• The list is inverse sorted (or almost inverse sorted)

• Many lists we want to sort are almost sorted!

• How can we fix Quick Sort?

11-39: Better Partitions

• Pick the middle element as the pivot

• Sorted and reverse sorted lists give good performance

• Pick a random element as the pivot

• No single list always gives bad performance

• Pick the median of 3 elements

• First, Middle, Last

• 3 Random Elements

11-40: Improving Quick Sort

• Insertion Sort runs faster than Quick Sort on small lists

• Why?

• We can combine Quick Sort & Insertion Sort

• When lists get small, run Insertion Sort instead of a recursive call to Quick Sort

• When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single

call to Insertion Sort



CS245-2017S-11 Sorting in Θ(n lgn) 10

11-41: Heap Sort

• Copy the data into a new array (except leave out element at index 0)

• Build a heap out of the new array

• Repeat:

• Remove the smallest element from the heap, add it to the original array

• Until all elements have been removed from the heap

• The original array is now sorted

Example: 3 1 7 2 5 4

11-42: Heap Sort

• This requires Θ(n) extra space

• We can modify heapsort so that it does not use extra space

• Build a heap out of the original array, with two differences:

• Consider element 0 to be the root of the tree

• for element i, children are at 2*i +1 and 2*i+2, and parent is at (i− 1)/2

• (examples)

• Max-heap instead of a standard min-heap

• For each subtree, element stored at root≥ element stored in that subtree (instead of≤, as in a standard

heap)

11-43: Heap Sort

• Build a heap out of the original array, with two differences:

• Consider element 0 to be the root of the tree

• for element i, children are at 2*i +1 and 2*i+2, and parent is at (i− 1)/2

• (examples)

• Max-heap instead of a standard min-heap

• For each subtree, element stored at root≥ element stored in that subtree (instead of≤, as in a standard

heap)

• Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4

11-44: Θ() for Heap Sort

• Building the heap takes time Θ(n)

• Each of the n RemoveMax calls takes time O(lg n)

• Total time: Ø(n lgn) (also Θ(n lg n))



CS245-2017S-11 Sorting in Θ(n lgn) 11

11-45: Stability

Sorting Algorithm Stable?

Insertion Sort

Selection Sort

Bubble Sort

Shell Sort

Merge Sort

Quick Sort

Heap Sort

11-46: Stability

Sorting Algorithm Stable?

Insertion Sort Yes

Selection Sort No

Bubble Sort Yes

Shell Sort No

Merge Sort Yes

Quick Sort No

Heap Sort No


