11-0: Merge Sort – Recursive Sorting

- Base Case:
 - A list of length 1 or length 0 is already sorted
- Recursive Case:
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7 11-1: Merging

- Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
 - *i* is index of left hand list
 - *j* is index of right hand list
 - n is index of temporary list T
- If A[i] < A[j]
 - T[n] = A[i], increment n and i
- else

•
$$T[n] = A[j]$$
, increment n and j

Example: 1258 3467 and $T(0) = c_1$ for some constant c_1 11-2: $\Theta()$ for Merge Sort $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $T(0) = c_1$ for some constant c_1 11-3: $\Theta()$ for Merge Sort $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $= nc_3 + 2T(n/2)$ T(n) $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $T(0) = c_1$ for some constant c_1 11-4: $\Theta()$ for Merge Sort $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 T(n) $= nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$ $= 3nc_3 + 8T(n/8))$ $T(0) = c_1$ for some constant c_1 11-5: $\Theta()$ for Merge Sort $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3

$$\begin{split} T(n) &= nc_3 + 2T(n/2) \\ &= nc_3 + 2T(n/2) \\ &= nc_3 + 2(n/2c_3 + 2T(n/4)) \\ &= 2nc_3 + 4T(n/4) \\ &= 2nc_3 + 4T(n/4) \\ &= 3nc_3 + 8T(n/8)) \\ &= 3nc_3 + 8T(n/8)) \\ &= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\ &= 4nc_3 + 16T(n/16) \\ &T(0) = c_1 & \text{for some constant } c_2 \\ &T(n) = nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ T(n) &= nc_3 + 2T(n/2) \\ &= nc_3 + 8(n/8c_3 + 2T(n/4)) \\ &= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\ &= 4nc_3 + 16T(n/16) \\ &= 5nc_3 + 32T(n/32) \\ &T(0) = c_1 & \text{for some constant } c_2 \\ &T(n) = nc_3 + 2T(n/2) & \text{for some constant } c_2 \\ &T(n) = nc_3 + 2T(n/2) & \text{for some constant } c_2 \\ &T(n) = nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ \hline T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ = 3nc_3 + 8T(n/8)) & = 3nc_3 + 8T(n/8)) & = 3nc_3 + 8T(n/8)) \\ &= 3nc_3 + 8T(n/8)) & = 3nc_3 + 2^kT(n/2^k) \\ \hline 11.8: \Theta() \text{ for Merge Sort} \\ \hline T(0) &= c_1 \\ T(1) &= c_2 \\ T(n) &= knc_3 + 2^kT(n/2^k) \\ \hline \text{Pick a value for k such that } n/2^k &= 1: \\ n/2^k &= 1 \\ n &= 2^k & \\ lgn &= k \\ T(n) &= (lgn)nc_3 + 2^{lgn}T(n/2^{lgn}) & \\ &= c_3n \lg n + nT(n/n) \\ &= c_3n \lg n + n$$

11-10: $\Theta()$ for Merge Sort

11-14: $\Theta()$ for Merge Sort

11-15: $\Theta()$ for Merge Sort

$T(0) = c_1$	for some constant c_1
$T(1) = c_2$	for some constant c_2
$T(n) = nc_3 + 2T(n/2)$	for some constant c_3

$$T(n) = aT(n/b) + f(n)$$

 $a = 2, b = 2, f(n) = n$
 $n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n)$

By second case of the Master Method, $T(n) \in \Theta(n \lg n)$

11-16: Divide & Conquer

Merge Sort:

- Divide the list two parts
 - No work required just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required need to merge lists

11-17: Divide & Conquer

Quick Sort:

- Divide the list two parts
 - Some work required Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!

11-18: Quick Sort

• Pick a pivot element

- Reorder the list:
 - All elements < pivot
 - Pivot element
 - All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3728146

11-19: Quick Sort - Partitioning

Basic Idea:

- Swap pivot element out of the way (we'll swap it back later)
- Maintain two pointers, *i* and *j*
 - *i* points to the beginning of the list
 - *j* points to the end of the list
- Move i and j in to the middle of the list ensuring that all elements to the left of i are < the pivot, and all elements to the right of j are greater than the pivot
- Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap A[pivotindex] and A[high]
- Set $i \leftarrow low, j \leftarrow high-1$
- while $(i \le j)$
 - while A[i] < A[pivot], increment i
 - while A[j] > A[pivot], decrement i
 - swap A[i] and A[j]
 - increment i, decrement j
- swap A[i] and A[pivot]

11-21: $\Theta()$ for Quick Sort

- Coming up with a recurrence relation for quicksort is harder than mergesort
- How the problem is divided depends upon the data

• Break list into:

size 0, size n - 1size 1, size n - 2... size $\lfloor (n - 1)/2 \rfloor$, size $\lceil (n - 1)/2 \rceil$... size n - 2, size 1 size n - 1, size 0

11-22: $\Theta()$ for Quick Sort

Worst case performance occurs when break list into size n - 1 and size 0

 $\begin{array}{ll} T(0) = c_1 & \text{for some constant } c_1 \\ T(1) = c_2 & \text{for some constant } c_2 \\ T(n) = nc_3 + T(n-1) + T(0) & \text{for some constant } c_3 \\ T(n) &= nc_3 + T(n-1) + T(0) \\ &= T(n-1) + nc_3 + c_2 \end{array}$ 11-23: $\Theta()$ for Quick Sort Worst case: $T(n) = T(n-1) + nc_3 + c_2$

T(n)

$$=T(n-1)+nc_3+c_2$$

11-24: $\Theta()$ for Quick Sort Worst case: $T(n) = T(n-1) + nc_3 + c_2$

 $T(n) = T(n-1) + nc_3 + c_2 = [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 = T(n-2) + (n + (n-1))c_3 + 2c_2$

11-25: $\Theta()$ for Quick Sort Worst case: $T(n) = T(n-1) + nc_3 + c_2$

 $\begin{array}{l} T(n) \\ = T(n-1) + nc_3 + c_2 \\ = [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\ = T(n-2) + (n+(n-1))c_3 + 2c_2 \\ = [T(n-3) + (n-2)c_3 + c_2] + (n+(n-1))c_3 + 2c_2 \\ = T(n-3) + (n+(n-1) + (n-2))c_3 + 3c_2 \\ \end{array}$ 11-26: $\Theta()$ for Quick Sort Worst case: $T(n) = T(n-1) + nc_3 + c_2$

 $T(n) = T(n-1) + nc_3 + c_2$ = $[T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$ = $T(n-2) + (n + (n-1))c_3 + 2c_2$ = $[T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2$ = $T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2$ = $T(n-4) + (n + (n-1) + (n-2) + (n-3))c_3 + 4c_2$

11-27: $\Theta()$ for Quick Sort Worst case: $T(n) = T(n-1) + nc_3 + c_2$

$$\begin{split} T(n) &= T(n-1) + nc_3 + c_2 \\ &= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\ &= T(n-2) + (n + (n-1))c_3 + 2c_2 \\ &= T(n-3) + (n - 2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2 \\ &= T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2 \\ &= T(n-4) + (n + (n-1) + (n-2) + (n-3))c_3 + 4c_2 \\ & \dots \\ &= T(n-k) + (\sum_{i=0}^{k-1}(n-i)c_3) + kc_2 \\ \text{11-28: } \Theta() \text{ for Quick Sort Worst case:} \\ T(n) &= T(n-k) + (\sum_{i=0}^{k-1}(n-i)c_3) + kc_2 \\ \text{Set } k = n: \\ T(n) &= T(n-k) + (\sum_{i=0}^{k-1}(n-i)c_3) + kc_2 \\ &= T(n-n) + (\sum_{i=0}^{n-1}(n-i)c_3) + kc_2 \\ &= T(0) + (\sum_{i=0}^{n-1}(n-i)c_3) + kc_2 \\ &= T(0) + (\sum_{i=0}^{n-1}ic_3) + kc_2 \\ &= T(0) + (\sum_{i=0}^{n-1}ic_3) + kc_2 \\ &= c_1 + c_3n(n+1)/2 + kc_2 \\ &\in \Theta(n^2) \end{split}$$

11-29: $\Theta()$ for Quick Sort

T(n)

11-30: $\Theta()$ for Quick Sort

11-32: $\Theta()$ for Quick Sort

11-35: $\Theta()$ for Quick Sort

Best case performance occurs when break list into size $\lfloor (n-1)/2 \rfloor$ and size $\lfloor (n-1)/2 \rfloor$

 $\begin{array}{ll} T(0) = c_1 & \text{for some constant } c_1 \\ T(1) = c_2 & \text{for some constant } c_2 \\ T(n) = nc_3 + 2T(n/2) & \text{for some constant } c_3 \end{array}$

This is the same as Merge Sort: $\Theta(n \lg n)$

11-36: Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of Θ(n lg n): The average case running time (assuming all permutations are equall likely) is Θ(n lg n)
 - We could prove this by finding the running time for each permutation of a list of length n, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class

- Consider what happens when the list is always partitioned into a list of length n/9 and a list of lenth 8n/9 (recursion tree, on whiteboard)
- Consider what happens when the list is always partitioned into a list of length n/k and a list of length (k-1)n/k, for any k

11-37: Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$
 - Average case running time is $\Theta(n \lg n)$
- Constants are very small
 - Constants don't matter when complexity is different
 - Constants do matter when complexity is the same

What lists will cause Quick Sort to have $\Theta(n^2)$ performance? 11-38: Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
 - The list is sorted (or almost sorted)
 - The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?

11-39: Better Partitions

- Pick the middle element as the pivot
 - Sorted and reverse sorted lists give good performance
- Pick a random element as the pivot
 - No single list always gives bad performance
- Pick the median of 3 elements
 - First, Middle, Last
 - 3 Random Elements

11-40: Improving Quick Sort

- Insertion Sort runs faster than Quick Sort on small lists
 - Why?
- We can combine Quick Sort & Insertion Sort
 - When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 - When lists get small, stop! After call to Quick Sort, list will be almost sorted finish the job with a single call to Insertion Sort

11-41: Heap Sort

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 3 1 7 2 5 4

11-42: Heap Sort

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at 2*i+1 and 2*i+2, and parent is at (i-1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root ≥ element stored in that subtree (instead of ≤, as in a standard heap)

11-43: Heap Sort

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at 2^{i+1} and 2^{i+2} , and parent is at (i-1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root ≥ element stored in that subtree (instead of ≤, as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: $3 \ 1 \ 7 \ 2 \ 5 \ 4$ 11-44: $\Theta()$ for Heap Sort

- Building the heap takes time $\Theta(n)$
- Each of the *n* RemoveMax calls takes time $O(\lg n)$
- Total time: $\mathcal{O}(n \lg n)$ (also $\Theta(n \lg n)$)

11-45: Stability

Sorting Algorithm	Stable?
Insertion Sort	
Selection Sort	
Bubble Sort	
Shell Sort	
Merge Sort	
Quick Sort	
Heap Sort	

11-46: Stability

Sorting Algorithm	Stable?
Insertion Sort	Yes
Selection Sort	No
Bubble Sort	Yes
Shell Sort	No
Merge Sort	Yes
Quick Sort	No
Heap Sort	No