Data Structures and Algorithms CS245-2017S-12 Non-Comparison Sorts

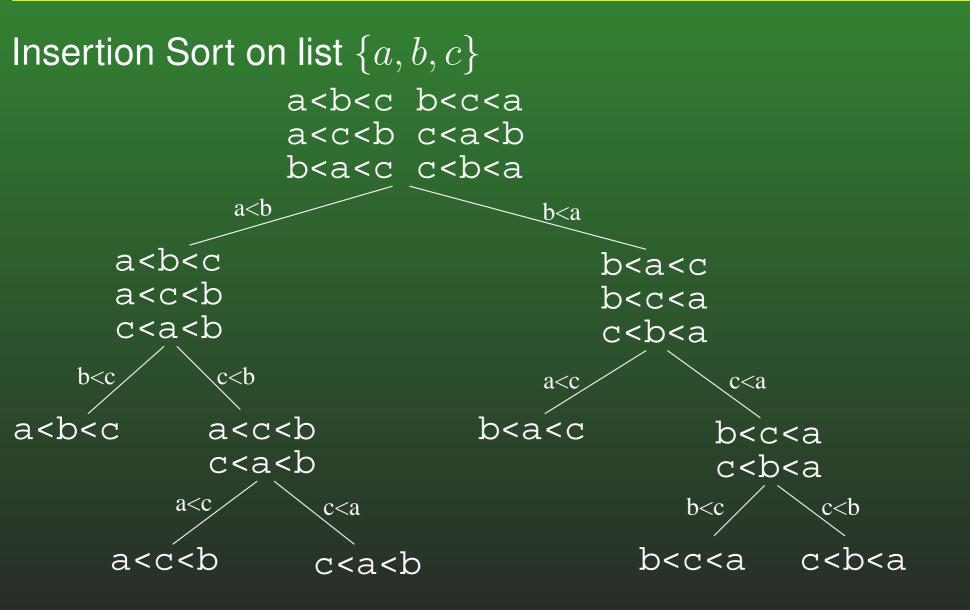
David Galles

Department of Computer Science University of San Francisco

12-0: Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: Decision Trees



12-2: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-3: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-4: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree (depth of the deepest leaf) + 1

12-5: **Decision Trees**

• What is the largest number of nodes for a tree of depth *d*?

12-6: Decision Trees

- What is the largest number of nodes for a tree of depth *d*?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?

12-7: Decision Trees

- What is the largest number of nodes for a tree of depth *d*?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?

12-8: **Decision Trees**

- What is the largest number of nodes for a tree of depth *d*?
 - 2^{d}
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?
 - n!
- What is the minimum height, for a decision tree for sorting *n* elements?

12-9: Decision Trees

- What is the largest number of nodes for a tree of depth *d*?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?
 - n!
- What is the minimum height, for a decision tree for sorting *n* elements?
 - lg n!

12-10: $\lg(n!) \in \Omega(n \lg n)$

 $lg(n!) = lg(n * (n - 1) * (n - 2) * \dots * 2 * 1)$ $= (\lg n) + (\lg (n-1)) + (\lg (n-2)) + \dots$ $+(\lg 2) + (\lg 1)$ $\geq (\lg n) + (\lg(n-1)) + \ldots + (\lg(n/2)))$ n/2 terms $\geq (\lg n/2) + (\lg (n/2)) + \ldots + \lg (n/2))$ n/2 terms $= (n/2) \lg(n/2)$ $\in \Omega(n \lg n)$

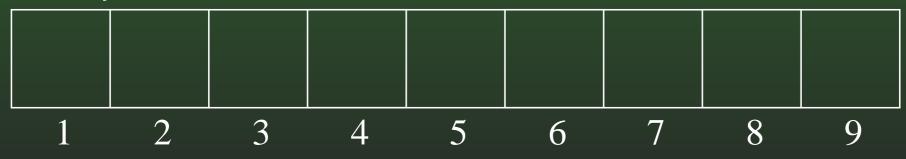
12-11: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with *n*! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

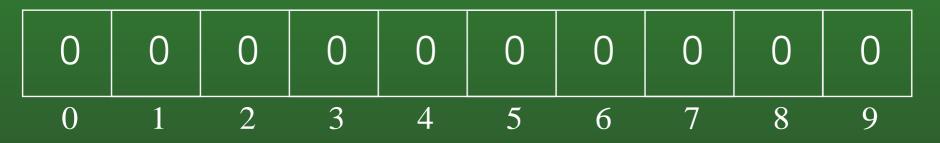
12-12: Counting Sort

- Sorting a list of n integers
- We know all integers are in the range $0 \dots m$
- We can potentially sort the integers faster than $n \lg n$
- Keep track of a "Counter Array" C:
 - C[i] = # of times value *i* appears in the list

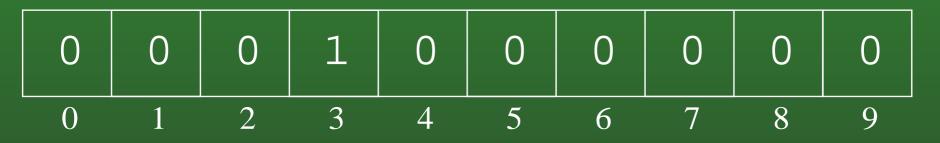
Example: 3 1 3 5 2 1 6 7 8 1



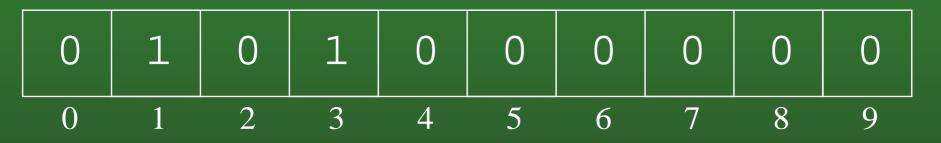
12-13: Counting Sort Example



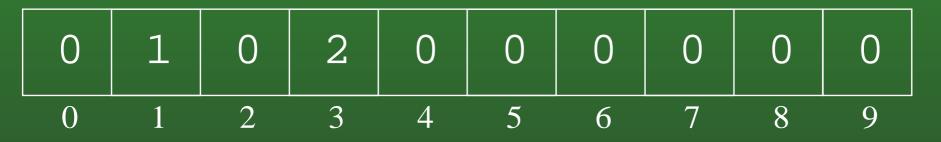
12-14: Counting Sort Example



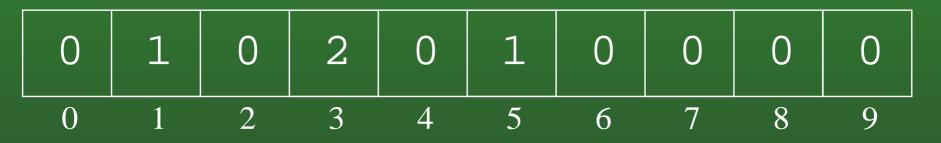
12-15: Counting Sort Example



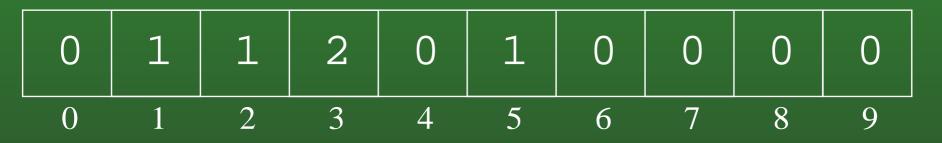
12-16: Counting Sort Example



12-17: Counting Sort Example



12-18: Counting Sort Example



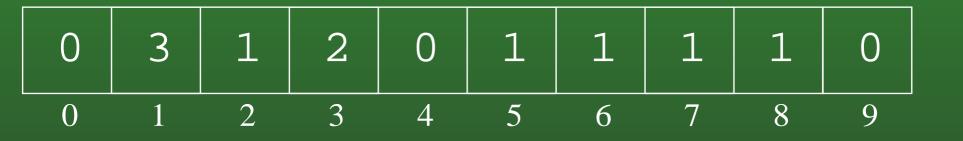
12-19: Counting Sort Example

12-20: Counting Sort Example

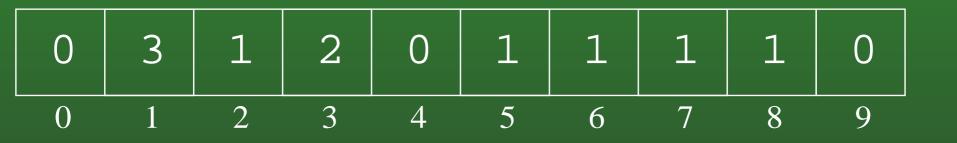
12-21: Counting Sort Example

12-22: Counting Sort Example

12-23: Counting Sort Example



12-24: Counting Sort Example



12-25: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:

12-26: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?

12-27: $\Theta()$ of Counting Sort

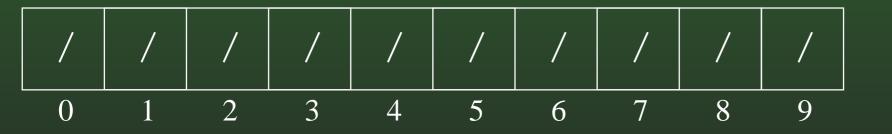
- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?
 - For *Comparison Sorts*, which allow for sorting arbitrary data. What happens when *m* is very large?

12-28: Binsort

- Counting Sort will need some modification to allow us to sort *records* with integer keys, instead of just integers.
- Binsort is much like Counting Sort, except that in each index *i* of the counting array *C*:
 - Instead of storing the *number* of elements with the value *i*, we store a *list* of all elements with the value *i*.

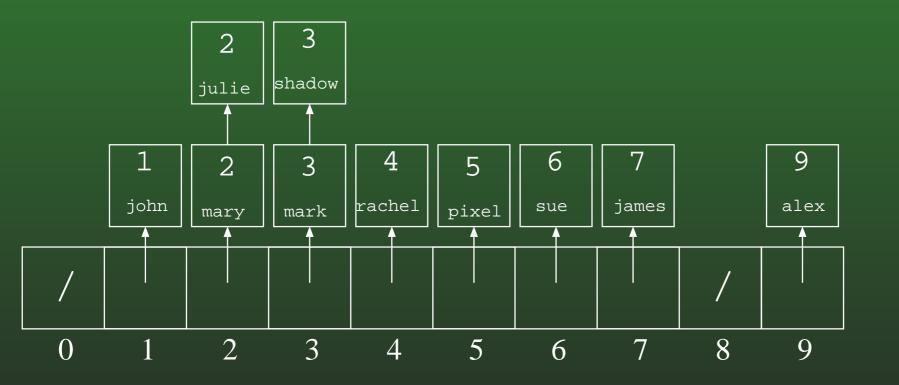
12-29: Binsort Example

3	1	2	6	2	4	5	3	9	7	key
mark	john	mary	sue	julie	rachel	pixel	shadow	alex	james	data



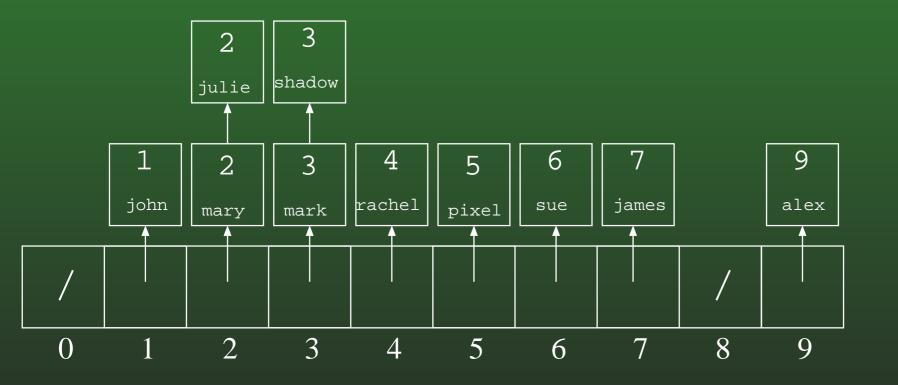
12-30: Binsort Example

	3	1	2	6	2	4	5	3	9	7	key
n	nark	john	mary	sue	julie	rachel	pixel	shadow	alex	james	data



12-31: Binsort Example

1	2	2	3	3	4	5	6	7	9	key
john	mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data

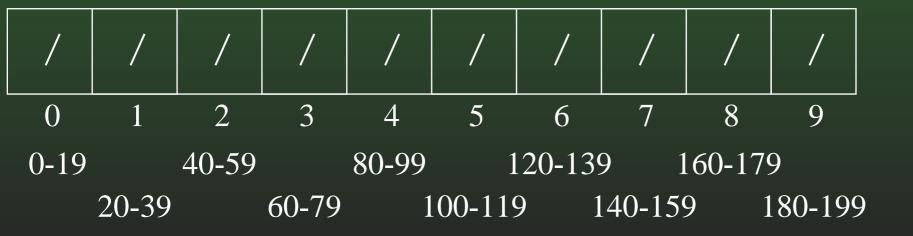


12-32: Bucket Sort

- Expand the "bins" in Bin Sort to "buckets"
- Each bucket holds a range of key values, instead of a single key value
- Elements in each bucket are sorted.

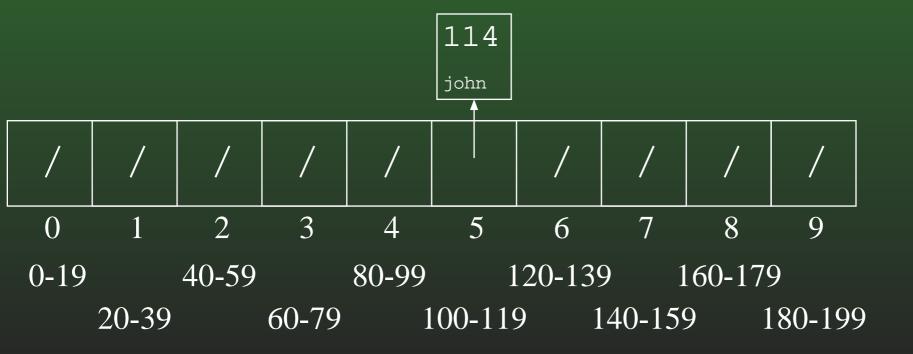
12-33: Bucket Sort Example

114	26	50	180	44	111	4	95	196	170	key
john	mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data



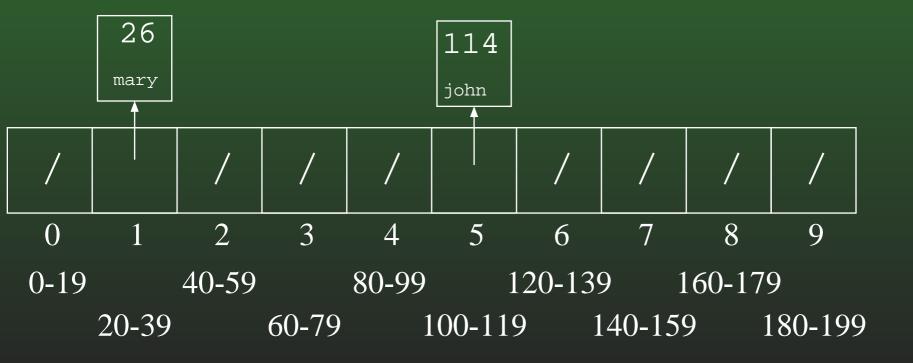
12-34: Bucket Sort Example

26	50	180	44	111	4	95	196	170	key
mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data



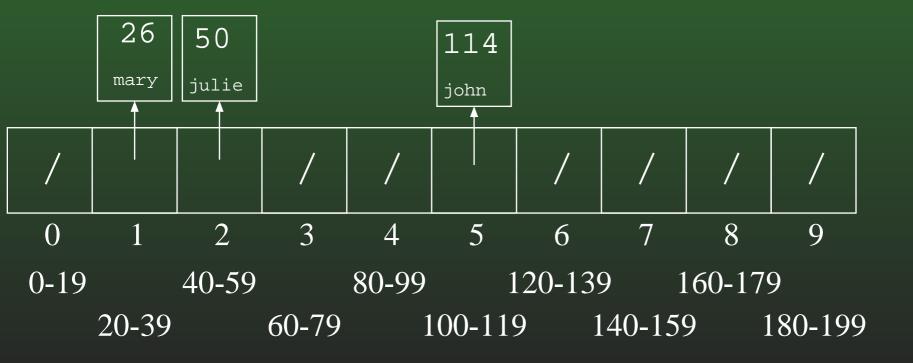
12-35: Bucket Sort Example

50	180	44	111	4	95	196	170	key
julie	mark	shadow	rachel	pixel	sue	james	alex	data



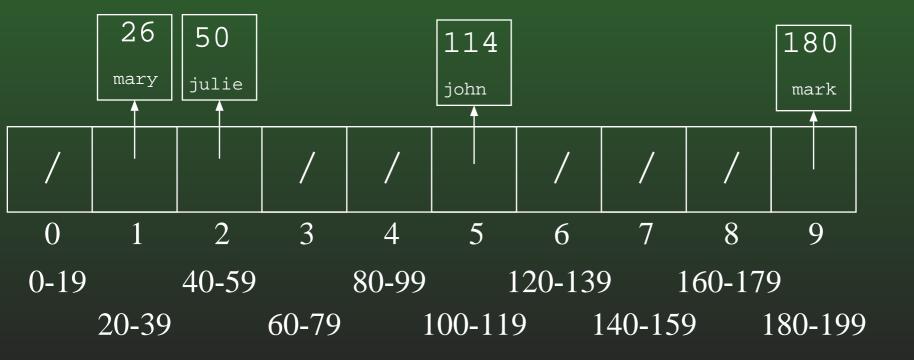
12-36: Bucket Sort Example

180	44	111	4	95	196	170	key
mark	shadow	rachel	pixel	sue	james	alex	data



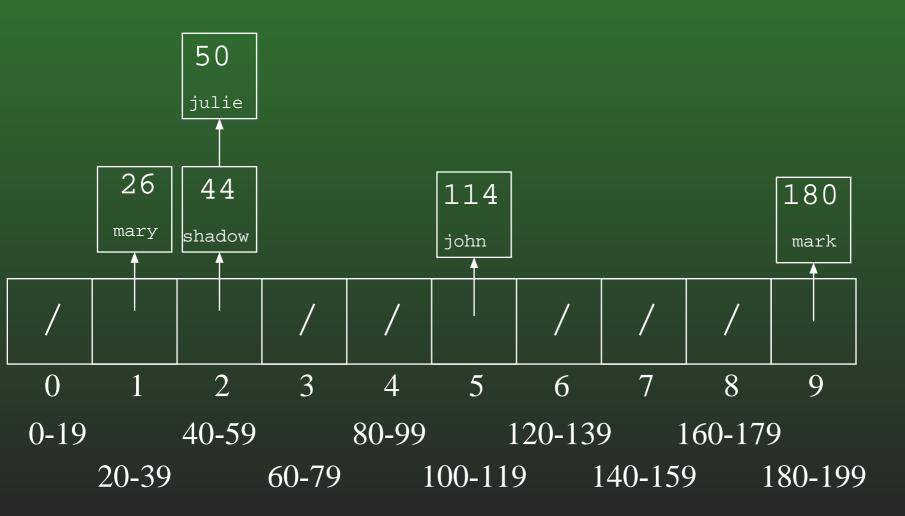
12-37: Bucket Sort Example

	44	111	4	95	196	170	key
	shadow	rachel	pixel	sue	james	alex	data

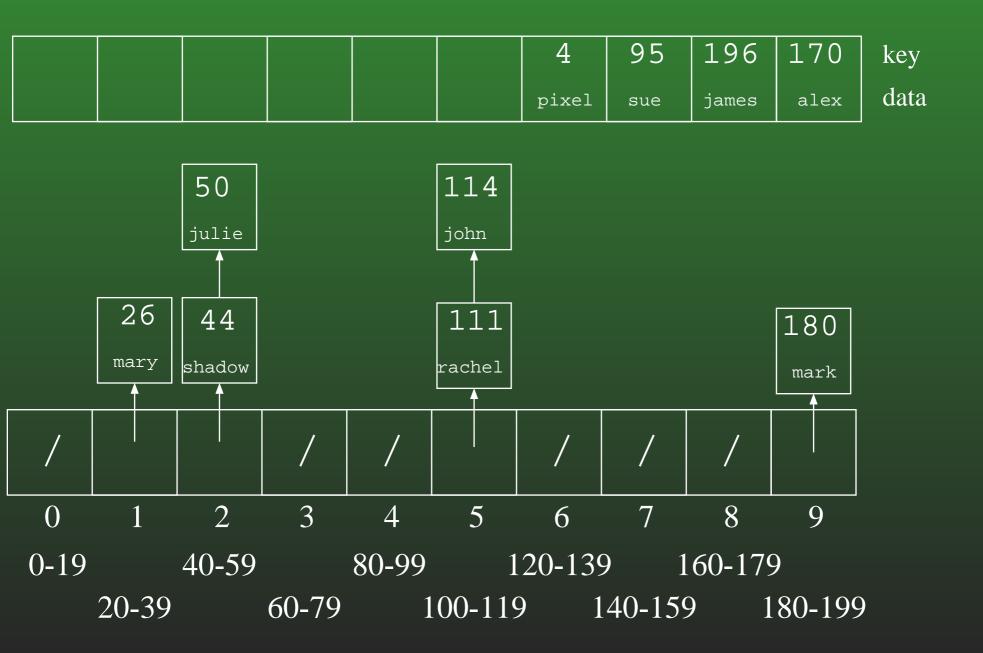


12-38: Bucket Sort Example

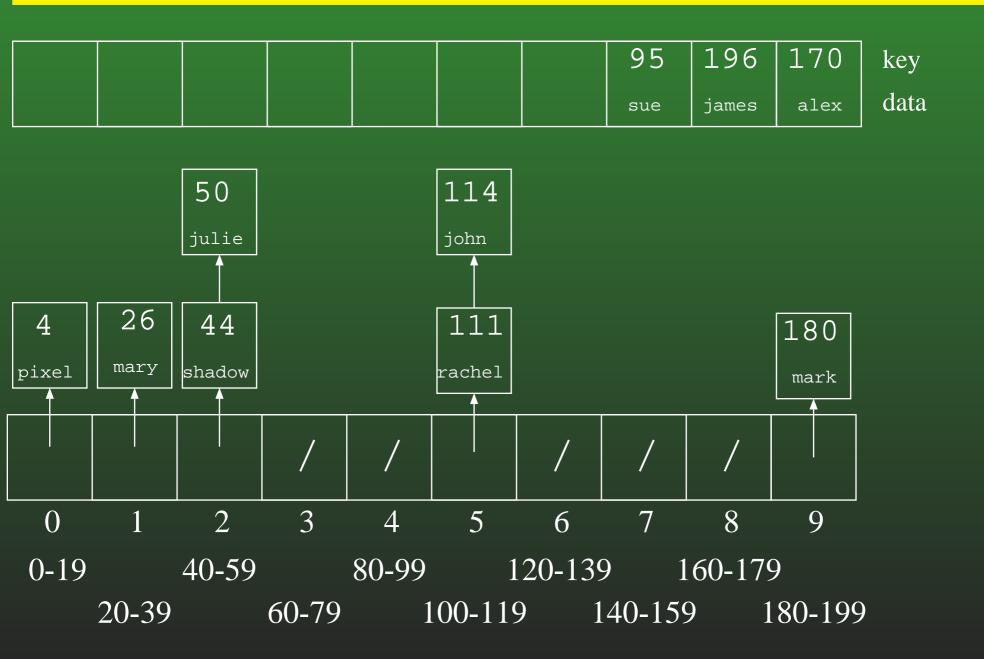
	111	4	95	196	170	key
	rachel	pixel	sue	james	alex	data



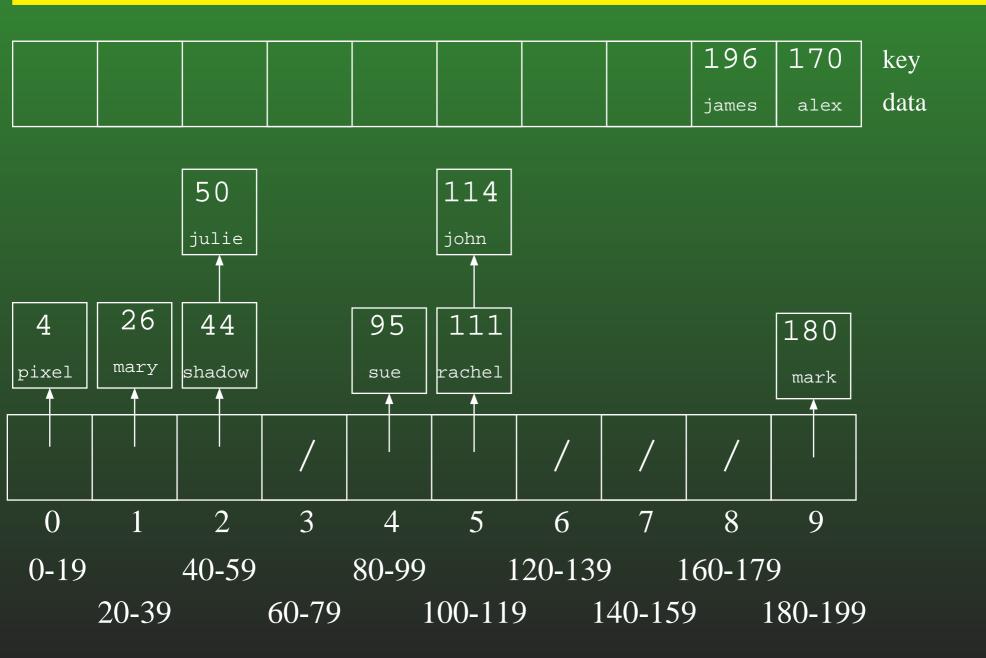
12-39: Bucket Sort Example



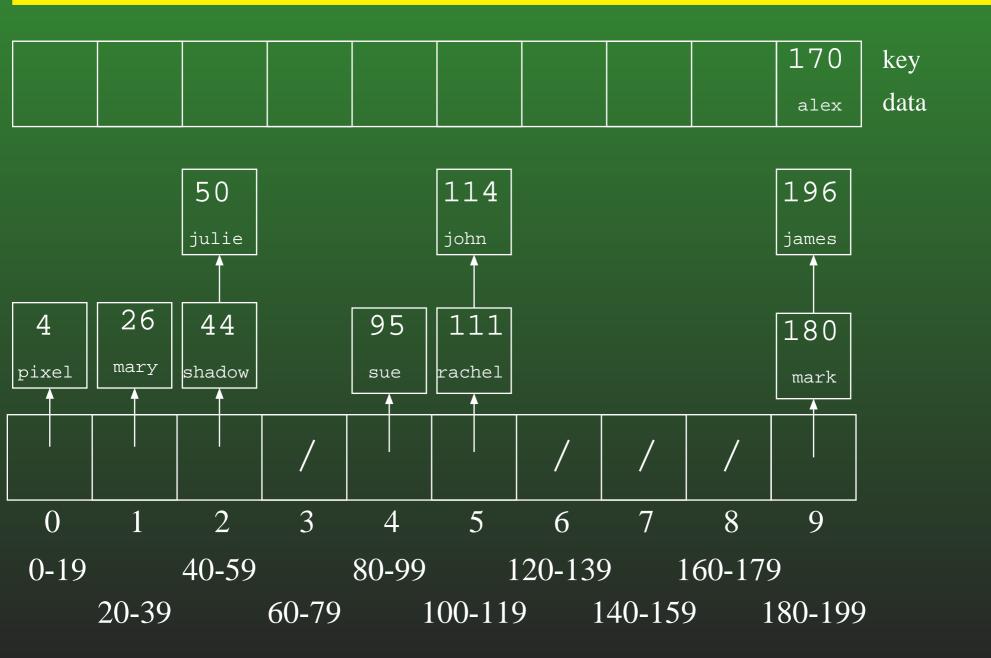
12-40: Bucket Sort Example



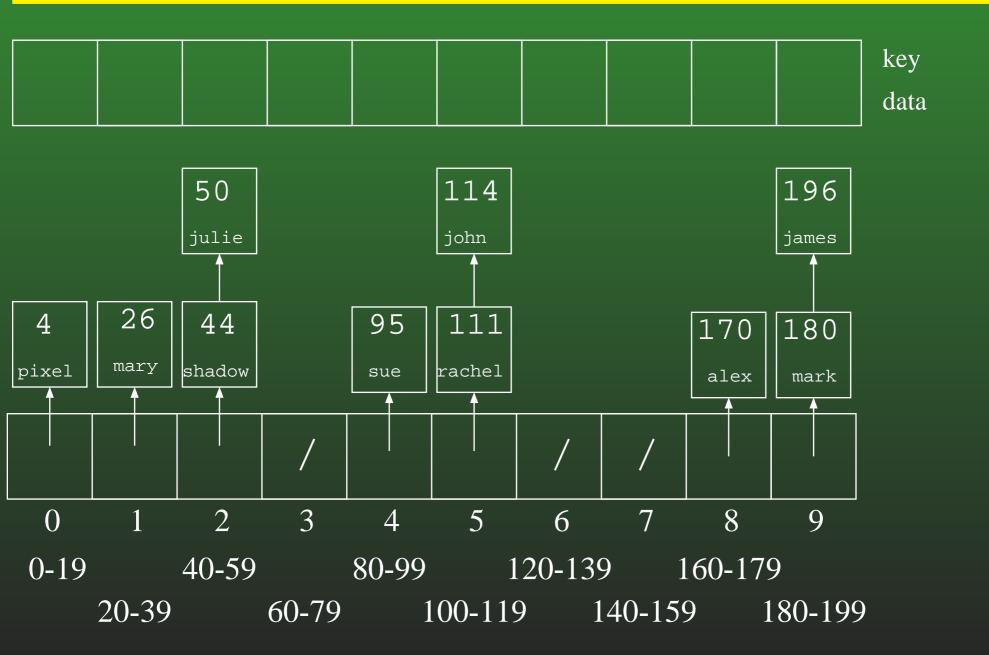
12-41: Bucket Sort Example



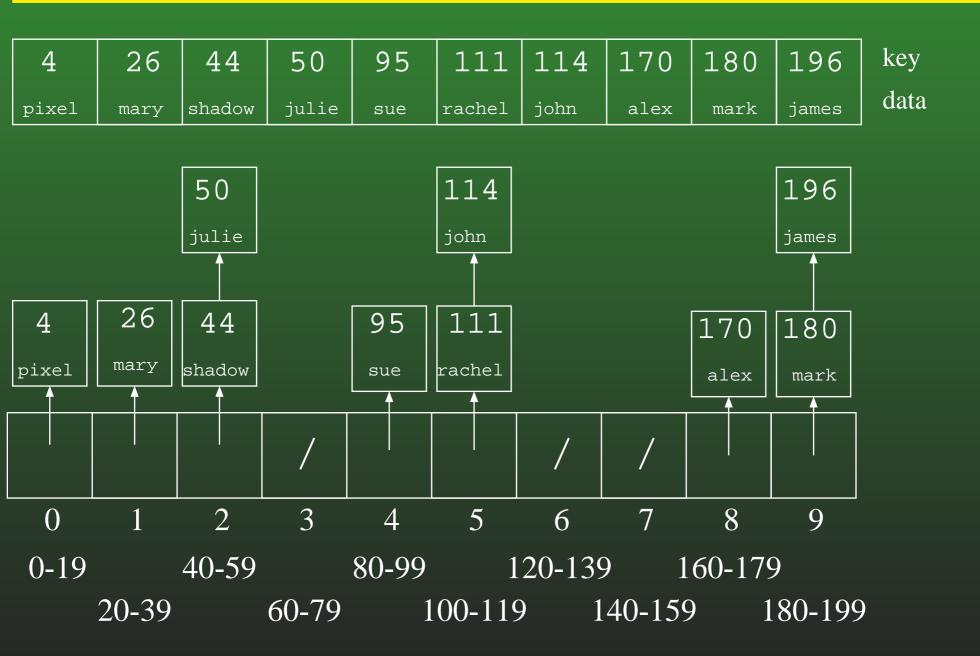
12-42: Bucket Sort Example



12-43: Bucket Sort Example



12-44: Bucket Sort Example



12-45: Counting Sort Revisited

- We're going to look at counting sort again
- For the moment, we will assume that our array is indexed from 1...n (where n is the number of elements in the list) instead of being indexed from 0...n − 1, to make the algorithm easier to understand
- Later, we will go back and change the algorithm to allow for an index between $0 \dots n-1$

12-46: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

12-47: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-1];</pre>

• Example: 3 1 2 4 9 8 7

12-48: Counting Sort Revisited

 Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited

 Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

• Example: 3 1 2 4 9 8 7

12-50: Counting Sort & Duplicates

 If a list has duplicate elements, and we create C as before:

for(i=1; i <= n; i++)
 C[A[i].key()]++;
for(i=1; i < C.length; i++)
 C[i] = C[i] + C[i-1];</pre>

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

 If a list has duplicate elements, and we create C as before:

What will the value of C[i] represent?

• The *last* index in A where element i could appear.

12-52: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

```
for (i=1; i <= n; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=1; i <= n; i++)
    A[i] = B[i];</pre>
```

• Example: 312422916

12-53: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)</pre>
   C[A[i].key()]++;
for(i=1; i<C.length; i++)</pre>
  C[i] = C[i] + C[i-1];
for (i=1; i <= n; i++) {
   B[C[A[i].key()]] = A[i];
   C[A[i].key()]--;
}
for (i=1; i <= n; i++)
   A[i] = B[i];
```

- Example: 312422916
- Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

```
for (i = n; i>=1; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
```

```
for (i=1; i < n; i++)
        A[i] = B[i];</pre>
```

• How would we change this algorithm if our arrays were indexed from $0 \dots n - 1$ instead of $1 \dots n$?

12-55: Final (!) Counting Sort

```
for(i=0; i < A.length; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

```
for (i=A.length - 1; i>=0; i++) {
    C[A[i].key()]--;
    B[C[A[i].key()]] = A[i];
}
```

```
for (i=0; i < A.length; i++)
        A[i] = B[i];</pre>
```

12-56: Radix Sort

- Sort a list of numbers one digit at a time
 Sort by 1st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort

- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

12-57: Radix Sort

Second Try:

- Sort by *least significant* digit first
- Then sort by next-least significant digit, using a Stable sort
 - • •
- Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

12-58: Radix Sort

If (most significant digit of x) < (most significant digit of y),
 then x will appear in A before y.

12-59: Radix Sort

- If (most significant digit of x) < (most significant digit of y),
 - then x will appear in A before y.
 - Last sort was by the most significant digit

• If (most significant digit of x) < (most significant digit of y), then x will appear in A before y. Last sort was by the most significant digit • If (most significant digit of x) = (most significant digit of y) and (second most significant digit of x) < (second most significant digit of y), then x will appear in A before y.

• If (most significant digit of x) < (most significant digit of y), then x will appear in A before y. Last sort was by the most significant digit • If (most significant digit of x) = (most significant digit of y) and (second most significant digit of x) < (second most significant digit of y), then x will appear in A before y. • After next-to-last sort, x is before y. Last sort

does not change relative order of x and y

12-62: Radix Sort

Original List

 $982\ 414\ 357\ 495\ 500\ 904\ 645\ 777\ 716\ 637\ 149\ 913\ 817\ 493\ 730\ 331\ 201$

Sorted by Least Significant Digit

500 730 331 201 982 493 913 414 904 645 495 716 357 777 637 817 149

Sorted by Second Least Significant Digit

 $500\ 201\ 904\ 913\ 414\ 716\ 817\ 730\ 331\ 637\ 645\ 149\ 357\ 777\ 982\ 493\ 493\ 495$

Sorted by Most Significant Digit

 $\underline{149}\ \underline{201}\ \underline{331}\ \underline{357}\ \underline{414}\ \underline{493}\ \underline{495}\ \underline{500}\ \underline{637}\ \underline{645}\ \underline{716}\ \underline{730}\ \underline{777}\ \underline{817}\ \underline{904}\ \underline{913}\ \underline{982}$

12-63: Radix Sort

- We do not need to use a single digit of the key for each of our counting sorts
 - We could use 2-digit chunks of the key instead
 - Our *C* array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort

Original List

 $9823 \ 4376 \ 2493 \ 1055 \ 8502 \ 4333 \ 1673 \ 8442 \ 8035 \ 6061 \ 7004 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 2338 \ 3312 \ 4409 \ 340 \$

Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

 $8502\ 7004\ 4409\ 3312\ 9823\ 4333\ 8035\ 2338\ 8442\ 1055\ 6061\ 1673\ 4376\ 2493$

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

1055	1673 2	2 <u>3</u> 38 2493	3312	4333	<u>43</u> 76	<u>44</u> 09	<u>60</u> 61	<u>70</u> 04	<u>80</u> 35	8442	<u>85</u> 02	<u>98</u> 23
------	--------	--------------------	------	------	--------------	--------------	--------------	--------------	--------------	------	--------------	--------------

12-65: Radix Sort

- "Digit" does not need to be base ten
- For any value r:
 - Sort the list based on (key % r)
 - Sort the list based on ((key / r) % r))
 - Sort the list based on ((key / r^2) % r))
 - Sort the list based on ((key / r^3) % r))
 - Sort the list based on ((key / r<sup>log_k(largest value in array)) % r))
 </sup>
- Code on other screen