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12-0: Comparison Sorting

• Comparison sorts work by comparing elements

• Can only compare 2 elements at a time

• Check for <, >, =.

• All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts

• If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: Decision Trees Insertion Sort on list {a, b, c}

a<b<c b<c<a
a<c<b c<a<b
b<a<c c<b<a

a<b<c
a<c<b
c<a<b

b<a<c
b<c<a
c<b<a

a<b<c a<c<b
c<a<b

a<c<b c<a<b

b<a<c b<c<a
c<b<a

b<c<a c<b<a

a<b b<a

b<c c<b a<c c<a

a<c c<a b<c c<b

12-2: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

12-3: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

• (The depth of the shallowest leaf) + 1

• What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for

the algorithm?

12-4: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

• (The depth of the shallowest leaf) + 1
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• What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for

the algorithm?

• The height of the tree – (depth of the deepest leaf) + 1

12-5: Decision Trees

• What is the largest number of nodes for a tree of depth d?

12-6: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

12-7: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

• How many leaves are there in a decision tree for sorting n elements?

12-8: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

• How many leaves are there in a decision tree for sorting n elements?

• n!

• What is the minimum height, for a decision tree for sorting n elements?

12-9: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

• How many leaves are there in a decision tree for sorting n elements?

• n!

• What is the minimum height, for a decision tree for sorting n elements?
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• lg n!

12-10: lg(n!) ∈ Ω(n lg n)

lg(n!) = lg(n ∗ (n− 1) ∗ (n− 2) ∗ . . . ∗ 2 ∗ 1)

= (lg n) + (lg(n− 1)) + (lg(n− 2)) + . . .

+(lg 2) + (lg 1)

≥ (lg n) + (lg(n− 1)) + . . .+ (lg(n/2))
︸ ︷︷ ︸

n/2 terms

≥ (lg n/2) + (lg(n/2)) + . . .+ lg(n/2)
︸ ︷︷ ︸

n/2 terms

= (n/2) lg(n/2)

∈ Ω(n lgn)

12-11: Sorting Lower Bound

• All comparison sorting algorithms can be represented by a decision tree with n! leaves

• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height

of the tree

• A decision tree with n! leaves must have a height of at least n lgn

• All comparison sorting algorithms have worst-case running time Ω(n lgn)

12-12: Counting Sort

• Sorting a list of n integers

• We know all integers are in the range 0 . . .m

• We can potentially sort the integers faster than n lgn

• Keep track of a “Counter Array” C:

• C[i] = # of times value i appears in the list

Example: 3 1 3 5 2 1 6 7 8 1

1 2 3 4 5 6 7 8 9
12-13: Counting Sort Example

1 2 3 4 5 6 7 8 9

3135216781

0 0 0 0 0 0 0 0 0

0

0
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12-14: Counting Sort Example

1 2 3 4 5 6 7 8 9

 135216781

0 0 0 1 0 0 0 0 0

0

0

12-15: Counting Sort Example

1 2 3 4 5 6 7 8 9

  35216781

0 1 0 1 0 0 0 0 0

0

0

12-16: Counting Sort Example

1 2 3 4 5 6 7 8 9

   5216781

0 1 0 2 0 0 0 0 0

0

0

12-17: Counting Sort Example

1 2 3 4 5 6 7 8 9

    216781

0 1 0 2 0 1 0 0 0

0

0

12-18: Counting Sort Example

1 2 3 4 5 6 7 8 9

     16781

0 1 1 2 0 1 0 0 0

0

0

12-19: Counting Sort Example

1 2 3 4 5 6 7 8 9

      6781

0 2 1 2 0 1 0 0 0

0

0

12-20: Counting Sort Example
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1 2 3 4 5 6 7 8 9

       781

0 2 1 2 0 1 1 0 0

0

0

12-21: Counting Sort Example

1 2 3 4 5 6 7 8 9

        81

0 2 1 2 0 1 1 1 0

0

0

12-22: Counting Sort Example

1 2 3 4 5 6 7 8 9

         1

0 2 1 2 0 1 1 1 1

0

0

12-23: Counting Sort Example

1 2 3 4 5 6 7 8 9

          

0 3 1 2 0 1 1 1 1

0

0

12-24: Counting Sort Example

1 2 3 4 5 6 7 8 9

          

0 3 1 2 0 1 1 1 1

0

0

1 1 1 2 3 3 5 6 7 8 12-25: Θ() of Counting Sort

• What its the running time of Counting Sort?

• If the list has n elements, all of which are in the range 0 . . .m:

12-26: Θ() of Counting Sort

• What its the running time of Counting Sort?

• If the list has n elements, all of which are in the range 0 . . .m:

• Running time is Θ(n+m)

• What about the Ω(n lgn) bound for all sorting algorithms?
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12-27: Θ() of Counting Sort

• What its the running time of Counting Sort?

• If the list has n elements, all of which are in the range 0 . . .m:

• Running time is Θ(n+m)

• What about the Ω(n lgn) bound for all sorting algorithms?

• For Comparison Sorts, which allow for sorting arbitrary data. What happens when m is very large?

12-28: Binsort

• Counting Sort will need some modification to allow us to sort records with integer keys, instead of just integers.

• Binsort is much like Counting Sort, except that in each index i of the counting array C:

• Instead of storing the number of elements with the value i, we store a list of all elements with the value i.

12-29: Binsort Example

1 2 3 4 5 6 7 8 9

/ / / / / / / / /

0

/

3 1 2 6 2 4 5 3 9 7 key

datamark john mary sue julie rachel pixel shadow alex james

12-30: Binsort Example

1 2 3 4 5 6 7 8 9

/ /

0

3 1 2 6 2 4 5 3 9 7 key

datamark john mary sue julie rachel pixel shadow alex james

1

john

2

mary

2

julie

3

mark

3

shadow

4

rachel

5

pixel

6

sue

7

james

9

alex

12-31: Binsort Example
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1 2 3 4 5 6 7 8 9

/ /

0

1 2 2 3 3 4 5 6 7 9 key

datajohn mary julie mark shadow rachel pixel sue james alex

1

john

2

mary

2

julie

3

mark

3

shadow

4

rachel

5

pixel

6

sue

7

james

9

alex

12-32: Bucket Sort

• Expand the “bins” in Bin Sort to “buckets”

• Each bucket holds a range of key values, instead of a single key value

• Elements in each bucket are sorted.

12-33: Bucket Sort Example

1 2 3 4 5 6 7 8 9

/ /

0

114 26 50 180 44 4 95 196 170 key

datajohn mary julie mark shadow rachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / / / / / / /

12-34: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

26 50 180 44 4 95 196 170 key

datamary julie mark shadow rachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / /

114

john

/// ///

12-35: Bucket Sort Example

1 2 3 4 5 6 7 8 90

50 180 44 4 95 196 170 key

datajulie mark shadow rachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / /

114

john

26

mary

/// //

12-36: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

180 44 4 95 196 170 key

datamark shadow rachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / /

114

john

26

mary

50

julie

/// /

12-37: Bucket Sort Example

1 2 3 4 5 6 7 8 90

44 4 95 196 170 key

datashadow rachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / /

114

john

26

mary

50

julie

180

mark

///

12-38: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

4 95 196 170 key

datarachel pixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

111

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow

///

12-39: Bucket Sort Example

1 2 3 4 5 6 7 8 90

4 95 196 170 key

datapixel sue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

111

///

12-40: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

95 196 170 key

datasue james alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

1114

pixel

//

12-41: Bucket Sort Example

1 2 3 4 5 6 7 8 90

196 170 key

datajames alex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

1114

pixel

95

sue

/

12-42: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

170 key

dataalex

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

1114

pixel

95

sue

196

james

/

12-43: Bucket Sort Example

1 2 3 4 5 6 7 8 90

key

data

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

1114

pixel

95

sue

196

james

170

alex

12-44: Bucket Sort Example
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1 2 3 4 5 6 7 8 90

key

data

0-19
20-39

40-59
60-79

80-99
100-119

120-139
140-159

160-179
180-199

/ / /

114

john

26

mary

50

julie

180

mark

44

shadow rachel

1114

pixel

95

sue

196

james

170

alex

4

pixel

26

mary

44

shadow

50

julie

95

sue rachel

111 114

john

170

alex

180

mark

196

james

12-45: Counting Sort Revisited

• We’re going to look at counting sort again

• For the moment, we will assume that our array is indexed from 1 . . . n (where n is the number of elements in

the list) instead of being indexed from 0 . . . n− 1, to make the algorithm easier to understand

• Later, we will go back and change the algorithm to allow for an index between 0 . . . n− 1

12-46: Counting Sort Revisited

• Create the array C[], such that C[i] = # of times key i appears in the array.

• Modify C[] such that C[i] = the index of key i in the sorted array. (assume no duplicate keys, for now)

• If x 6∈ A, we don’t care about C[x]

12-47: Counting Sort Revisited

• Create the array C[], such that C[i] = # of times key i appears in the array.

• Modify C[] such that C[i] = the index of key i in the sorted array. (assume no duplicate keys, for now)

• If x 6∈ A, we don’t care about C[x]

for(i=1; i<C.length; i++)

C[i] = C[i] + C[i-1];

• Example: 3 1 2 4 9 8 7

12-48: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited



CS245-2017S-12 Non-Comparison Sorts 14

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

for (i=1; i <= n; i++)

B[C[A[i].key()]] = A[i];

for (i=1; i <= n; i++)

A[i] = B[i];

• Example: 3 1 2 4 9 8 7

12-50: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

for(i=1; i <= n; i++)

C[A[i].key()]++;

for(i=1; i < C.length; i++)

C[i] = C[i] + C[i-1];

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

for(i=1; i <= n; i++)

C[A[i].key()]++;

for(i=1; i < C.length; i++)

C[i] = C[i] + C[i-1];

What will the value of C[i] represent?

• The last index in A where element i could appear.

12-52: (Almost) Final Counting Sort

for(i=1; i <= n; i++)

C[A[i].key()]++;

for(i=1; i < C.length; i++)

C[i] = C[i] + C[i-1];

for (i=1; i <= n; i++) {

B[C[A[i].key()]] = A[i];

C[A[i].key()]--;

}

for (i=1; i <= n; i++)

A[i] = B[i];

• Example: 3 1 2 4 2 2 9 1 6

12-53: (Almost) Final Counting Sort
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for(i=1; i <= n; i++)

C[A[i].key()]++;

for(i=1; i<C.length; i++)

C[i] = C[i] + C[i-1];

for (i=1; i <= n; i++) {

B[C[A[i].key()]] = A[i];

C[A[i].key()]--;

}

for (i=1; i <= n; i++)

A[i] = B[i];

• Example: 3 1 2 4 2 2 9 1 6

• Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

for(i=1; i <= n; i++)

C[A[i].key()]++;

for(i=1; i < C.length; i++)

C[i] = C[i] + C[i-1];

for (i = n; i>=1; i++) {

B[C[A[i].key()]] = A[i];

C[A[i].key()]--;

}

for (i=1; i < n; i++)

A[i] = B[i];

• How would we change this algorithm if our arrays were indexed from 0 . . . n− 1 instead of 1 . . . n?

12-55: Final (!) Counting Sort

for(i=0; i < A.length; i++)

C[A[i].key()]++;

for(i=1; i < C.length; i++)

C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {

C[A[i].key()]--;

B[C[A[i].key()]] = A[i];

}

for (i=0; i < A.length; i++)

A[i] = B[i];

12-56: Radix Sort

• Sort a list of numbers one digit at a time

• Sort by 1st digit, then 2nd digit, etc
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• Each sort can be done in linear time, using counting sort

• First Try: Sort by most significant digit, then the next most significant digit, and so on

• Need to keep track of a lot of sublists

12-57: Radix Sort Second Try:

• Sort by least significant digit first

• Then sort by next-least significant digit, using a Stable sort

. . .

• Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

12-58: Radix Sort

• If (most significant digit of x) ¡

(most significant digit of y),

then x will appear in A before y.

12-59: Radix Sort

• If (most significant digit of x) ¡

(most significant digit of y),

then x will appear in A before y.

• Last sort was by the most significant digit

12-60: Radix Sort

• If (most significant digit of x) ¡

(most significant digit of y),

then x will appear in A before y.

• Last sort was by the most significant digit

• If (most significant digit of x) =

(most significant digit of y) and

(second most significant digit of x) ¡

(second most significant digit of y),

then x will appear in A before y.

12-61: Radix Sort
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• If (most significant digit of x) ¡

(most significant digit of y),

then x will appear in A before y.

• Last sort was by the most significant digit

• If (most significant digit of x) =

(most significant digit of y) and

(second most significant digit of x) ¡

(second most significant digit of y),

then x will appear in A before y.

• After next-to-last sort, x is before y. Last sort does not change relative order of x and y

12-62: Radix Sort

982 414 357 495 500 904 645 777 716 637 149 913 817 493 730 331 201

500 730 331 201 982 493 913 414 904 645 495 716 357 777 637 817 149

Original List

500 201 904 913 414 716 817 730 331 637 645 149 357 777 982 493 495

149 201 331 357 414 493 495 500 637 645 716 730 777 817 904 913 982

Sorted by Least Significant Digit

Sorted by Second Least Significant Digit

Sorted by Most Significant Digit

12-63: Radix Sort

• We do not need to use a single digit of the key for each of our counting sorts

• We could use 2-digit chunks of the key instead

• Our C array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort

Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

9823

Original List

4376 2493 1055 8502 4333 1673 8442 8035 6061 7004 3312 4409 2338

8502 7004 4409 3312 9823 4333 8035 2338 8442 1055 6061 1673 4376 2493

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

1055 1673 2338 2493 3312 4333 4376 4409 6061 7004 8035 8442 8502 9823

12-65: Radix Sort

• “Digit” does not need to be base ten
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• For any value r:

• Sort the list based on (key % r)

• Sort the list based on ((key / r) % r))

• Sort the list based on ((key / r2) % r))

• Sort the list based on ((key / r3) % r))

. . .

• Sort the list based on

((key / rlogk
(largest value in array)) % r))

• Code on other screen


