
Data Structures and Algorithms
CS245-2017S-13

Hash Tables

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


13-0: Searching & Selecting

Maintian a Database (keys and associated data)

Operations:

Add a key / value pair to the database

Remove a key (and associated value) from the
database

Find the value associated with a key



13-1: Sorted List Implementation

If database is implemented as a sorted list:

Add

Remove

Find



13-2: Sorted List Implementation

If database is implemented as a sorted list:

Add O(n)

Remove O(n)

Find O(lg n)



13-3: BST Implementation

If database is implemented as a Binary Search Tree:

Add

Remove

Find



13-4: BST Implementation

If database is implemented as a Binary Search Tree:

Add O(lg n) best, O(n) worst

Remove O(lg n) best, O(n) worst

Find O(lg n) best, O(n) worst



13-5: Unsorted List

Maintain an unsorted, non-contiguous array of
elements

3415 813 6

How long does a Find take?

How long does a Remove take?

How long does an Add take?

Does this sound like a good idea?



13-6: Hash Function

What if we had a “magic function” –

Takes a key as input

Returns the index in the array where the key
can be found, if the key is in the array

To add an element

Put the key through the magic function, to get a
location

Store element in that location

To find an element

Put the key through the magic function, to get a
location

See if the key is stored in that location



13-7: Hash Function

The “magic function” is called a Hash function

If hash(key) = i, we say that the key hashes to
the value i

We’d like to ensure that different keys will always
hash to different values.

Why is this not possible?



13-8: Hash Function

The “magic function” is called a Hash function

If hash(key) = i, we say that the key hashes to
the value i

We’d like to ensure that different keys will always
hash to different values.

Why is this not possible?

Too many possible keys

If keys are strings of up to 15 letters, there are

1021 different keys

1 sextillion – roughly the total number of
transistors that have ever been produced.



13-9: Integer Hash Function

When two keys hash to the same value, a collision
occurs.

We cannot avoid collisions, but we can minimize
them by picking a hash function that distributes
keys evenly through the array.

Example: Keys are integers

Keys are in range 1 . . . m

Array indices are in range 1 . . . n

n << m



13-10: Integer Hash Function

When two keys hash to the same value, a collision
occurs.

We cannot avoid collisions, but we can minimize
them by picking a hash function that distributes
keys evenly through the array.

Example: Keys are integers

Keys are in range 1 . . . m

Array indices are in range 1 . . . n

n << m

hash(k) = k mod n



13-11: Integer Hash Function

What if table size = 10, all keys end in 0?



13-12: Integer Hash Function

What if table size = 10, all keys end in 0?

What if table size is even, all keys are even?



13-13: Integer Hash Function

What if table size = 10, all keys end in 0?

What if table size is even, all keys are even?

In general, what if the table size and many of the
keys share factors?



13-14: Integer Hash Function

What if table size = 10, all keys end in 0?

What if table size is even, all keys are even?

In general, what if the table size and many of the
keys share factors?

What can we do?



13-15: Integer Hash Function

What if table size = 10, all keys end in 0?

What if table size is even, all keys are even?

In general, what if the table size and many of the
keys share factors?

What can we do?

Prevent keys and table size from sharing
factors.

No control over the keys.



13-16: Integer Hash Function

What if table size = 10, all keys end in 0?

What if table size is even, all keys are even?

In general, what if the table size and many of the
keys share factors?

What can we do?

Prevent keys and table size from sharing
factors.

No control over the keys.

Make the table size prime.



13-17: String Hash Function

Hash tables are usually used to store string values

If we can convert a string into an integer, we can
use the integer hash function

How can we convert a string into an integer?



13-18: String Hash Function

Hash tables are usually used to store string values

If we can convert a string into an integer, we can
use the integer hash function

How can we convert a string into an integer?

Add up ASCII values of the characters in the
string

int hash(String key, int tableSize) {
int hashvalue = 0;
for (int i=0; i<key.length(); i++)

hashvalue += (int) key.charAt(i);
return hashvalue % tableSize;

}



13-19: String Hash Function

Hash tables are usually used to store string values

If we can convert a string into an integer, we can
use the integer hash function

How can we convert a string into an integer?

Concatenate ASCII digits together

keysize−1∑

k=0

key[k] ∗ 256keysize−k−1



13-20: String Hash Function

Concatenating digits does not work, since numbers
get big too fast. Solutions:

Overlap digits a little (use base of 32 instead of
256)

Ignore early characters (shift them off the left
side of the string)

static long hash(String key, int tablesize) {
long h = 0;
int i;
for (i=0; i<key.length(); i++)

h = (h << 4) + (int) key.charAt(i);
return h % tablesize;

}



13-21: ElfHash

For each new character, the hash value is shifted
to the left, and the new character is added to the
accumulated value.

If the string is long, the early characters will “fall
off” the end of the hash value when it is shifted

Early characters will not affect the hash value of
large strings

Instead of falling off the end of the string, the most
significant bits can be shifted to the middle of the
string, and XOR’ed.

Every character will influence the value of the hash
function.



13-22: ElfHash

static long ELFhash(String key, int tablesize) {
long h = 0;
long g;
int i;

for (i=0; i<key.length(); i++) {
h = (h << 4) + (int) key.charAt(i);
g = h & 0xF0000000L;
if (g != 0)

h ^= g >>> 24
h &= ~g

}
return h % M;

}



13-23: Collisions

When two keys hash to the same value, a collision
occurs

A collision strategy tells us what to do when a
collision occurs

Two basic collision strategies:

Open Hashing (Closed Addressing, Separate
Chaining)

Closed Hashing (Open Addressing)



13-24: Open Hashing

Array does not store elements, but linked-lists of
elements

To Add an element to the hash table:

Hash the key to get an index i

Store the key/value pair in the linked list at
index i

To find an element in the hash table

Hash the key to get an index i

Search the linked list at index i for the key



13-25: Open Hashing

Under the following conditions:

Keys are evenly distributed through the hash table

Size of the hash table = # of keys inserted

What is the running time for the following operations:

Add

Remove

Find



13-26: Open Hashing

Under the following conditions:

Keys are evenly distributed through the hash table

Size of the hash table = # of keys inserted

What is the running time for the following operations:

Add Θ(1)

Remove Θ(1)

Find Θ(1)



13-27: Closed Hashing

Values are stored in the array itself (no linked lists)

The number of elements that can be stored in the
hash table is limited to the table size (hence closed
hashing)



13-28: Closed Hashing

To add element X to a closed hash table:

Find the smallest i, such that Array[hash(x) +
f(i)] is empty (wrap around if necessary)

Add X to Array[hash(x) + f(i)]

If f(i) = i, linear probing



13-29: Closed Hashing

Problems with linear probing:

Primary Clustering
“Clumps” – large sequences of consecutively
filled array elements – tend to form
Positive feedback system – the larger the
clumps, the more likely an element will end
up in a clump.



13-30: Closed Hashing

Quadradic probing

Find the smallest i, such that Array[hash(x) +
f(i)] is empty

Add X to Array[hash(x) + f(i)]

f(i) = i2



13-31: Closed Hashing

Quadradic probing

Find the smallest i, such that Array[hash(x) +
f(i)] is empty

Add X to Array[hash(x) + f(i)]

f(i) = i2

Problems:

Can’t reach all elements in the list



13-32: Closed Hashing

Quadradic probing

Find the smallest i, such that Array[hash(x) +
f(i)] is empty

Add X to Array[hash(x) + f(i)]

f(i) = i2

Problems:

Can’t reach all elements in the list

(if table is less than 1/2 full, and table size is an
integer, guaranteed to be able to add an
element)



13-33: Closed Hashing

Pseudo-Random

Create a “Permutation Array” P

f(i) = P[i]



13-34: Closed Hashing

Multiple keys hash to the same element

Secondary clustering

Double Hashing

Use a secondary hash function to determine
how far ahead to look

f(i) = i * hash2(key)



13-35: Deletion

Deletion from an open hash table is easy.

Find the element.

Delete it.

Deletion from a closed hash table is harder.

Why?



13-36: Deletion

Deletion a closed hash table can cause problems

Three different kinds of entries

Empty cells

Cells that contain data

Cells that have been deleted (tombstones)



13-37: Deletion

To insert an element:

Find the smallest i such that hash(x) + f(i) is
either empty or deleted

To find an element

Try all values of i (starting with 0) until either
Table[hash(x) + f(i)] = x
Table[hash(x) + f(i)] is empty (not deleted)



13-38: Rehashing

What can we do when our closed hash table gets
full?

– Or if the load (# of elements / table size) gets
larger than 0.5

Create a new, larger table
New hash table will have a different hash
function, since the table size is different

Add each element in the old table to the new
table



13-39: Rehashing

When we creata a new table, it should be approx.
twice as large as the old table

A single insert can now require Θ(n) work

... but only after Θ(n) inserts

Time for n inserts is Θ(n)

Average time for an insert is still Θ(1)

What happens if we make the table 100 units
larger, instead of twice as large?

Rememeber to keep the table size prime!


	{small lecturenumber -	heblocknumber :} Searching & Selectingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sorted List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sorted List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unsorted Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Hash Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ElfHashaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ElfHashaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Collisionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Open Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Open Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Open Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closed Hashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deletionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deletionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deletionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rehashingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rehashingaddtocounter {blocknumber}{1}

