
Data Structures and Algorithms
CS245-2017S-15

Graphs

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


15-0: Graphs

A graph consists of:

A set of nodes or vertices (terms are
interchangable)

A set of edges or arcs (terms are
interchangable)

Edges in graph can be either directed or undirected



15-1: Graphs & Edges

Edges can be labeled or unlabeled

Edge labels are typically the cost assoctiated
with an edge

e.g., Nodes are cities, edges are roads
between cities, edge label is the length of road



15-2: Graph Problems

There are several problems that are “naturally”
graph problems

Networking problems

Route planning

etc

Problems that don’t seem like graph problems can
also be solved with graphs

Register allocation using graph coloring



15-3: Connected Undirected Graph

Path from every node to every other node

1

2 3

4 5

Connected



15-4: Connected Undirected Graph

Path from every node to every other node

1

2 3

4 5

Connected



15-5: Connected Undirected Graph

Path from every node to every other node

1

2 3

4 5

Not Connected



15-6: Strongly Connected Graph

Directed Path from every node to every other node

1

2 3

4

5

Strongly Connected



15-7: Strongly Connected Graph

Directed Path from every node to every other node

1

2 3

4

5

Strongly Connected



15-8: Strongly Connected Graph

Directed Path from every node to every other node

1

2 3

4

5

Not Strongly Connected



15-9: Weakly Connected Graph

Directed graph w/ connected backbone

1

2 3

4

5

Weakly Connected



15-10: Cycles in Graphs

Undirected cycles

1

2 3

4 5

Contains an undirected cycle



15-11: Cycles in Graphs

Undirected cycles

1

2 3

4 5

6

Contains an undirected cycle



15-12: Cycles in Graphs

Undirected cycles

1

2 3

4 5

6

Contains no undirected cycle



15-13: Cycles in Graphs

Undirected cycles

1

2

34 5

6

Contains no undirected cycle



15-14: Cycles in Graphs

Directed cycles

1

2

34 5

6

Contains a directed cycle



15-15: Cycles in Graphs

Directed cycles

1

2

34 5

6

Contains a directed cycle



15-16: Cycles in Graphs

Directed cycles

1

2 3

4

5

Contains a directed cycle



15-17: Cycles in Graphs

Directed cycles

1

2

34 5

6

Contains no directed cycle



15-18: Cycles & Connectivity

Must a connected, undirected graph contain a
cycle?



15-19: Cycles & Connectivity

Must a connected, undirected graph contain a
cycle?

No.

Can an unconnected, undirected graph contain a
cycle?



15-20: Cycles & Connectivity

Must a connected, undirected graph contain a
cycle?

No.

Can an unconnected, undirected graph contain a
cycle?

Yes.

Must a strongly connected graph contain a cycle?



15-21: Cycles & Connectivity

Must a connected, undirected graph contain a
cycle?

No.

Can an unconnected, undirected graph contain a
cycle?

Yes.

Must a strongly connected graph contain a cycle?

Yes! (why?)



15-22: Cycles & Connectivity

If a graph is weakly connected, and contains a
cycle, must it be strongly connected?



15-23: Cycles & Connectivity

If a graph is weakly connected, and contains a
cycle, must it be strongly connected?

No.



15-24: Cycles & Connectivity

If a graph is weakly connected, and contains a
cycle, must it be strongly connected?

No.

If a graph contains a cycle which contains all
nodes, must the graph be strongly connected?



15-25: Cycles & Connectivity

If a graph is weakly connected, and contains a
cycle, must it be strongly connected?

No.

If a graph contains a cycle which contains all
nodes, must the graph be strongly connected?

Yes. (why?)



15-26: Graph Representations

Adjacency Matrix

Represent a graph with a two-dimensional array G

G[i][j] = 1 if there is an edge from node i to
node j

G[i][j] = 0 if there is no edge from node i to
node j

If graph is undirected, matrix is symmetric

Can represent edges labeled with a cost as well:

G[i][j] = cost of link between i and j

If there is no direct link, G[i][j] = ∞



15-27: Adjacency Matrix

Examples:

0 1

2 3

0 1 2 3

0 0 1 0 1

1 1 0 1 1

2 0 1 0 0

3 1 1 0 0



15-28: Adjacency Matrix

Examples:

0 1

2 3

0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 0 0 0

3 1 0 0 0



15-29: Adjacency Matrix

Examples:

0 1

2 3

0 1 2 3

0 0 0 0 0

1 1 1 0 0

2 0 1 0 0

3 0 0 0 1



15-30: Adjacency Matrix

Examples:

0 1

2 3

4

5 7

-2

0 1 2 3

0 ∞ ∞ ∞ 5

1 4 ∞ ∞ ∞

2 ∞ 7 ∞ ∞

3 ∞ ∞ -2 ∞



15-31: Graph Representations

Adjacency List

Maintain a linked-list of the neighbors of every
vertex.

n vertices

Array of n lists, one per vertex

Each list i contains a list of all vertices adjacent
to i.



15-32: Adjacency List

Examples:

0 1

2 3

0

1

2

3

1 3

1

2



15-33: Adjacency List

Examples:

0 1

2 3

0

1

2

3

1

3

2

0 3

1

Note – lists are not always sorted



15-34: Sparse vs. Dense

Sparse graph – relatively few edges

Dense graph – lots of edges

Complete graph – contains all possible edges

These terms are fuzzy. “Sparse” in one context
may or may not be “sparse” in a different
context



15-35: Nodes with Labels

If nodes are labeled with strings instead of integers

Internally, nodes are still represented as
integers

Need to associate string labels & vertex
numbers

Vertex number → label
Label → vertex number



15-36: Nodes with Labels

Vertex numbers → labels



15-37: Nodes with Labels

Vertex numbers → labels

Array
Vertex numbers are indices into array
Data in array is string label



15-38: Nodes with Labels

Labels → vertex numbers



15-39: Nodes with Labels

Labels → vertex numbers

Use a hash table
Key is the vertex label
Data is vertex number

Examples!



15-40: Topological Sort

Directed Acyclic Graph, Vertices v1 . . . vn

Create an ordering of the vertices

If there a path from vi to vj, then vi appears

before vj in the ordering

Example: Prerequisite chains



15-41: Topological Sort

Which node(s) could be first in the topological
ordering?



15-42: Topological Sort

Which node(s) could be first in the topological
ordering?

Node with no incident (incoming) edges



15-43: Topological Sort

Pick a node vk with no incident edges

Add vk to the ordering

Remove vk and all edges from vk from the graph

Repeat until all nodes are picked.



15-44: Topological Sort

How can we find a node with no incident edges?

Count the incident edges of all nodes



15-45: Topological Sort

for (i=0; i < NumberOfVertices; i++)
NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)
each node k adjacent to i

NumIncident[k]++



15-46: Topological Sort

for(i=0; i < NumberOfVertices; i++)
NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)
for(tmp=G[i]; tmp != null; tmp=tmp.next())

NumIncident[tmp.neighbor()]++



15-47: Topological Sort

Create NumIncident array

Repeat

Search through NumIncident to find a vertex v
with NumIncident[v] == 0

Add v to the ordering

Decrement NumIncident of all neighbors of v

Set NumIncident[v] = -1

Until all vertices have been picked



15-48: Topological Sort

In a graph with V vertices and E edges, how long
does this version of topological sort take?



15-49: Topological Sort

In a graph with V vertices and E edges, how long
does this version of topological sort take?

Θ(V 2 + E) = Θ(V 2)
Since E ∈ O(V 2)



15-50: Topological Sort

Where are we spending “extra” time



15-51: Topological Sort

Where are we spending “extra” time

Searching through NumIncident each time
looking for a vertex with no incident edges

Keep around a set of all nodes with no incident
edges

Remove an element v from this set, and add it
to the ordering

Decrement NumIncident for all neighbors of v
If NumIncident[k] is decremented to 0, add k
to the set.

How do we implement the set of nodes with no
incident edges?



15-52: Topological Sort

Where are we spending “extra” time

Searching through NumIncident each time
looking for a vertex with no incident edges

Keep around a set of all nodes with no incident
edges

Remove an element v from this set, and add it
to the ordering

Decrement NumIncident for all neighbors of v
If NumIncident[k] is decremented to 0, add k
to the set.

How do we implement the set of nodes with no
incident edges?

Use a stack



15-53: Topological Sort

Examples!!

Graph

Adjacency List

NumIncident

Stack


	{small lecturenumber -	heblocknumber :} Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graphs & Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Weakly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Representationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Representationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sparse vs. Denseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}

