
CS245-2017S-16

Graph Traversals

BFS & DFS 1

16-0: Graph Traversals

• Visit every vertex, in an order defined by the topololgy of the graph.

• Two major traversals:

• Depth First Search

• Breadth First Search

16-1: Depth First Search

• Starting from a specific node (pseudo-code):

DFS(Edge G[], int vertex, boolean Visited[]) {

Visited[vertex] = true;

for each node w adajcent to vertex:

if (!Visited[w])

DFS(G, w, Visited);

}

16-2: Depth First Search

class Edge {

public int neighbor;

public Edge next;

}

void DFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

Visited[vertex] = true;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

}

16-3: Depth First Search

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

16-4: Depth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 2

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

16-5: Depth First Search

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

16-6: Depth First Search

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

DFS(3)

16-7: Depth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 3

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

DFS(3)

DFS(4)

16-8: Depth First Search

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

DFS(3)

DFS(4)

DFS(2)

16-9: Depth First Search

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

DFS(3)

DFS(4)

DFS(2)

DFS(5)

16-10: Depth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 4

• Example

• Visited nodes cicrled in red

0

1

2

3

4

5

6

DFS(0)

DFS(1)

DFS(3)

DFS(4)

DFS(2)

DFS(5)

DFS(6)

16-11: Depth First Search

• To visit every node in the graph:

TraverseDFS(Edge G[]) {

int i;

boolean Visited = new Edge[G.length];

for (i=0; i<G.length; i++)

Visited[i] = false;

for (i=0; i<G.length; i++)

if (!Visited[i])

DFS(G, i, Visited);

}

16-12: Depth First Search

• Examples

0

1

2

3

4

5 6
16-13: Depth First Search

• Examples



CS245-2017S-16

Graph Traversals

BFS & DFS 5

0

1

2

3

4

5 6

7

8
16-14: DFS & Stacks

• Keep track of what nodes we have left using a stack

• Recursive version implicitly uses the system stack

• Can write DFS non-recursively, using our own stack

16-15: DFS & Stacks

• DFS, using recursion

void DFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

Visited[vertex] = true;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

}

16-16: DFS & Stacks

• DFS, using stack

void DFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

int nextV;

Stack S = new Stack();

S.push(new Integer(vertex));

while (!S.empty()) {

nextV = ((Integer) S.pop()).intValue();

if (!Visited[nextV]) {

Visited[nextV] = true;

for (tmp = G[nextV]; tmp != null; tmp = tmp.next) {

S.push(new Integer(tmp.neighbor));

}

}

}

}

16-17: Breadth First Search

• DFS: Look as Deep as possible, before looking wide

• Examine all descendants of a node, before looking at siblings

• BFS: Look as Wide as possible, before looking deep

• Visit all nodes 1 away, then 2 away, then three away, and so on



CS245-2017S-16

Graph Traversals

BFS & DFS 6

16-18: Breadth First Search

• Examples

0

1

2

3

4

5 6
16-19: Breadth First Search

• Coding BFS:

• Use a queue instead of a stack

void BFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

int nextV;

Queue Q = new Queue();

Q.enquque(new Integer(vertex));

while (!Q.empty()) {

nextV = ((Integer) Q.dequeue()).intValue();

if (!Visited[nextV]) {

Visited[next] = true;

for (tmp = G[nextV]; tmp != null; tmp = tmp.next) {

Q.enqueue(new Integer(tmp.neighbor()));

}

}

}

}

16-20: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

16-21: Breadth First Search

• Example



CS245-2017S-16

Graph Traversals

BFS & DFS 7

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

0

16-22: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

124

16-23: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

24034

16-24: Breadth First Search

• Example



CS245-2017S-16

Graph Traversals

BFS & DFS 8

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

4034056

16-25: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

034056013

16-26: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

34056013

16-27: Breadth First Search

• Example



CS245-2017S-16

Graph Traversals

BFS & DFS 9

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

405601314

16-28: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

05601314

16-29: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

5601314

16-30: Breadth First Search

• Example



CS245-2017S-16

Graph Traversals

BFS & DFS 10

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

60131426

16-31: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

013142625

16-32: Breadth First Search

• Alternate version of BFS

• Previous code marks nodes as VISITED as they are removed from the queue

• We could also mark nodes as VISITED when they are placed on the queue

16-33: Breadth First Search

• Coding BFS (Alternate version):

void BFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

int nextV;

Queue Q = new Queue();

Viisited[vertex] = true;

Q.enquque(new Integer(vertex));

while (!Q.empty()) {

nextV = ((Integer) Q.dequeue()).intValue();

for (tmp = G[nextV]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor]) {

Visited[tmp.neighbor] = true;

Q.enqueue(new Integer(tmp.neighbor));

}

}

}

}

16-34: Breadth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 11

• Alternate version of BFS

• Previous code marks nodes as VISITED as they are removed from the queue

• We could also mark nodes as VISITED when they are placed on the queue

• How does execution differ?

16-35: Breadth First Search

• Alternate version of BFS

• Previous code marks nodes as VISITED as they are removed from the queue

• We could also mark nodes as VISITED when they are placed on the queue

• How does execution differ?

• How does execution differ?

• Version I: A vertex is added to the queue for each edge in the graph (so the same vertex can be added to

the queue more than once

• Version II: Each vertex is added to the queue at most once

16-36: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

16-37: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

0



CS245-2017S-16

Graph Traversals

BFS & DFS 12

16-38: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

124

16-39: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

243

16-40: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

4356

16-41: Breadth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 13

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

356

16-42: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

56

16-43: Breadth First Search

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

6

16-44: Breadth First Search



CS245-2017S-16

Graph Traversals

BFS & DFS 14

• Example

• Visited nodes cicrled

0

1

2

3

4

5

6

Queue:

16-45: Search Trees

• Describes the order that nodes are examined in a traversal

• Directed Tree

• Directed edge from v1 to v2 if the edge (v1, v2) was followed during the traversal

16-46: DFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-47: DFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:



CS245-2017S-16

Graph Traversals

BFS & DFS 15

0

1

2

3

4

5 6
16-48: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-49: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-50: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:



CS245-2017S-16

Graph Traversals

BFS & DFS 16

0

1

2

3

4

5 6
16-51: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-52: DFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-53: DFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:



CS245-2017S-16

Graph Traversals

BFS & DFS 17

0

1

2

3

4

5 6
16-54: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6

7 8

16-55: DFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6

7 8

16-56: BFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:



CS245-2017S-16

Graph Traversals

BFS & DFS 18

0

1

2

3

4

5 6
16-57: BFS Search Trees

• Starting from node 0, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-58: BFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:

0

1

2

3

4

5 6
16-59: BFS Search Trees

• Starting from node 2, adjacency list sorted by vertex number:



CS245-2017S-16

Graph Traversals

BFS & DFS 19

0

1

2

3

4

5 6
16-60: DFS in Directed Graphs

• Starting from node 0, adjacency list sorted by vertex number:

0

1

2

3

4

5 6

7 8

16-61: DFS in Directed Graphs

• Starting from node 0, adjacency list sorted by vertex number:

0

1

2

3

4

5 6

7 8


