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17-0: Computing Shortest Path

• Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path

from x to y in G.

• Undirected graph is a special case of a directed graph, with symmetric edges

• Least-cost path may not be the path containing the fewest edges

• “shortest path” == “least cost path”

• “path containing fewest edges” = “path containing fewest edges”

17-1: Shortest Path Example

• Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

• Shortest Path from A to E?

17-2: Shortest Path Example

• Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

• Shortest Path from A to E:

• A, B, C, D, E

17-3: Single Source Shortest Path
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• To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all

other vertices in the graph

• Why?

17-4: Single Source Shortest Path

• To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all

other vertices in the graph

• To find the shortest path from x to y, we need to find the shortest path from x to all nodes on the path from

x to y

• Worst case, all nodes will be on the path

17-5: Single Source Shortest Path

• If all edges have unit weight ...

17-6: Single Source Shortest Path

• If all edges have unit weight,

• We can use Breadth First Search to compute the shortest path

• BFS Spanning Tree contains shortest path to each node in the graph

• Need to do some more work to create & save BFS spanning tree

• When edges have differing weights, this obviously will not work

17-7: Single Source Shortest Path

• Divide the vertices into two sets:

• Vertices whose shortest path from the initial vertex is known

• Vertices whose shortest path from the initial vertex is not known

• Initially, only the initial vertex is known

• Move vertices one at a time from the unknown set to the known set, until all vertices are known

17-8: Single Source Shortest Path
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• Start with the vertex A

17-9: Single Source Shortest Path
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• Known vertices are circled in red

• We can now extend the known set by 1 vertex

17-10: Single Source Shortest Path
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• Why is it safe to add D, with cost 1?

17-11: Single Source Shortest Path
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• Why is it safe to add D, with cost 1?
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• Could we do better with a more roundabout path?

17-12: Single Source Shortest Path
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• Why is it safe to add D, with cost 1?

• Could we do better with a more roundabout path?

• No – to get to any other node will cost at least 1

• No negative edge weights, can’t do better than 1

17-13: Single Source Shortest Path
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• We can now add another vertex to our known list ...

17-14: Single Source Shortest Path
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• How do we know that we could not get to B cheaper than by going through D?
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17-15: Single Source Shortest Path
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• How do we know that we could not get to B cheaper than by going through D?

• Costs 1 to get to D

• Costs at least 2 to get anywhere from D

• Cost at least (1+2 = 3) to get to B through D

17-16: Single Source Shortest Path
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• Next node we can add ...

17-17: Single Source Shortest Path
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• (We also could have added E for this step)

• Next vertex to add to Known ...
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17-18: Single Source Shortest Path
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• Cost to add F is 8 (through C)

• Cost to add G is 5 (through D)

17-19: Single Source Shortest Path
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• Last node ...

17-20: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

6

5

• We now know the length of the shortest path from A to all other vertices in the graph

17-21: Dijkstra’s Algorithm
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• Keep a table that contains, for each vertex

• Is the distance to that vertex known?

• What is the best distance we’ve found so far?

• Repeat:

• Pick the smallest unknown distance

• mark it as known

• update the distance of all unknown neighbors of that node

• Until all vertices are known

17-22: Dijkstra’s Algorithm Example
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17-23: Dijkstra’s Algorithm Example
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17-24: Dijkstra’s Algorithm Example
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17-25: Dijkstra’s Algorithm Example
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17-26: Dijkstra’s Algorithm Example
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17-27: Dijkstra’s Algorithm Example
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17-28: Dijkstra’s Algorithm Example
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17-29: Dijkstra’s Algorithm

• After Dijkstra’s algorithm is complete:

• We know the length of the shortest path

• We do not know what the shortest path is

• How can we modify Dijstra’s algorithm to compute the path?

17-30: Dijkstra’s Algorithm

• After Dijkstra’s algorithm is complete:

• We know the length of the shortest path

• We do not know what the shortest path is

• How can we modify Dijstra’s algorithm to compute the path?

• Store not only the distance, but the immediate parent that led to this distance
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17-31: Dijkstra’s Algorithm Example
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17-32: Dijkstra’s Algorithm Example
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17-33: Dijkstra’s Algorithm Example
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17-34: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D

17-35: Dijkstra’s Algorithm Example
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17-36: Dijkstra’s Algorithm Example
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17-37: Dijkstra’s Algorithm Example
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17-38: Dijkstra’s Algorithm Example
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17-39: Dijkstra’s Algorithm

• Given the “path” field, we can construct the shortest path

• Work backward from the end of the path
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• Follow the “path” pointers until the start node is reached

• We can use a sentinel value in the “path” field of the initial node, so we know when to stop

17-40: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}

17-41: minUnknownVertex

• Calculating minimum distance unknown vertex:

int minUnknownVertex(tableEntry T[]) {

int i;

int minVertex = -1;

int minDistance = Integer.MAX_VALUE;

for (i=0; i < T.length; i++) {

if ((!T[i].known) &&

(T[i].distance < MinDistance)) {

minVertex = i;

minDistance = T[i].distance;

}

}

return minVertex;

}

17-42: Dijkstra Running Time

• Time for initialization:

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

17-43: Dijkstra Running Time

• Time for initialization:

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;
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• Θ(V )

17-44: Dijkstra Running Time

• Total time for all calls to minUnknownVertex, and setting T[v].known = true (for all iterations of the loop)

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T); < These two lines

T[v].known = true; < ---------------

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

17-45: Dijkstra Running Time

• Total time for all calls to minUnknownVertex, and setting T[v].known = true (for all iterations of the loop)

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T); < These two lines

T[v].known = true; < ---------------

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

• Θ(V 2)

17-46: Dijkstra Running Time

• Total # of times the if statement will be executed:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

17-47: Dijkstra Running Time

• Total # of times the if statement will be executed:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

• E

17-48: Dijkstra Running Time

• Total running time for all iterations of the inner for statement:
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for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

|> for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

17-49: Dijkstra Running Time

• Total running time for all iterations of the inner for statement:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

|> for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

• Θ(V + E)

• Why Θ(V + E) and not just Θ(E)?

17-50: Dijkstra Running Time

• Total running time:

• Sum of:

• Time for initialization

• Time for executing all calls to minUnknownVertex

• Time for executing all distance / path updates

• = Θ(V + V 2 + (V + E)) = Θ(V 2)

17-51: Improving Dijkstra

• Can we do better than Θ(V 2)

• For dense graphs, we can’t do better

• To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph

• A dense graph can have Θ(V 2) edges

• For sparse graphs, we can do better

• Where should we focus our attention?

17-52: Improving Dijkstra

• Can we do better than Θ(V 2)

• For dense graphs, we can’t do better

• To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph

• A dense graph can have Θ(V 2) edges
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• For sparse graphs, we can do better

• Where should we focus our attention?

• Finding the unknown vertex with minimum cost!

17-53: Improving Dijkstra

• To improve the running time of Dijkstra:

• Place all of the vertices on a min-heap

• Key value for min-heap = distance of vertex from initial

• While min-heap is not empty:

• Pop smallest value off min-heap

• Update table

• Problems with this method?

17-54: Improving Dijkstra

• To improve the running time of Dijkstra:

• Place all of the vertices on a min-heap

• Key value for min-heap = distance of vertex from initial

• While min-heap is not empty:

• Pop smallest value off min-heap

• Update table

• Problems with this method?

• When we update the table, we need to rearrange the heap

17-55: Rearranging the heap

• Store a pointer for each vertex back into the heap

• When we update the table, we need to do a decrease-key operation

• Decrease-key can take up to time O(lg V ).

• (Examples!)

17-56: Rearranging the heap

• Total time:

• O(V ) remove-mins – O(V lg V )

• O(E) dercrease-keys – O(E lg V )

• Total time: O(V lgV + E lg V ) ∈ O(E lg V )

17-57: Improving Dijkstra

• Store vertices in heap

• When we update the table, we need to rearrange the heap
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• Alternate Solution:

• When the cost of a vertex decreases, add a new copy to the heap

17-58: Improving Dijkstra

• Create a new priority queue, add start node

• While the queue is not empty:

• Remove the vertex v with the smallest distance in the heap

• If v is not known

• Mark v as known

• For each neigbor w of v

• If distance[w] ¿ distance[v] + cost((v, w))

• Set distance[w] = distance[v] + cost((v, w))

• Add w to priority queue with priority distance[w]

17-59: Improved Dijkstra Time

• Each vertex can be added to the heap once for each incoming edge

• Size of the heap can then be up to Θ(E)

• E inserts, on heap that can be up to size E

• E delete-mins, on heap that can be upto to size E

• Total: Θ(E lgE) ∈ Θ(E lgV )

17-60: Improved? Dijkstra Time

• Don’t use priority queue, running time is Θ(V 2)

• Do use a prioroty queue, running time is Θ(E lgE)

• Which is better?

17-61: Improved? Dijkstra Time

• Don’t use priority queue, running time is Θ(V 2)

• Do use a prioroty queue, running time is Θ(E lgE)

• Which is better?

• For dense graphs, (E ∈ Θ(V 2)), Θ(V 2) is better

• For sparse graphs (E ∈ Θ(V )), Θ(E lgE) is better

17-62: Improved! Dijkstra Time

• If we use a data structre called a Fibonacci heap instead of a standard heap, we can implement decrease-key in

constant time (on average).

• Total time:

• O(V ) remove-mins – O(V lg V )



CS245-2016S-17

Shortest Path

Dijkstra’s Algorithm 17

• O(E) dercrease-keys – O(E) (each decrease key takes O(1) on average)

• Total time: O(V lgV + E)

17-63: Negative Edges

• What if our graph has negative-weight edges?

• Think of the cost of the edge as the amount of energy consumed for a segment of road

• A downhill segment could have negative energy consumed for a hybrid

• Will Dijkstra’s algorithm still work correctly?

• Examples

17-64: Negative Edges

• What happens if there is a negative-weight cycle?

• What does the shortest path even mean?

17-65: Negative Edges

• What happens if there is a negative-weight cycle?

• What does the shortest path even mean?

• Finding shortest paths in graphs that contain negative edges, assume that there are no negative weight

cycles

• Hybrid example

17-66: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

17-67: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

• Run Dijktra’s Algorithm V times

• How long will this take?

• What about negative edges?

17-68: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

• Run Dijktra’s Algorithm V times

• How long will this take?

• Θ(V E lgE) (using priority queue)
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• for sparse graphs, Θ(V 2 lg V )

• for dense graphs, Θ(V 3 lgV )

• Θ(V 3) (not using a priority queue)

• What about negative edges?

• Doesn’t work correctly

17-69: Floyd’s Algorithm

• Alternate solution to all pairs shortest path

• Yields Θ(V 3) running time for all graphs

• Works for graphs with negative edges

• Can detect negative-weight cycles

17-70: Floyd’s Algorithm

• Vertices numbered from 0..(n-1)

• k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices

numbered less than or equal to k

• -1-path is a direct link

17-71: k-path Examples
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• Shortest -1-path from 0 to 4: 5

• Shortest 0-path from 0 to 4: 5

• Shortest 1-path from 0 to 4: 4

• Shortest 2-path from 0 to 4: 4

• Shortest 3-path from 0 to 4: 3

17-72: k-path Examples
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• Shortest -1-path from 0 to 2: 7

• Shortest 0-path from 0 to 2: 7

• Shortest 1-path from 0 to 2: 6

• Shortest 2-path from 0 to 2: 6

• Shortest 3-path from 0 to 2: 6

• Shortest 4-path from 0 to 2: 4

17-73: Floyd’s Algorithm

• Shortest n-path = Shortest path

• Shortest -1-path:

• ∞ if there is no direct link

• Cost of the direct link, otherwise

17-74: Floyd’s Algorithm

• Shortest n-path = Shortest path

• Shortest -1-path:

• ∞ if there is no direct link

• Cost of the direct link, otherwise

• If we could use the shortest k-path to find the shortest (k + 1) path, we would be set

17-75: Floyd’s Algorithm

• Shortest k-path from v to u either goes through vertex k, or it does not

• If not:

• Shortest k-path = shortest (k − 1)-path

• If so:

• Shortest k-path = shortest k − 1 path from v to k, followed by the shortest k − 1 path from k to w

17-76: Floyd’s Algorithm

• If we had the shortest k-path for all pairs (v,w), we could obtain the shortest k + 1-path for all pairs

• For each pair v, w, compare:

• length of the k-path from v to w

• length of the k-path from v to k appended to the k-path from k to w

• Set the k + 1 path from v to w to be the minimum of the two paths above

17-77: Floyd’s Algorithm

• Let Dk[v, w] be the length of the shortest k-path from v to w.
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• D0[v, w] = cost of arc from v to w (∞ if no direct link)

• Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

• Create D
−1, use D

−1 to create D0, use D0 to create D1, and so on – until we have Dn−1

17-78: Floyd’s Algorithm

• Use a doubly-nested loop to create Dk from Dk−1

• Use the same array to store Dk−1 and Dk – just overwrite with the new values

• Embed this loop in a loop from 1..k

17-79: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {

int i,j,k

Initialize D, D[i][j] = cost from i to j

for (k=0; k<G.length; k++;

for(i=0; i<G.length; i++)

for(j=0; j<G.length; j++)

if ((D[i][k] != Integer.MAX_VALUE) &&

(D[k][j] != Integer.MAX_VALUE) &&

(D[i][j] > (D[i,k] + D[k,j])))

D[i][j] = D[i][k] + D[k][j]

}

17-80: Floyd’s Algorithm

• We’ve only calculated the distance of the shortest path, not the path itself

• We can use a similar strategy to the PATH field for Dijkstra to store the path

• We will need a 2-D array to store the paths: P[i][j] = last vertex on shortest path from i to j


