Shortest Path

17-0: Computing Shortest Path

- Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in G.
- Undirected graph is a special case of a directed graph, with symmetric edges
- Least-cost path may not be the path containing the fewest edges
- "shortest path" == "least cost path"
- "path containing fewest edges" = "path containing fewest edges"

17-1: Shortest Path Example

- Shortest path \neq path containing fewest edges

- Shortest Path from A to E?

17-2: Shortest Path Example

- Shortest path \neq path containing fewest edges

- Shortest Path from A to E:
- A, B, C, D, E

17-3: Single Source Shortest Path

- To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph
- Why?

17-4: Single Source Shortest Path

- To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph
- To find the shortest path from x to y, we need to find the shortest path from x to all nodes on the path from x to y
- Worst case, all nodes will be on the path

17-5: Single Source Shortest Path

- If all edges have unit weight ...

17-6: Single Source Shortest Path

- If all edges have unit weight,
- We can use Breadth First Search to compute the shortest path
- BFS Spanning Tree contains shortest path to each node in the graph
- Need to do some more work to create \& save BFS spanning tree
- When edges have differing weights, this obviously will not work

17-7: Single Source Shortest Path

- Divide the vertices into two sets:
- Vertices whose shortest path from the initial vertex is known
- Vertices whose shortest path from the initial vertex is not known
- Initially, only the initial vertex is known
- Move vertices one at a time from the unknown set to the known set, until all vertices are known

17-8: Single Source Shortest Path

- Start with the vertex A

17-9: Single Source Shortest Path

Node	Distance
A	0
B	
C	
D	
E	
F	
G	

- Known vertices are circled in red
- We can now extend the known set by 1 vertex

17-10: Single Source Shortest Path

Node	Distance
A	0
B	
C	
D	1
E	
F	
G	

- Why is it safe to add D , with cost 1 ?

17-11: Single Source Shortest Path

- Why is it safe to add D , with cost 1 ?

Shortest Path

- Could we do better with a more roundabout path?

17-12: Single Source Shortest Path

- Why is it safe to add D , with cost 1 ?
- Could we do better with a more roundabout path?
- No - to get to any other node will cost at least 1
- No negative edge weights, can't do better than 1

17-13: Single Source Shortest Path

- We can now add another vertex to our known list ...

17-14: Single Source Shortest Path

- How do we know that we could not get to B cheaper than by going through D ?

Shortest Path

17-15: Single Source Shortest Path

- How do we know that we could not get to B cheaper than by going through D ?
- Costs 1 to get to D
- Costs at least 2 to get anywhere from D
- Cost at least $(1+2=3)$ to get to B through D

17-16: Single Source Shortest Path

- Next node we can add ...

17-17: Single Source Shortest Path

Node	Distance
A	0
B	2
C	3
D	1
E	
F	
G	

- (We also could have added E for this step)
- Next vertex to add to Known ...

Shortest Path

17-18: Single Source Shortest Path

- Cost to add F is 8 (through C)
- Cost to add G is 5 (through D)

17-19: Single Source Shortest Path

- Last node ...

17-20: Single Source Shortest Path

- We now know the length of the shortest path from A to all other vertices in the graph

17-21: Dijkstra's Algorithm

Shortest Path

- Keep a table that contains, for each vertex
- Is the distance to that vertex known?
- What is the best distance we've found so far?
- Repeat:
- Pick the smallest unknown distance
- mark it as known
- update the distance of all unknown neighbors of that node
- Until all vertices are known

17-22: Dijkstra's Algorithm Example

17-23: Dijkstra's Algorithm Example

17-24: Dijkstra's Algorithm Example

17-25: Dijkstra's Algorithm Example

17-26: Dijkstra's Algorithm Example

17-27: Dijkstra's Algorithm Example

Node	Known	Distance
A	true	0
B	false	5
C	true	4
D	false	6
E	true	3
F	true	1

17-28: Dijkstra's Algorithm Example

17-29: Dijkstra's Algorithm

- After Dijkstra's algorithm is complete:
- We know the length of the shortest path
- We do not know what the shortest path is
- How can we modify Dijstra's algorithm to compute the path?

17-30: Dijkstra's Algorithm

- After Dijkstra's algorithm is complete:
- We know the length of the shortest path
- We do not know what the shortest path is
- How can we modify Dijstra's algorithm to compute the path?
- Store not only the distance, but the immediate parent that led to this distance

17-31: Dijkstra's Algorithm Example

17-32: Dijkstra's Algorithm Example

17-33: Dijkstra's Algorithm Example

Node	Known	Dist	Path
A	true	0	
B	false	5	A
C	false	3	A
D	false	∞	
E	false	∞	
F	false	∞	
G	false	∞	

17-34: Dijkstra's Algorithm Example

Node	Known	Dist	Path
A	true	0	
B	false	5	A
C	true	3	A
D	false	4	C
E	false	∞	
F	false	∞	
G	false	∞	

17-35: Dijkstra's Algorithm Example

Node	Known	Dist	Path
A	true	0	
B	false	5	A
C	true	3	A
D	true	4	C
E	false	9	D
F	false	9	D
G	false	7	D

17-36: Dijkstra's Algorithm Example

17-37: Dijkstra's Algorithm Example

Node	Known	Dist	Path
A	true	0	
B	true	5	A
C	true	3	A
D	true	4	C
E	false	9	D
F	true	8	G
G	true	7	D

17-38: Dijkstra's Algorithm Example

17-39: Dijkstra's Algorithm

- Given the "path" field, we can construct the shortest path
- Work backward from the end of the path
- Follow the "path" pointers until the start node is reached
- We can use a sentinel value in the "path" field of the initial node, so we know when to stop

17-40: Dijkstra Code

```
void Dijkstra(Edge G[], int s, tableEntry T[]) {
    int i, v;
    Edge e;
    for(i=0; i<G.length; i++) {
        T[i].distance = Integer.MAX_VALUE;
        T[i].path = - ;
        T[i].known = false;
    }
    T[s].distance = 0;
    for (i=0; i < G.length; i++) (
        v = minUnknownVertex(T);
        T[v].known = true;
        for (e = G[v]; e != null; e = e.next) (
            f (T[e.neighbor].distance >
                e.neighbor].distance = T[v].distance + e.cost.
            T[e.neighbor].path = v;
        }
}
```

17-41: minUnknownVertex

- Calculating minimum distance unknown vertex:

```
int minUnknownVertex(tableEntry T[]) {
    int i;
    int minVertex = -1;
    int minDistance = Integer.MAX_VALUE;
    for (i=0; i < T.length; i++) {
        if ((!T[i].known) &&
            (T[i].distance < MinDistance)) {
            minVertex = i;
            minDistance = T[i].distance;
        }
    }
    return minVertex;
}
```


17-42: Dijkstra Running Time

- Time for initialization:

```
    for(i=0; i<G.length; i++) {
        T[i].distance = Integer.MAX_VALUE;
        T[i].path = -1;
        T[i].known = false;
    }
    T[s].distance = 0;
```


17-43: Dijkstra Running Time

- Time for initialization:

```
for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].path = -1;
    T[i].known = false;
}
    T[s].distance = 0;
```

- $\Theta(V)$

17-44: Dijkstra Running Time

- Total time for all calls to minUnknownVertex, and setting $\mathrm{T}[\mathrm{v}] . \mathrm{known}=$ true (for all iterations of the loop)

```
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    v= minUnknownVertex(T)
    for (e=G[v]; e!= null; e = e.next)
    if (T[e.neighbor].distance >
            T[v].distance + e.cost)
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
    })
}
```


17-45: Dijkstra Running Time

- Total time for all calls to minUnknownVertex, and setting $\mathrm{T}[\mathrm{v}] . \mathrm{known}=$ true (for all iterations of the loop)

```
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next)
        if (T[e.neighbor].distance >
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
    },
```

- $\Theta\left(V^{2}\right)$

17-46: Dijkstra Running Time

- Total \# of times the if statement will be executed:

```
for (i=0; i < G.length; i++) (
    v = minUnknownVertex(T)
    T[v].known = true;
    T[v].known = true;
    for (e = G[v]; e != null; e = e.
        (T[e.neighbor].distance >
        T[e.neighbor].distance = T[v].distance + e.cost;
        T[e.neighbor].path = v;
    }
}
```


17-47: Dijkstra Running Time

- Total \# of times the if statement will be executed:

```
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T);
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance >
                T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
```

- E

17-48: Dijkstra Running Time

- Total running time for all iterations of the inner for statement:

```
for (i=0; i < G.length; i++) {
    v}=\mathrm{ minUnknownVertex(T);
    known = true;
> for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance >
            T[v].distance + e.cost)
            e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
}
```


17-49: Dijkstra Running Time

- Total running time for all iterations of the inner for statement:

```
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T);
    T[v].known = true;
> for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance >
                [v].distance + e.cost)
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
}
```

- $\Theta(V+E)$
- Why $\Theta(V+E)$ and not just $\Theta(E)$?

17-50: Dijkstra Running Time

- Total running time:
- Sum of:
- Time for initialization
- Time for executing all calls to minUnknownVertex
- Time for executing all distance / path updates
- $=\Theta\left(V+V^{2}+(V+E)\right)=\Theta\left(V^{2}\right)$

17-51: Improving Dijkstra

- Can we do better than $\Theta\left(V^{2}\right)$
- For dense graphs, we can't do better
- To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
- A dense graph can have $\Theta\left(V^{2}\right)$ edges
- For sparse graphs, we can do better
- Where should we focus our attention?

17-52: Improving Dijkstra

- Can we do better than $\Theta\left(V^{2}\right)$
- For dense graphs, we can't do better
- To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
- A dense graph can have $\Theta\left(V^{2}\right)$ edges
- For sparse graphs, we can do better
- Where should we focus our attention?
- Finding the unknown vertex with minimum cost!

17-53: Improving Dijkstra

- To improve the running time of Dijkstra:
- Place all of the vertices on a min-heap
- Key value for min-heap = distance of vertex from initial
- While min-heap is not empty:
- Pop smallest value off min-heap
- Update table
- Problems with this method?

17-54: Improving Dijkstra

- To improve the running time of Dijkstra:
- Place all of the vertices on a min-heap
- Key value for min-heap = distance of vertex from initial
- While min-heap is not empty:
- Pop smallest value off min-heap
- Update table
- Problems with this method?
- When we update the table, we need to rearrange the heap

17-55: Rearranging the heap

- Store a pointer for each vertex back into the heap
- When we update the table, we need to do a decrease-key operation
- Decrease-key can take up to time $O(\lg V)$.
- (Examples!)

17-56: Rearranging the heap

- Total time:
- $O(V)$ remove-mins $-O(V \lg V)$
- $O(E)$ dercrease-keys $-O(E \lg V)$
- Total time: $O(V \lg V+E \lg V) \in O(E \lg V)$

17-57: Improving Dijkstra

- Store vertices in heap
- When we update the table, we need to rearrange the heap
- Alternate Solution:
- When the cost of a vertex decreases, add a new copy to the heap

17-58: Improving Dijkstra

- Create a new priority queue, add start node
- While the queue is not empty:
- Remove the vertex v with the smallest distance in the heap
- If v is not known
- Mark v as known
- For each neigbor w of v
- If distance $[w] ¿$ distance $[v]+\operatorname{cost}((v, w))$
- $\quad \operatorname{Set} \operatorname{distance}[w]=\operatorname{distance}[v]+\operatorname{cost}((v, w))$
- \quad Add w to priority queue with priority distance[$w]$

17-59: Improved Dijkstra Time

- Each vertex can be added to the heap once for each incoming edge
- Size of the heap can then be up to $\Theta(E)$
- E inserts, on heap that can be up to size E
- E delete-mins, on heap that can be upto to size E
- Total: $\Theta(E \lg E) \in \Theta(E \lg V)$

17-60: Improved? Dijkstra Time

- Don't use priority queue, running time is $\Theta\left(V^{2}\right)$
- Do use a prioroty queue, running time is $\Theta(E \lg E)$
- Which is better?

17-61: Improved? Dijkstra Time

- Don't use priority queue, running time is $\Theta\left(V^{2}\right)$
- Do use a prioroty queue, running time is $\Theta(E \lg E)$
- Which is better?
- For dense graphs, $\left(E \in \Theta\left(V^{2}\right)\right), \Theta\left(V^{2}\right)$ is better
- For sparse graphs $(E \in \Theta(V)), \Theta(E \lg E)$ is better

17-62: Improved! Dijkstra Time

- If we use a data structre called a Fibonacci heap instead of a standard heap, we can implement decrease-key in constant time (on average).
- Total time:
- $O(V)$ remove-mins - $O(V \lg V)$

CS245-2016S-17	Shortest Path Dijkstra's Algorithm
- $O(E)$ dercrease-keys $-O(E)$ (each decrease key takes $O(1)$ on average)	
- Total time: $O(V \lg V+E)$	

17-63: Negative Edges

- What if our graph has negative-weight edges?
- Think of the cost of the edge as the amount of energy consumed for a segment of road
- A downhill segment could have negative energy consumed for a hybrid
- Will Dijkstra's algorithm still work correctly?
- Examples

17-64: Negative Edges

- What happens if there is a negative-weight cycle?
- What does the shortest path even mean?

17-65: Negative Edges

- What happens if there is a negative-weight cycle?
- What does the shortest path even mean?
- Finding shortest paths in graphs that contain negative edges, assume that there are no negative weight cycles
- Hybrid example

17-66: All-Source Shortest Path

- What if we want to find the shortest path from all vertices to all other vertices?
- How can we do it?

17-67: All-Source Shortest Path

- What if we want to find the shortest path from all vertices to all other vertices?
- How can we do it?
- Run Dijktra's Algorithm V times
- How long will this take?
- What about negative edges?

17-68: All-Source Shortest Path

- What if we want to find the shortest path from all vertices to all other vertices?
- How can we do it?
- Run Dijktra's Algorithm V times
- How long will this take?
- $\Theta(V E \lg E)$ (using priority queue)
- for sparse graphs, $\Theta\left(V^{2} \lg V\right)$
- for dense graphs, $\Theta\left(V^{3} \lg V\right)$
- $\Theta\left(V^{3}\right)$ (not using a priority queue)
- What about negative edges?
- Doesn't work correctly

17-69: Floyd's Algorithm

- Alternate solution to all pairs shortest path
- Yields $\Theta\left(V^{3}\right)$ running time for all graphs
- Works for graphs with negative edges
- Can detect negative-weight cycles

17-70: Floyd's Algorithm

- Vertices numbered from $0 . .(\mathrm{n}-1)$
- k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices numbered less than or equal to k
- -1-path is a direct link

17-71: k-path Examples

- Shortest -1-path from 0 to 4: 5
- Shortest 0-path from 0 to 4 : 5
- Shortest 1-path from 0 to 4: 4
- Shortest 2-path from 0 to 4: 4
- Shortest 3-path from 0 to 4 : 3

17-72: k-path Examples

- Shortest -1-path from 0 to 2: 7
- Shortest 0-path from 0 to 2: 7
- Shortest 1-path from 0 to 2: 6
- Shortest 2-path from 0 to 2: 6
- Shortest 3-path from 0 to 2: 6
- Shortest 4-path from 0 to 2: 4

17-73: Floyd's Algorithm

- Shortest n-path $=$ Shortest path
- Shortest -1-path:
- ∞ if there is no direct link
- Cost of the direct link, otherwise

17-74: Floyd's Algorithm

- Shortest n-path $=$ Shortest path
- Shortest -1-path:
- ∞ if there is no direct link
- Cost of the direct link, otherwise
- If we could use the shortest k-path to find the shortest $(k+1)$ path, we would be set

17-75: Floyd's Algorithm

- Shortest k-path from v to u either goes through vertex k, or it does not
- If not:
- Shortest k-path $=$ shortest $(k-1)$-path
- If so:
- Shortest k-path $=$ shortest $k-1$ path from v to k, followed by the shortest $k-1$ path from k to w

17-76: Floyd's Algorithm

- If we had the shortest k-path for all pairs (v, w), we could obtain the shortest $k+1$-path for all pairs
- For each pair v, w, compare:
- length of the k-path from v to w
- length of the k-path from v to k appended to the k-path from k to w
- Set the $k+1$ path from v to w to be the minimum of the two paths above

17-77: Floyd's Algorithm

- Let $D_{k}[v, w]$ be the length of the shortest k-path from v to w.

Shortest Path

- $D_{0}[v, w]=$ cost of arc from v to w (∞ if no direct link)
- $D_{k}[v, w]=\operatorname{MIN}\left(D_{k-1}[v, w], D_{k-1}[v, k]+D_{k-1}[k, w]\right)$
- Create D_{-1}, use D_{-1} to create D_{0}, use D_{0} to create D_{1}, and so on - until we have D_{n-1}

17-78: Floyd's Algorithm

- Use a doubly-nested loop to create D_{k} from D_{k-1}
- Use the same array to store D_{k-1} and D_{k} - just overwrite with the new values
- Embed this loop in a loop from 1..k

17-79: Floyd's Algorithm

```
Floyd(Edge G[], int D[][]) {
    int i,j,k
    Initialize D, D[i][j] = cost from i to j
    for (k=0; k<G.length; k++;
        for(i=0; i<G.length; i++)
            for(j=0; j<G.length; j++)
            if ((D[i][k] != Integer.MAX_VALUE) &&
            (D[k][j] != Integer.MAX_VALUE) &&
            (D[i][j] > (D[i,k] + D[k,j])))
            D[i][j] = D[i][k] + D[k][j]
}
```


17-80: Floyd's Algorithm

- We've only calculated the distance of the shortest path, not the path itself
- We can use a similar strategy to the PATH field for Dijkstra to store the path
- We will need a 2-D array to store the paths: $\mathrm{P}[\mathrm{i}][\mathrm{j}]=$ last vertex on shortest path from i to j

