18-0: Spanning Trees

- Given a connected, undirected graph G
- A subgraph of G contains a subset of the vertices and edges in G
- A Spanning Tree T of G is:
- subgraph of G
- contains all vertices in G
- connected
- acyclic

18-1: Spanning Tree Examples

- Graph

18-2: Spanning Tree Examples

- Spanning Tree

18-3: Spanning Tree Examples

- Graph

18-4: Spanning Tree Examples

- Spanning Tree

18-5: Minimal Cost Spanning Tree

- Minimal Cost Spanning Tree
- Given a weighted, undirected graph G
- Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

18-6: MST Example

18-7: MST Example

18-8: Minimal Cost Spanning Trees

- Can there be more than one minimal cost spanning tree for a particular graph?

18-9: Minimal Cost Spanning Trees

- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
- What happens when all edges have unit cost?

18-10: Minimal Cost Spanning Trees

- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
- What happens when all edges have unit cost?
- All spanning trees are MSTs

18-11: Calculating MST

- Two algorithms to calculate MST:
- Kruskal's Algorithm
- Build a "forest" of spanning trees
- Combine into one tree
- Prims Algorithm
- Grow a single tree out from a start vertex

18-12: Kruskal's Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
- Add e to G if it would not cause a cycle

18-13: Kruskal's Algorithm Examples

18-14: Kruskal's Algorithm

- Proof (by contradiction)
- Assume that no optimal MST T contains the minimum cost edge e
- Add e to T, which causes a cycle
- Remove an edge other than e to break the cycle
- $\operatorname{cost} T^{\prime} \leq T$, a contradiction

18-15: Kruskal's Algorithm

- Coding Kruskal's Algorithm:
- Place all edges into a list
- Sort list of edges by cost
- For each edge in the list
- Select the edge if it does not form a cycle with previously selected edges
- How can we do this?

18-16: Kruskal's Algorithm

- Determining of adding an edge will cause a cycle
- Start with a forest of V trees (each containing one node)
- Each added edge merges two trees into one tree
- An edge causes a cycle if both vertices are in the same tree
- (examples)

18-17: Kruskal's Algorithm

- We need to:
- Put each vertex in its own tree
- Given any two vertices v_{1} and v_{2}, determine if they are in the same tree
- Given any two vertices v_{1} and v_{2}, merge the tree containing v_{1} and the tree containing v_{2}
- ... sound familiar?

18-18: Kruskal's Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge $e=\left(v_{1}, v_{2}\right)$ in the list
- if $\operatorname{FIND}\left(v_{1}\right)!=\operatorname{FIND}\left(v_{2}\right)$
- Add e to spanning tree
- $\operatorname{UNION}\left(v_{1}, v_{2}\right)$

18-19: Prim's Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
- vertices in the spanning tree
- vertices not in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
- Pick the initial vertex arbitrarily

18-20: Prim's Algorithm

- While there are vertices not in the spanning tree
- Add the cheapest vertex to the spanning tree

18-21: Prims's Algorithm Examples

18-22: Prim's Algorithm

- Use a table - much like Dijkstra table
- Path has the same meaning
- Cost is for vertex v_{k}
- cost to add v_{k} to the tree
- (instead of length of path to v_{k})

18-23: Prim's Algorithm

- Code for Prim's algorithm is very similar to the code for Dijkstra's algorithm
- Make one small change to Dijkstra's algorithm to get Prim's algorithm

18-24: Dijkstra Code

```
void Dijkstra(Edge G[], int s, tableEntry T[]) {
    int i, vi
    Edge e;
    for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].distance =
    T[i].known = false;
    }
    T[s].distance = 0;
    for (i=0; i < G.length; i++)
        v = minUnknownVertex(T);
        T[v].known = true;
            for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance >
                T[v].distance + e.cost)
                T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
            }
}
}
```


18-25: Prim Code

```
void Dijkstra(Edge G[], int s, tableEntry T[]) (
    int i, v;
    int 1, v;
    for(i=0; i<G.length; i++) {
        T[i].distance= Integer.MAX_VALUE;
        T[i].path = - ;
        T[i].known = false;
    }
    T[s].distance = 0;
    for (i=0; i < G.length; i++)
    for = minUnknownVertex(T);
        v = minUnknownvertex
            T[v].known = true;
            if (T[e.neighbor].distance >
            T[e.neighbor].distance = e.cost;
            T[e.neighbor].path = v;
            }
        }
},
```

