20-0: Indexing

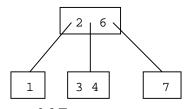
- Operations:
 - Add an element
 - Remove an element
 - Find an element, using a key
 - Find all elements in a range of key values

20-1: Indexing

- Sorted List
 - Find / Find in Range fast
 - Add / Remove slow
- Unsorted List / Hash Table
 - Add, Find, Remove fast (hash)
 - Find in Range slow
- Binary Search Tree
 - All operations are fast (O(lg n))
 - *if* the tree is balanced

20-2: Indexing

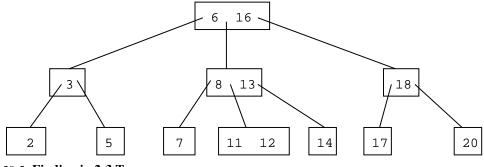
- Generalized Binary Search Trees
 - Each node can store several keys, instead of just one
 - Values in subtrees between values in surrounding keys
 - For non leaves, # of children = # of keys + 1



20-3: 2-3 Trees

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth

20-4: Example 2-3 Tree



20-5: Finding in 2-3 Trees

• How can we find an element in a 2-3 tree?

20-6: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true
 - Otherwise, recursively find in the appropriate subtree

20-7: Inserting into 2-3 Trees

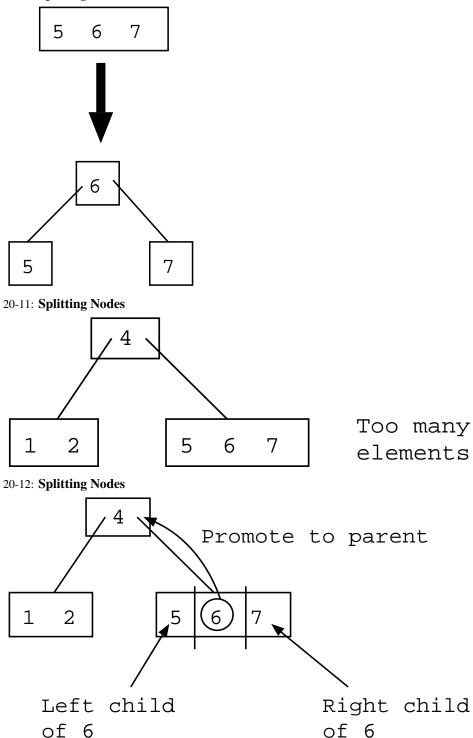
- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf

20-8: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?

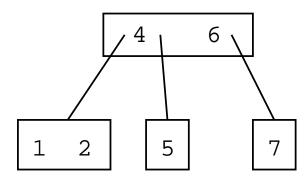
20-9: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!



of 6

20-13: Splitting Nodes



20-14: Splitting Root

- When we split the root:
 - Create a new root
 - Tree grows in height by 1

20-15: **2-3 Tree Example**

• Inserting elements 1-9 (in order) into a 2-3 tree

20-16: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

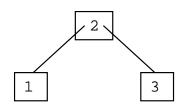
20-17: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

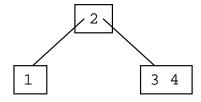
Too many keys, need to split

20-18: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

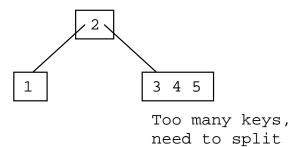


• Inserting elements 1-9 (in order) into a 2-3 tree



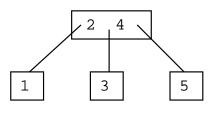
20-20: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



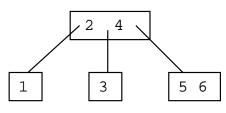
20-21: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



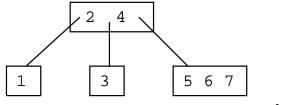
20-22: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



20-23: 2-3 Tree Example

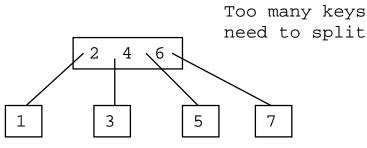
• Inserting elements 1-9 (in order) into a 2-3 tree



Too many keys need to split

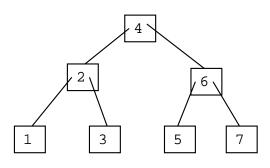
20-24: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



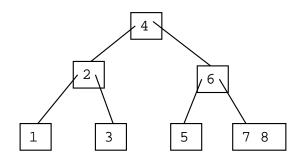
20-25: **2-3 Tree Example**

• Inserting elements 1-9 (in order) into a 2-3 tree



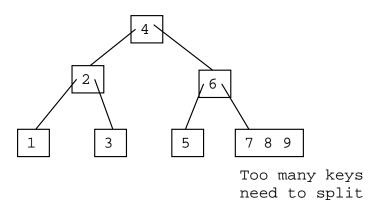
20-26: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



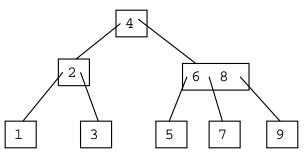
20-27: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



20-28: **2-3 Tree Example**

• Inserting elements 1-9 (in order) into a 2-3 tree



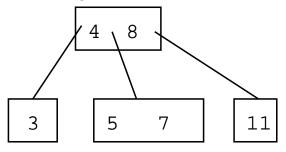
20-29: Deleting from 2-3 Tree

- As with BSTs, we will have 2 cases:
 - Deleting a key from a leaf
 - Deleting a key from an internal node

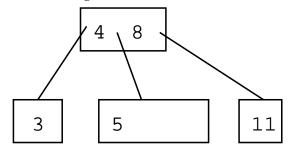
20-30: Deleting Leaves

- If leaf contains 2 keys
 - Can safely remove a key

20-31: Deleting Leaves



• Deleting 7

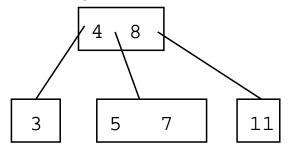


• Deleting 7

20-33: Deleting Leaves

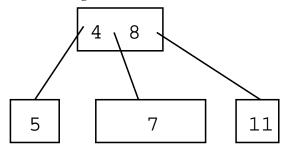
- If leaf contains 1 key
 - Cannot remove key without making leaf empty
 - Try to steal extra key from sibling

20-34: Deleting Leaves



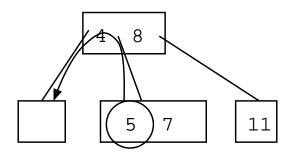
• Deleting 3 – we can steal the 5

20-35: Deleting Leaves



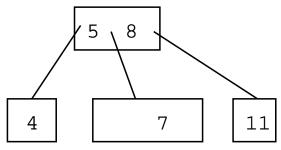
• Not a 2-3 tree. What can we do?

20-36: Deleting Leaves



• Steal key from sibling through parent

20-37: Deleting Leaves

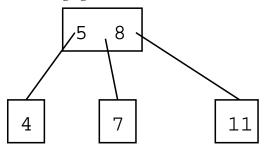


• Steal key from sibling through parent

20-38: Deleting Leaves

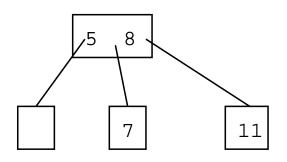
- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse

20-39: Merging Nodes

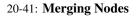


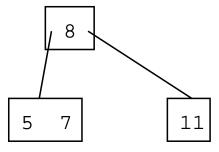
• Removing the 4

20-40: Merging Nodes



- Removing the 4
- Combine 5, 7 into one node

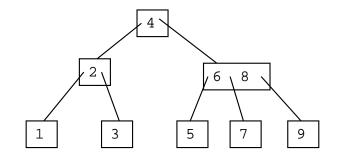




20-42: Merging Nodes

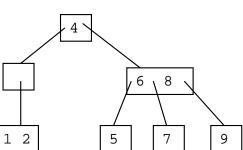
- Merge decreases the number of keys in the parent
 - May cause parent to have too few keys
- Parent can steal a key, or merge again

20-43: Merging Nodes



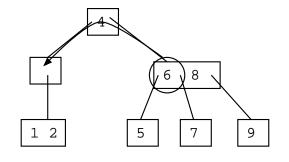
• Deleting the 3 – cause a merge

20-44: Merging Nodes



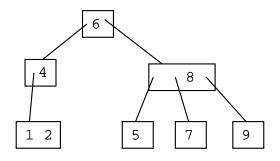
- Deleting the 3 cause a merge
- Not enough keys in parent

20-45: Merging Nodes



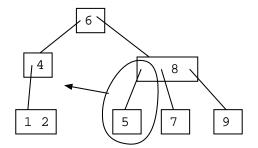
• Steal key from sibling

20-46: Merging Nodes



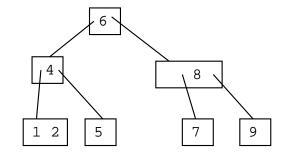
• Steal key from sibling

20-47: Merging Nodes



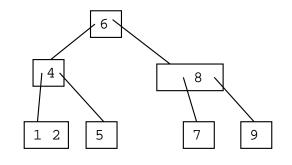
• When we steal a key from an internal node, steal nearest subtree as well

20-48: Merging Nodes



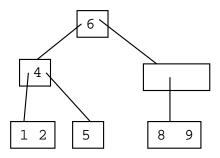
• When we steal a key from an internal node, steal nearest subtree as well

20-49: Merging Nodes



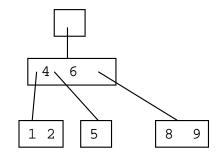
• Deleting the 7 – cause a merge

20-50: Merging Nodes



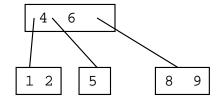
• Parent has too few keys - merge again

20-51: Merging Nodes



• Root has no keys – delete

20-52: Merging Nodes



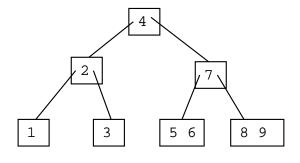
20-53: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
 - *HINT:* How did we delete non-leaf nodes in standard BSTs?

20-54: Deleting Interior Keys

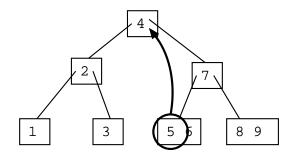
- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursivly delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)

20-55: Deleting Interior Keys



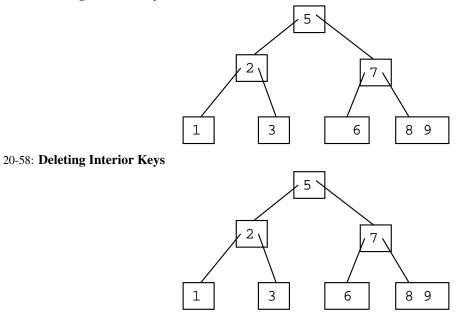
• Deleting the 4

20-56: Deleting Interior Keys

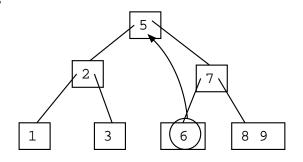


- Deleting the 4
- Replace 4 with smallest element in tree to right of 4

20-57: Deleting Interior Keys

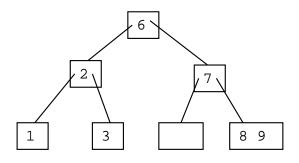


- Deleting the 5
- 20-59: Deleting Interior Keys



- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

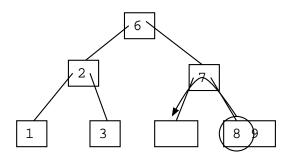
20-60: Deleting Interior Keys



- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

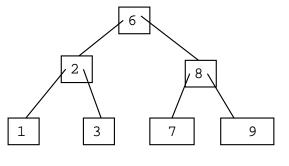
• Node with two few keys

20-61: Deleting Interior Keys

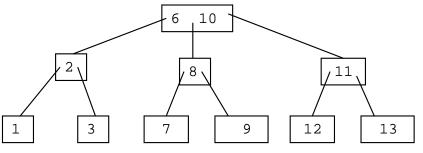


- Node with two few keys
- Steal a key from a sibling

20-62: Deleting Interior Keys

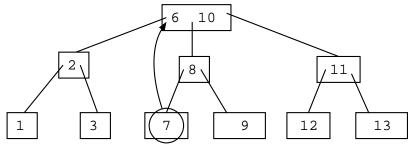


20-63: Deleting Interior Keys



• Removing the 6

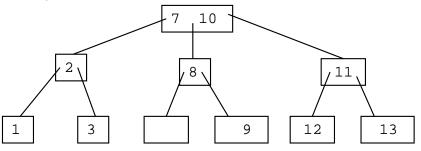
20-64: Deleting Interior Keys



• Removing the 6

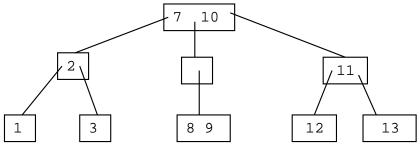
• Replace the 6 with the smallest element in the tree to the right of the 6

20-65: Deleting Interior Keys



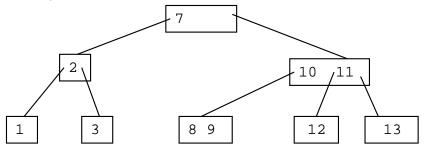
- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling

20-66: Deleting Interior Keys



- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)

20-67: Deleting Interior Keys



20-68: Generalizing 2-3 Trees

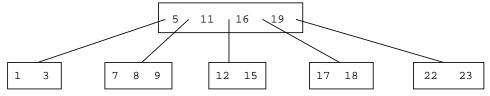
- In 2-3 Trees:
 - Each node has 1 or 2 keys
 - Each interior node has 2 or 3 children

• We can generalize 2-3 trees to allow more keys / node

20-69: **B-Trees**

- A B-Tree of maximum degree k:
 - All interior nodes have $\lceil k/2 \rceil \dots k$ children
 - All nodes have $\lceil k/2 \rceil 1 \dots k 1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3

20-70: B-Trees

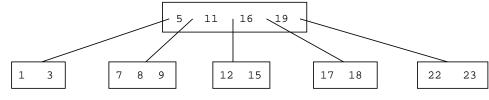


- B-Tree with maximum degree 5
 - Interior nodes have 3 5 children
 - All nodes have 2-4 keys

20-71: B-Trees

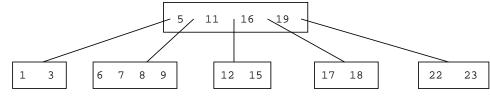
- Inserting into a B-Tree
 - Find the leaf where the element would go
 - If the leaf is not full, insert the element into the leaf
 - Otherwise, split the leaf (which may cause further splits up the tree), and insert the element

20-72: B-Trees

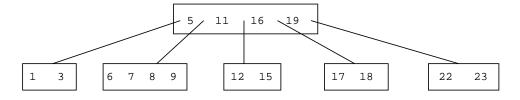


• Inserting a 6 ..

20-73: B-Trees

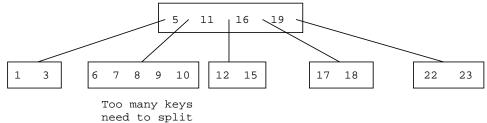


20-74: B-Trees



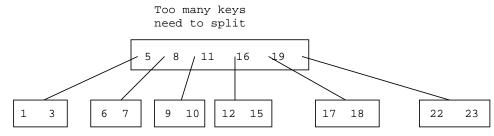
• Inserting a 10 ..

20-75: **B-Trees**



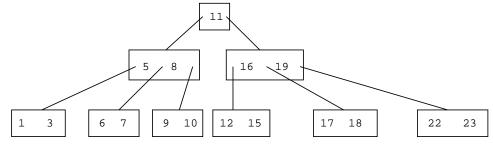
- Promote 8 to parent (between 5 and 11)
- Make nodes out of (6, 7) and (9, 10)

20-76: **B-Trees**



- Promote 11 to parent (new root)
- Make nodes out of (5, 8) and (6, 19)

20-77: **B-Trees**



- Note that the root only has 1 key, 2 children
- All nodes in B-Trees with maximum degree 5 should have at least 2 keys
- The root is an exception it may have as few as one key and two children for any maximum degree

20-78: B-Trees

- B-Tree of maximum degree k
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have $\lfloor k/2 \rfloor 1 \dots k 1$ keys
 - All interior nodes (other than the root) have $\lfloor k/2 \rfloor \dots k$ children

20-79: **B-Trees**

- B-Tree of maximum degree k
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have $\lfloor k/2 \rfloor 1 \dots k 1$ keys
 - All interior nodes (other than the root) have $\lfloor k/2 \rfloor \dots k$ children
- Why do we need to make exceptions for the root?

20-80: B-Trees

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element

20-81: B-Trees

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element
 - Consider a B-Tree of maximum degree 5 with 5 elements

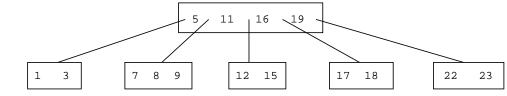
20-82: B-Trees

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element
 - Consider a B-Tree of maximum degree 5 with 5 elements
 - Even when a B-Tree *could* be created for a specific number of elements, creating an exception for the root allows our split/merge algorithm to work correctly.

20-83: B-Trees

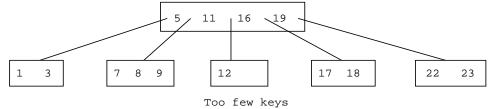
- Deleting from a B-Tree (Key is in a leaf)
 - Remove key from leaf
 - Steal / Split as necessary
 - May need to split up tree as far as root

20-84: **B-Trees**

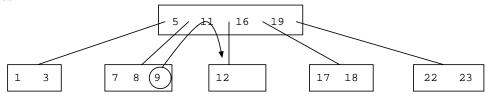


• Deleting the 15

20-85: **B-Trees**



20-86: B-Trees

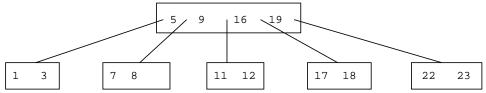


• Steal a key from sibling

20-87: **B-Trees**

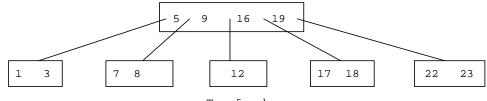


20-88: **B-Trees**



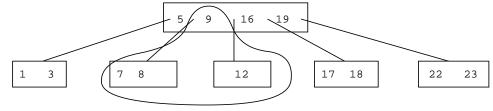
• Delete the 11

20-89: **B-Trees**



Too few keys

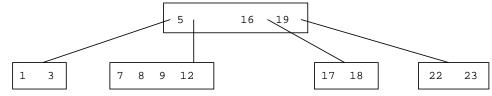
20-90: **B-Trees**



Combine into 1 node

• Merge with a sibling (pick the left sibling arbitrarily)

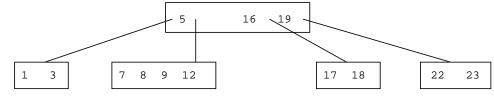
20-91: **B-Trees**



20-92: **B-Trees**

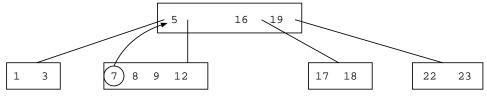
- Deleting from a B-Tree (Key in internal node)
 - Replace key with largest key in right subtree
 - Remove largest key from right subtree
 - (May force steal / merge)

20-93: **B-Trees**



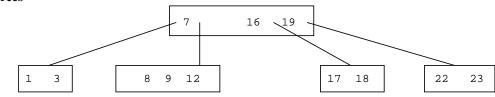
• Remove the 5

20-94: **B-Trees**

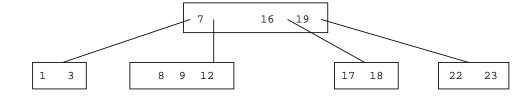


• Remove the 5

20-95: **B-Trees**

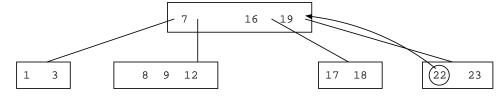


20-96: **B-Trees**



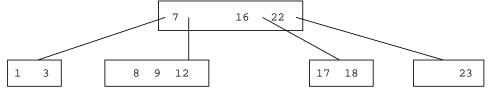
• Remove the 19

20-97: **B-Trees**



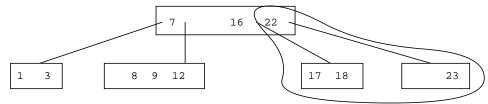
• Remove the 19

20-98: **B-Trees**



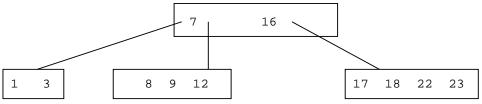
Too few keys

20-99: **B-Trees**



• Merge with left sibling

20-100: B-Trees



20-101: **B-Trees**

- Almost all databases that are large enough to require storage on disk use B-Trees
- Disk accesses are very slow
 - Accessing a byte from disk is 10,000 100,000 times as slow as accessing from main memory

- Recently, this gap has been getting even bigger
- Compared to disk accesses, all other operations are essentially free
- Most efficient algorithm minimizes disk accesses as much as possible

20-102: B-Trees

- Disk accesses are slow want to minimize them
- Single disk read will read an entire sector of the disk
- Pick a maximum degree k such that a node of the B-Tree takes up exactly one disk block
 - Typically on the order of 100 children / node

20-103: B-Trees

- With a maximum degree around 100, B-Trees are very shallow
- Very few disk reads are required to access any piece of data
- Can improve matters even more by keeping the first few levels of the tree in main memory
 - For large databases, we can't store the entire tree in main memory but we can limit the number of disk accesses for each operation to only 1 or 2