
Data Structures and Algorithms
CS245-2017S-23

NP-Completeness and Undecidablity

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

23-0: Hard Problems

Some algorithms take exponential time

Simple version of Fibonacci

Faster versions of Fibonacci that take linear
time

Some Problems take exponential time

All algorithms that solve the problem take
exponential time

Towers of Hanoi

23-1: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

23-2: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 1

23-3: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 2

23-4: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 3

23-5: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 4

23-6: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 5

23-7: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 6

23-8: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 7

23-9: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 8

23-10: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 9

23-11: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 10

23-12: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 11

23-13: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 12

23-14: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 13

23-15: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 14

23-16: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 15

23-17: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 15

Moving n disks requires 2n − 1 moves

23-18: Towers of Hanoi

Move one disk at a time

Never place a larger disk on a smaller disk

Moves = 15

Moving n disks requires 2n − 1 moves

Completely impractical for large values of n

23-19: Reductions

A reduction from Problem 1 to Problem 2 allows us
to solve Problem 1 in terms of Problem 2

Given an instance of Problem 1, create an
instance of Problem 2

Solve the instance of Problem 2

Use the solution of Problem 2 to create a
solution to Problem 1

23-20: Reductions

Example Problem: Pairing

Given two lists of integers of size n

Match the smallest element of each list together

Match the second smallest element of each list
together

.. etc.

23-21: Reductions

13
21
5
47
93
25
14
6
12

List 1

30
14
26
19
87
54
23
11
8

List 2

23-22: Reductions

13
21
5
47
93
25
14
6
12

List 1

30
14
26
19
87
54
23
11
8

List 2

23-23: Reductions

Reduction from Pairing to Sorting

Can we reduce the pairing problem to a sorting
problem

That is, how can we use the sorting problem to
solve the pairing problem?

23-24: Reductions

Reduction from Pairing to Sorting

Lets us solve the Pairing problem by solving
Sorting problem

Given any two lists L1 and L2 that we wish to
pair:

Sort L1 and L2
Pair L1[i] with L2[i] for all i

23-25: Reductions

Reduction from Pairing to Sorting

Reduction takes very little time

Time to solve Pairing (using this reduction) is
the time to solve Sorting

We can solve Pairing in time O(n lg n) using
sorting.

23-26: Reductions

Reduction from Sorting to Pairing

Given an instance of Sorting, create an
instance of pairing problem

Solve the paring problem

Use the solution of pairing problem to solve the
sorting problem

23-27: Reductions

Given an list L1:

Create a new list L2, such that L2[i] = i

Solve the paring problem, pairing L1 and L2

Use counting sort to sort L1, using the paired
element from L2 as the key

23-28: Reductions

Given an list L1:

Create a new list L2, such that L2[i] = i

Solve the paring problem, pairing L1 and L2

Use counting sort to sort L1, using the paired
element from L2 as the key

How long does this take?

23-29: Reductions

Given an list L1:

Create a new list L2, such that L2[i] = i

Solve the paring problem, pairing L1 and L2

Use counting sort to sort L1, using the paired
element from L2 as the key

How long does this take?

O(n + time to do pairing)

23-30: Reductions

We can reduce Sorting to Pairing, such that:

Time to do Sorting takes O(n + time to do
pairing)

Sorting takes Ω(n lg n) time

Thus, the pairing problem must take at least

Ω(n lg n) time as well

23-31: Reductions

We can use a Reduction to compare problems

If there is a reduction from problem A to problem B
that can be done quickly

Problem A is known to be hard (cannot be solved
quickly)

Problem B cannot be solved quickly, either

23-32: NP Problems

A problem is NP if a solution can be verified easily

Given a potential solution to the problem, verify
that the solution does solve the problem

Verification takes polynomial (not exponential!)
time

(Pretty low bar for “easily”)

23-33: NP Problems

A problem is NP if a solution can be verified easily

Traveling Salesman Problem (TSP)
Given a graph with weighted vertices, and a
cost bound k
Is there a cycle that contains all vertices in
the graph, that has a total cost less than k?

Given any potential solution to the TSP, we can
easily verify that the solution is correct

23-34: NP Problems

A problem is NP if a solution can be verified easily

Graph Coloring
Given a graph and a number of colors k
Can we color every vertex using no more
than k colors, such that all adjacent vertices
have different colors?

Given any potential solution to the Graph
Coloring problem, we can easily verify that the
solution is correct

23-35: NP Problems

A problem is NP if a solution can be verified easily

Satisfiability
Given a boolean formula over a set of
boolean variables a1 . . . an
(a1‖!a2)&&(a2‖a5‖!a1)&& . . .
Can we give a truth value to all variables
a1 . . . an so that the value of the formula is
true?

Given any potential solution to the Satisfiability
problem, we can easily verify that the solution is
correct

23-36: NP Problems

A problem is NP if a solution can be verified easily

Sorting
Given a list of elements L and an ordering of
the elements ≤
Create a permutation of L such that
L[i] ≤ L[i+ 1]

Given any potential solution to the Sorting
problem, we can easily verify that the solution is
correct

23-37: NP Problems

If we can guess an answer, we can verify it quickly

NP stands for Non-Deterministic Polynomial

Non-Deterministic = we can guess

Polynomial = “quickly”

NP problem: If we could guess an answer, we

could verify it in polynomial (n, n2, n5 – not
exponential) time

23-38: Non-Deterministic Machine

Two Definitions of Non-Deterministic Machines:

“Oracle” – allows machine to magically make a
correct guess

Massively parallel – simultaneously try to verify
all possible solutions

Try all permutations of vertices in a graph,
see if any form a cycle with cost < k
Try all colorings of a graph with up to k
colors, see if any are legal
Try all permutations of a list, see if any are
sorted

23-39: NP vs. P

A problem is NP if a non-deterministic machine
can solve it in polynomial time

Of course, we have no real non-deterministic
machines

A problem is in P (Polynomial), if a deterministic
machine can solve it in polynomial time

Sorting is in P – can sort a list in polynomial
time

All problems in P are also in NP
Ignore the oracle

23-40: NP-Complete

An NP problem is “NP-Complete” if there is a
reduction from any NP problem to that problem

For example, Traveling Salesman (TSP) is
NP-Complete

We can reduce any NP problem to TSP

If we could solve TSP in polynomial time, we
could solve all NP problems in polynomial time

Is TSP unique in this way?

23-41: NP-Complete

There are many NP-Complete problems

TSP

Graph Coloring

Satisfiability

.. many, many more

If we could solve any of these problems quickly, we
could solve all of them quickly

All known solutions take exponential time

23-42: NP-Complete

If a problem is NP-Complete, it almost certainly
cannot be solved quickly (polynomial time)

If it could, then all NP problems could be solved
quickly

Many people have tried for many years to find
polynomial solutions for NP complete problems,
all have failed

However, no proof that NP-Complete problems
require exponential time – open problem

23-43: NP =? P

If we could solve any NP-Complete problem
quickly (polynomial time), we could solve all NP
problems quickly

If that is the case, then NP=P

P is set of problems that can be solved by a
standard machine in polynomial time

Most everyone believes that NP 6= P, and all
NP-Complete problems require exponential time
on standard computers – not yet been proven

23-44: NP-Completeness

Why is NP-Completeness important?

If a problem is NP-Complete, no point in trying
to come up with an algorithm to solve it

What can we do, if we need to solve a problem
that is NP-Complete?

23-45: NP-Completeness

What can we do, if we need to solve a problem that
is NP-Complete?

If the problem we need to solve is very small (<
20), an exponential solution might be OK

We can solve an approximation of the problem
Color a graph using an non-optimal number
of colors
Find a Traveling Salesman tour that is not
optimal

23-46: Impossible Problems

Some problems are “easy” – require a fairly small
amount of time to solve

Sorting

Some problems are “probably hard” – believed to
require exponential time to solve

TSP, Graph Coloring, etc

Some problems are “hard” – known to require an
exponential amount of time to solve

Towers of Hanoi

Some problems are impossible – cannot be solved

23-47: Halting Problem

Program is running – seems to be taking a long
time

We’d like to know if the program will eventually
finish, or if it is in an infinite loop

Great debugging tool:

Takes as input the source code to a program p,
and an input i

Determines if p will run forever when run on i

23-48: Halting Problem

Program is running – seems to be taking a long
time

We’d like to know if the program will eventually
finish, or if it is in an infinite loop

Great debugging tool:

Takes as input the source code to a program p,
and an input i

Determines if p will run forever when run on i

No such tool can exist!

23-49: Halting Problem

We will prove that the halting problem is unsolvable
by contradiction

Assume that we have a solution to the halting
problem

Derive a contradiction

Our original assumption (that the halting
problem has a solution) must be false

23-50: Halting Problem

boolean halt(char [] program, char [] input) {

/* code to determine if the program
halts when run on the input */

if (program halts on input)
return true;

else
return false;

}

23-51: Halting Problem

boolean selfhalt(char [] program) {
if (halt(program, program))

return true;
else

return false;
}

23-52: Halting Problem

boolean selfhalt(char [] program) {
if (halt(program, program))

return true;
else

return false;
}

void contrary(char [] program) {
if (selfhalt(program)

while(true); /* infinite loop */
}

23-53: Halting Problem

boolean selfhalt(char [] program) {
if (halt(program, program))

return true;
else

return false;
}

void contrary(char [] program) {
if (selfhalt(program)

while(true); /* infinite loop */
}

what happens when we call contrary, passing in its
own source code as input?

23-54: Reduction Example

Hamiltonian Cycle:

Given an unweighted, undirected graph G, is
there a cycle that includes every vertex exactly
once?

Traveling Salesman Problem (TSP)

Given a complete, weighed, undirected graph G
and a cost bound k, is there a cycle that incldes
every vertex in G, with a cost < k?

23-55: Reduction Example

If we could solve the Traveling Salesman problem
in polynomial time, we could solve the Hamiltonian
Cycle problem in polynomial time

Given any graph G, we can create a new graph
G′ and limit k, such that there is a Hamiltonian
Circuit in G if and only if there is a Traveling
Salesman tour in G′ with cost less than k

Vertices in G′ are the same as the vertices in G

For each pair of vertices xi and xj in G, if the

edge (xi, xj) is in G, add the edge (xi, xj) to G′

with the cost 1. Otherwise, add the edge

(xi, xj) to G′ with the cost 2.

Set the limit k = # of vertices in G

23-56: Reduction Example

2 2

1

1

1

1

Limit = 4

23-57: Reduction Example

If we could solve TSP in polynomial time, we could
solve Hamiltonian Cycle problem in polynomial
time

Start with an instance of Hamiltonian Cycle

Create instance of TSP

Feed instance of TSP into TSP solver

Use result to find solution to Hamiltonian Cycle

23-58: Reduction Example #2

Given any instance of the Hamiltonian Cycle
Problem:

We can (in polynomial time) create an instance
of Satisfiability

That is, given any graph G, we can create a
boolean formula f , such that f is satisfiable if
and only if there is a Hamiltonian Cycle in G

If we could solve Satisfiability in Polynomial Time,
we could solve the Hamiltonian Cycle problem in
Polynomial Time

23-59: Reduction Example #2

Given a graph G with n vertices, we will create a

formula with n2 variables:

x11, x12, x13, . . . x1n

x21, x22, x23, . . . x2n

. . .
xn1, xn2, xn3, . . . xnn

Design our formula such that xij will be true if and

only if the ith element in a Hamiltonian Circuit of G
is vertex # j

23-60: Reduction Example #2

For our set of n2 variables xij, we need to write a

formula that ensures that:

For each i, there is exactly one j such that xij =
true

For each j, there is exactly one i such that xij =
true

If xij and x(i+1)k are both true, then there must

be a link from vj to vk in the graph G

23-61: Reduction Example #2

For each i, there is exactly one j such that xij =
true

For each i in 1 . . . n, add the rules:
(xi1||xi2|| . . . ||xin)

This ensures that for each i, there is at least one j
such that xij = true

(This adds n clauses to the formula)

23-62: Reduction Example #2

For each i, there is exactly one j such that xij =
true

for each i in 1 . . . n
for each j in 1 . . . n

for each k in 1 . . . n j 6= k
Add rule (!xij||!xik)

This ensures that for each i, there is at most one j
such that xij = true

(this adds a total of n3 clauses to the formula)

23-63: Reduction Example #2

If xij and x(i+1)k are both true, then there must be a

link from vi to vk in the graph G

for each i in 1 . . . (n− 1)
for each j in 1 . . . n

for each k in 1 . . . n
if edge (vj, vk) is not in the graph:

Add rule (!xij||!x(i+1)k)

(This adds no more than n3 clauses to the formula)

23-64: Reduction Example #2

If xnj and x0k are both true, then there must be a

link from vi to vk in the graph G (looping back to
finish cycle)

for each j in 1 . . . n
for each k in 1 . . . n

if edge (vn, v0) is not in the graph:
Add rule (!xnj||!x0k)

(This adds no more than n2 clauses to the formula)

23-65: Reduction Example #2

In order for this formula to be satisfied:

For each i, there is exactly one j such that xij

is true

For each j, there is exactly one i such that xji

is true

if xij is true, and x(i+1)k is true, then there is an

arc from vj to vk in the graph G

Thus, the formula can only be satisfied if there is a
Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

Exact Cover Problem

Set of elements A

F ⊂ 2A, family of subsets

Is there a subset of F such that each element
of A appears exactly once?

23-67: More NP-Complete Problems

Exact Cover Problem

A = {a, b, c, d, e, f, g}

F = {{a, b, c}, {d, e, f}, {b, f, g}, {g}}

Exact cover exists:
{a, b, c}, {d, e, f}, {g}

23-68: More NP-Complete Problems

Exact Cover Problem

A = {a, b, c, d, e, f, g}

F = {{a, b, c}, {c, d, e, f}, {a, f, g}, {c}}

No exact cover exists

23-69: More NP-Complete Problems

Exact Cover is NP-Complete

Reduction from Satisfiability

Given any instance of Satisfiability, create (in
polynomial time) an instance of Exact Cover

Solution to Exact Cover problem tells us
solution to Satisfiability problem

Satisfiability is NP-Complete => Exact Cover is
NP-Complete

23-70: Exact Cover is NP-Complete

Given an instance of SAT:

C1 = (x1 ∨ x2)

C2 = (x1 ∨ x2 ∨ x3)

C3 = (x2)

C4 = (x2 ∨ x3)

Formula: C1 ∧ C2 ∧ C3 ∧ C4

Create an instance of Exact Cover

Define a set A and family of subsets F such
that there is an exact cover of A in F if and only
if the formula is satisfiable

23-71: Exact Cover is NP-Complete

C1 = (x1 ∨ x2) C2 = (x1 ∨ x2 ∨ x3) C3 = (x2) C4 = (x2 ∨ x3)

A = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42}

F = {{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42},

X1, f = {x1, p11}

X1, t = {x1, p21}

X2, f = {x2, p22, p31}

X2, t = {x2, p12, p41}

X3, f = {x3, p23}

X3, t = {x3, p42}

{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23}, {C3, p31},

{C4, p41}, {C4, p422}}

23-72: Directed Hamiltonian Cycle

Given any directed graph G, determine if G has a a
Hamiltonian Cycle

Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

23-73: Directed Hamiltonian Cycle

Given any directed graph G, determine if G has a a
Hamiltonian Cycle

Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

23-74: Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle problem is
NP-Complete

Reduce Exact Cover to Directed Hamiltonian Cycle

Given any set A, and family of subsets F :

Create a graph G that has a hamiltonian cycle if
and only if there is an exact cover of A in F

23-75: Directed Hamiltonian Cycle

Widgets:

Consider the following graph segment:

a

d

b

c

u v w

If a graph containing this subgraph has a
Hamiltonian cycle, then the cycle must contain
either a → u → v → w → b or
c → w → v → u → d – but not both (why)?

23-76: Directed Hamiltonian Cycle

Widgets:

XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle

a

d

b

c

23-77: Directed Hamiltonian Cycle

Widgets:

XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle
a

d

b

c f e

a b

f cde

23-78: Directed Hamiltonian Cycle

Add a vertex for every variable in A (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

1a

0a

2a

3a
2

23-79: Directed Hamiltonian Cycle

Add a vertex for every subset F (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-80: Directed Hamiltonian Cycle

Add an edge from the last variable to the 0th
subset, and from the last subset to the 0th variable

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-81: Directed Hamiltonian Cycle

Add 2 edges from Fi to Fi+1. One edge will be a
“short edge”, and one will be a “long edge”.

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-82: Directed Hamiltonian Cycle

Add an edge from ai−1 to ai for each subset ai
appears in.

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-83: Directed Hamiltonian Cycle

Each edge (ai−1, ai) corresponds to some subset
that contains ai. Add an XOR link between this
edge and the long edge of the corresponding
subset

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

XOR edge

23-84: Directed Hamiltonian Cycle

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

XOR edge

23-85: Directed Hamiltonian Cycle

F = {a ,a }
F = {a ,a }
F = {a ,a }
F = {a }

1

2

3

4

2

2

1

2

4

3

2F

1F

3F

4F

0F

2a

1a

3a

4a

0a

4

XOR edge

	{small lecturenumber -	heblocknumber :} Hard Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Deterministic Machineaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP vs. Paddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP =? Paddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completenessaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completenessaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Impossible Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}

