23-0: Hard Problems

- Some algorithms take exponential time
- Simple version of Fibonacci
- Faster versions of Fibonacci that take linear time
- Some Problems take exponential time
- All algorithms that solve the problem take exponential time
- Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

23-2: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=1$
23-3: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=2$

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=3$
23-5: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=4$
23-6: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=5$
23-7: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=6$
23-8: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=7$
23-9: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=8$
23-10: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=9$
23-11: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=10$
23-12: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=11$
23-13: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=12$
23-14: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=13$
23-15: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=14$
23-16: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=15$
23-17: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=15$

- Moving n disks requires $2^{n}-1$ moves

23-18: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves $=15$

- Moving n disks requires $2^{n}-1$ moves
- Completely impractical for large values of n

23-19: Reductions

- A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2
- Given an instance of Problem 1, create an instance of Problem 2
- Solve the instance of Problem 2
- Use the solution of Problem 2 to create a solution to Problem 1

23-20: Reductions

- Example Problem: Pairing
- Given two lists of integers of size n
- Match the smallest element of each list together
- Match the second smallest element of each list together
- .. etc.

23-21: Reductions

| 13
 21
 5
 47
 93
 25
 14
 6
 12
 List 1\quad30
 14
 26
 19
 87
 54
 23
 11
 8 |
| :--- | :--- |
| List 2 |

23-22: Reductions

List 1
List 2

23-23: Reductions

- Reduction from Pairing to Sorting
- Can we reduce the pairing problem to a sorting problem
- That is, how can we use the sorting problem to solve the pairing problem?

23-24: Reductions

- Reduction from Pairing to Sorting
- Lets us solve the Pairing problem by solving Sorting problem
- Given any two lists L1 and L2 that we wish to pair:
- Sort L1 and L2
- Pair L1[i] with L2[i] for all i

23-25: Reductions

- Reduction from Pairing to Sorting
- Reduction takes very little time
- Time to solve Pairing (using this reduction) is the time to solve Sorting
- We can solve Pairing in time $O(n \lg n)$ using sorting.

23-26: Reductions

- Reduction from Sorting to Pairing
- Given an instance of Sorting, create an instance of pairing problem
- Solve the paring problem
- Use the solution of pairing problem to solve the sorting problem

23-27: Reductions

- Given an list L1:
- Create a new list L2, such that L2[i] = i
- Solve the paring problem, pairing L1 and L2
- Use counting sort to sort L1, using the paired element from L2 as the key

23-28: Reductions

- Given an list L1:
- Create a new list L2, such that L2[i] = i
- Solve the paring problem, pairing L1 and L2
- Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take? 23-29: Reductions

- Given an list L1:
- Create a new list L2, such that L2[i] = i
- Solve the paring problem, pairing L1 and L2
- Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take?

- $\mathrm{O}(\mathrm{n}+$ time to do pairing $)$

23-30: Reductions

- We can reduce Sorting to Pairing, such that:
- Time to do Sorting takes $\mathrm{O}(\mathrm{n}+$ time to do pairing $)$
- Sorting takes $\Omega(n \lg n)$ time
- Thus, the pairing problem must take at least $\Omega(n \lg n)$ time as well

23-31: Reductions

- We can use a Reduction to compare problems
- If there is a reduction from problem A to problem B that can be done quickly
- Problem A is known to be hard (cannot be solved quickly)
- Problem B cannot be solved quickly, either

23-32: NP Problems

- A problem is NP if a solution can be verified easily
- Given a potential solution to the problem, verify that the solution does solve the problem
- Verification takes polynomial (not exponential!) time
- (Pretty low bar for "easily")

23-33: NP Problems

- A problem is NP if a solution can be verified easily
- Traveling Salesman Problem (TSP)
- Given a graph with weighted vertices, and a cost bound k
- Is there a cycle that contains all vertices in the graph, that has a total cost less than k ?
- Given any potential solution to the TSP, we can easily verify that the solution is correct

23-34: NP Problems

- A problem is NP if a solution can be verified easily
- Graph Coloring
- Given a graph and a number of colors k
- Can we color every vertex using no more than k colors, such that all adjacent vertices have different colors?
- Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct

23-35: NP Problems

- A problem is NP if a solution can be verified easily
- Satisfiability
- Given a boolean formula over a set of boolean variables $a_{1} \ldots a_{n}$ $\left(a_{1} \|!a_{2}\right) \& \&\left(a_{2}\left\|a_{5}\right\|!a 1\right) \& \& \ldots$
- Can we give a truth value to all variables $a_{1} \ldots a_{n}$ so that the value of the formula is true?
- Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct

23-36: NP Problems

- A problem is NP if a solution can be verified easily
- Sorting
- Given a list of elements L and an ordering of the elements \leq
- Create a permutation of L such that $L[i] \leq L[i+1]$
- Given any potential solution to the Sorting problem, we can easily verify that the solution is correct

23-37: NP Problems

- If we can guess an answer, we can verify it quickly
- NP stands for Non-Deterministic Polynomial
- Non-Deterministic = we can guess
- Polynomial = "quickly"
- NP problem: If we could guess an answer, we could verify it in polynomial (n, n^{2}, n^{5} - not exponential) time

23-38: Non-Deterministic Machine

- Two Definitions of Non-Deterministic Machines:
- "Oracle" - allows machine to magically make a correct guess
- Massively parallel - simultaneously try to verify all possible solutions
- Try all permutations of vertices in a graph, see if any form a cycle with cost $; k$
- Try all colorings of a graph with up to k colors, see if any are legal
- Try all permutations of a list, see if any are sorted

23-39: NP vs. \mathbf{P}

- A problem is NP if a non-deterministic machine can solve it in polynomial time
- Of course, we have no real non-deterministic machines
- A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
- Sorting is in P - can sort a list in polynomial time
- All problems in P are also in NP
- Ignore the oracle

23-40: NP-Complete

- An NP problem is "NP-Complete" if there is a reduction from any NP problem to that problem
- For example, Traveling Salesman (TSP) is NP-Complete
- We can reduce any NP problem to TSP
- If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time
- Is TSP unique in this way?

23-41: NP-Complete

- There are many NP-Complete problems
- TSP
- Graph Coloring
- Satisfiability
- .. many, many more
- If we could solve any of these problems quickly, we could solve all of them quickly
- All known solutions take exponential time

23-42: NP-Complete

- If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)
- If it could, then all NP problems could be solved quickly
- Many people have tried for many years to find polynomial solutions for NP complete problems, all have failed
- However, no proof that NP-Complete problems require exponential time - open problem

23-43: $\mathbf{N P}=\mathbf{P} \mathbf{P}$

- If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly
- If that is the case, then $\mathrm{NP}=\mathrm{P}$
- P is set of problems that can be solved by a standard machine in polynomial time
- Most everyone believes that $\mathrm{NP} \neq \mathrm{P}$, and all NP-Complete problems require exponential time on standard computers - not yet been proven

23-44: NP-Completeness

- Why is NP-Completeness important?
- If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it
- What can we do, if we need to solve a problem that is NP-Complete?

23-45: NP-Completeness

- What can we do, if we need to solve a problem that is NP-Complete?
- If the problem we need to solve is very small (; 20), an exponential solution might be OK
- We can solve an approximation of the problem
- Color a graph using an non-optimal number of colors
- Find a Traveling Salesman tour that is not optimal

23-46: Impossible Problems

- Some problems are "easy" - require a fairly small amount of time to solve
- Sorting
- Some problems are "probably hard" - believed to require exponential time to solve
- TSP, Graph Coloring, etc
- Some problems are "hard" - known to require an exponential amount of time to solve
- Towers of Hanoi
- Some problems are impossible - cannot be solved

23-47: Halting Problem

- Program is running - seems to be taking a long time
- We'd like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
- Takes as input the source code to a program p, and an input i
- Determines if p will run forever when run on i

23-48: Halting Problem

- Program is running - seems to be taking a long time
- We'd like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
- Takes as input the source code to a program p, and an input i
- Determines if p will run forever when run on i
- No such tool can exist!

23-49: Halting Problem

- We will prove that the halting problem is unsolvable by contradiction
- Assume that we have a solution to the halting problem
- Derive a contradiction
- Our original assumption (that the halting problem has a solution) must be false

23-50: Halting Problem

```
boolean halt(char [] program, char [] input) {
    /* code to determine if the program
        halts when run on the input */
    if (program halts on input)
        return true;
    else
        return false;
}
```


23-51: Halting Problem

```
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
```

23-52: Halting Problem

```
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
void contrary(char [] program) {
    if (selfhalt(program)
        while(true); /* infinite loop */
}
```

23-53: Halting Problem

```
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
void contrary(char [] program) {
    if (selfhalt(program)
        while(true); /* infinite loop */
}
```

- what happens when we call contrary, passing in its own source code as input?

23-54: Reduction Example

- Hamiltonian Cycle:
- Given an unweighted, undirected graph G, is there a cycle that includes every vertex exactly once?
- Traveling Salesman Problem (TSP)
- Given a complete, weighed, undirected graph G and a cost bound k, is there a cycle that incldes every vertex in G, with a cost $<k$?

23-55: Reduction Example

- If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time
- Given any graph G, we can create a new graph G^{\prime} and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G^{\prime} with cost less than k
- Vertices in G^{\prime} are the same as the vertices in G
- For each pair of vertices x_{i} and x_{j} in G, if the edge $\left(x_{i}, x_{j}\right)$ is in G, add the edge $\left(x_{i}, x_{j}\right)$ to G^{\prime} with the cost 1 . Otherwise, add the edge $\left(x_{i}, x_{j}\right)$ to G^{\prime} with the cost 2 .
- Set the limit $k=$ \# of vertices in G

23-56: Reduction Example

$$
\text { Limit }=4
$$

23-57: Reduction Example

- If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time
- Start with an instance of Hamiltonian Cycle
- Create instance of TSP
- Feed instance of TSP into TSP solver
- Use result to find solution to Hamiltonian Cycle

23-58: Reduction Example \#2

- Given any instance of the Hamiltonian Cycle Problem:
- We can (in polynomial time) create an instance of Satisfiability
- That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
- If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

23-59: Reduction Example \#2

- Given a graph G with n vertices, we will create a formula with n^{2} variables:
- $x_{11}, x_{12}, x_{13}, \ldots x_{1 n}$
$x_{21}, x_{22}, x_{23}, \ldots x_{2 n}$
...
$x_{n 1}, x_{n 2}, x_{n 3}, \ldots x_{n n}$
- Design our formula such that $x_{i j}$ will be true if and only if the i th element in a Hamiltonian Circuit of G is vertex \# j

23-60: Reduction Example \#2

- For our set of n^{2} variables $x_{i j}$, we need to write a formula that ensures that:
- For each i, there is exactly one j such that $x_{i j}=$ true
- For each j, there is exactly one i such that $x_{i j}=$ true
- If $x_{i j}$ and $x_{(i+1) k}$ are both true, then there must be a link from v_{j} to v_{k} in the graph G

23-61: Reduction Example \#2

- For each i, there is exactly one j such that $x_{i j}=$ true
- For each i in $1 \ldots n$, add the rules:
- $\left(x_{i 1}\left\|x_{i 2}\right\| \ldots \| x_{i n}\right)$
- This ensures that for each i, there is at least one j such that $x_{i j}=$ true
- (This adds n clauses to the formula)

23-62: Reduction Example \#2

- For each i, there is exactly one j such that $x_{i j}=$ true

```
for each i in 1...n
    for each j in 1...n
        for each }k\mathrm{ in 1...n j}=
            Add rule (!}\mp@subsup{x}{ij}{}||!\mp@subsup{x}{ik}{}
```

- This ensures that for each i, there is at most one j such that $x_{i j}=$ true
- (this adds a total of n^{3} clauses to the formula)

23-63: Reduction Example \#2

- If $x_{i j}$ and $x_{(i+1) k}$ are both true, then there must be a link from v_{i} to v_{k} in the graph G
for each i in $1 \ldots(n-1)$
for each j in $1 \ldots n$
for each k in $1 \ldots n$
if edge $\left(v_{j}, v_{k}\right)$ is not in the graph: Add rule $\left(!x_{i j} \|!x_{(i+1) k}\right)$
- (This adds no more than n^{3} clauses to the formula)

23-64: Reduction Example \#2

- If $x_{n j}$ and $x_{0 k}$ are both true, then there must be a link from v_{i} to v_{k} in the graph G (looping back to finish cycle)

```
for each j in 1...n
    for each k in 1...n
        if edge ( }\mp@subsup{v}{n}{},\mp@subsup{v}{0}{})\mathrm{ is not in the graph:
            Add rule (!\mp@subsup{x}{nj}{}|!!\mp@subsup{x}{0k}{})
```

- (This adds no more than n^{2} clauses to the formula)

23-65: Reduction Example \#2

- In order for this formula to be satisfied:
- For each i, there is exactly one j such that $x_{i j}$ is true
- For each j, there is exactly one i such that $x_{j i}$ is true
- if $x_{i j}$ is true, and $x_{(i+1) k}$ is true, then there is an arc from v_{j} to v_{k} in the graph G
- Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

- Exact Cover Problem
- Set of elements A
- $F \subset 2^{A}$, family of subsets
- Is there a subset of F such that each element of A appears exactly once?

23-67: More NP-Complete Problems

- Exact Cover Problem
- $A=\{a, b, c, d, e, f, g\}$
- $F=\{\{a, b, c\},\{d, e, f\},\{b, f, g\},\{g\}\}$
- Exact cover exists: $\{a, b, c\},\{d, e, f\},\{g\}$

23-68: More NP-Complete Problems

- Exact Cover Problem
- $A=\{a, b, c, d, e, f, g\}$
- $F=\{\{a, b, c\},\{c, d, e, f\},\{a, f, g\},\{c\}\}$
- No exact cover exists

23-69: More NP-Complete Problems

- Exact Cover is NP-Complete
- Reduction from Satisfiability
- Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover
- Solution to Exact Cover problem tells us solution to Satisfiability problem
- Satisfiability is NP-Complete $=i$ Exact Cover is NP-Complete

23-70: Exact Cover is NP-Complete

- Given an instance of SAT:
- $C_{1}=\left(x_{1} \vee \overline{x_{2}}\right)$
- $C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$
- $C_{3}=\left(x_{2}\right)$
- $C_{4}=\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
- Formula: $C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$
- Create an instance of Exact Cover
- Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula is satisfiable

23-71: Exact Cover is NP-Complete

$C_{1}=\left(x_{1} \vee \overline{x_{2}}\right) C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) C_{3}=\left(x_{2}\right) C_{4}=\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
$A=\left\{x_{1}, x_{2}, x_{3}, C_{1}, C_{2}, C_{3}, C_{4}, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\right\}$
$F=\left\{\left\{p_{11}\right\},\left\{p_{12}\right\},\left\{p_{21}\right\},\left\{p_{22}\right\},\left\{p_{23}\right\},\left\{p_{31}\right\},\left\{p_{41}\right\},\left\{p_{42}\right\}\right.$,
$X_{1}, f=\left\{x_{1}, p_{11}\right\}$
$X_{1}, t=\left\{x_{1}, p_{21}\right\}$
$X_{2}, f=\left\{x_{2}, p_{22}, p_{31}\right\}$
$X_{2}, t=\left\{x_{2}, p_{12}, p_{41}\right\}$
$X_{3}, f=\left\{x_{3}, p_{23}\right\}$
$X_{3}, t=\left\{x_{3}, p_{42}\right\}$
$\left.\left\{C_{1}, p_{11}\right\},\left\{C_{1}, p_{12}\right\},\left\{C_{2}, p_{21}\right\},\left\{C_{2}, p_{22}\right\},\left\{C_{2}, p_{23}\right\},\left\{C_{3}, p_{31}\right\},\left\{C_{4}, p_{41}\right\},\left\{C_{4}, p_{422}\right\}\right\}$ 23-72: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
- Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-73: Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
- Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-74: Directed Hamiltonian Cycle

- The Directed Hamiltonian Cycle problem is NP-Complete
- Reduce Exact Cover to Directed Hamiltonian Cycle
- Given any set A, and family of subsets F :
- Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

23-75: Directed Hamiltonian Cycle

- Widgets:
- Consider the following graph segment:

- If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow$ $v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ - but not both (why)?

23-76: Directed Hamiltonian Cycle

- Widgets:
- XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

23-77: Directed Hamiltonian Cycle

- Widgets:
- XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

23-78: Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)
a_{3}

$$
\begin{aligned}
& \mathrm{F}_{1}=\left\{a_{1}, a_{2}\right\} \\
& \mathrm{F}_{2}=\left\{a_{3}\right\} \\
& \mathrm{F}_{3}=\left\{a_{2}, a_{3}\right\}
\end{aligned}
$$

$a_{2} O$
$a_{1} O$
$a_{0} \quad O$

23-79: Directed Hamiltonian Cycle

- Add a vertex for every subset F (+ 1 extra)
$\mathrm{a}_{3} \mathrm{O}$
O F_{0}

$$
\begin{aligned}
& \mathrm{F}_{1}=\left\{a_{1}, a_{2}\right\} \\
& \mathrm{F}_{2}=\left\{a_{3}\right\} \\
& \mathrm{F}_{3}=\left\{a_{2}, a_{3}\right\}
\end{aligned}
$$

$a_{1} \quad 0$
O $\quad \mathrm{F}_{2}$
$\mathrm{a}_{0} \mathrm{O} \quad \mathrm{O} \quad \mathrm{F}_{3}$

23-80: Directed Hamiltonian Cycle

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable
$\mathrm{a}_{3} \mathrm{O} \longrightarrow \mathrm{O} \mathrm{F}_{0}$

$$
\begin{aligned}
& F_{1}=\left\{a_{1}, a_{2}\right\} \\
& F_{2}=\left\{a_{3}\right\} \\
& F_{3}=\left\{a_{2}, a_{3}\right\}
\end{aligned}
$$

$a_{2} \quad 0$
○ F_{1}
$a_{1} \quad 0$

- F_{2}

F_{3}

23-81: Directed Hamiltonian Cycle

- Add 2 edges from F_{i} to F_{i+1}. One edge will be a "short edge", and one will be a "long edge".

23-82: Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_{i} for each subset a_{i} appears in.

23-83: Directed Hamiltonian Cycle

- Each edge $\left(a_{i-1}, a_{i}\right)$ corresponds to some subset that contains a_{i}. Add an XOR link between this edge and the long edge of the corresponding subset

23-84: Directed Hamiltonian Cycle

23-85: Directed Hamiltonian Cycle

