23-0: Hard Problems

- Some algorithms take exponential time
 - Simple version of Fibonacci
 - Faster versions of Fibonacci that take linear time
- Some *Problems* take exponential time
 - All algorithms that solve the problem take exponential time
 - Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

23-2: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 1

23-3: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 2
23-4: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 3
23-5: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 4
23-6: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 5
23-7: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

• Move one disk at a time

• Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

• Move one disk at a time

• Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 15

• Moving n disks requires $2^n - 1$ moves

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 15

- Moving n disks requires $2^n 1$ moves
- $\bullet\,$ Completely impractical for large values of n

23-19: Reductions

• A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2

- Given an instance of Problem 1, create an instance of Problem 2
- Solve the instance of Problem 2
- Use the solution of Problem 2 to create a solution to Problem 1

23-20: Reductions

- Example Problem: Pairing
 - Given two lists of integers of size n
 - Match the smallest element of each list together
 - Match the second smallest element of each list together
 - .. etc.

23-21: Reductions

13		30
21		14
5		26
47		19
93		87
25		54
14		23
6		11
12		8

List 1

List 2

23-22: Reductions

23-23: Reductions

- Reduction from Pairing to Sorting
 - Can we reduce the pairing problem to a sorting problem
 - That is, how can we use the sorting problem to solve the pairing problem?

23-24: Reductions

- Reduction from Pairing to Sorting
 - Lets us solve the Pairing problem by solving Sorting problem

- Given any two lists L1 and L2 that we wish to pair:
 - Sort L1 and L2
 - Pair L1[i] with L2[i] for all i

23-25: Reductions

- Reduction from Pairing to Sorting
 - Reduction takes very little time
 - Time to solve Pairing (using this reduction) is the time to solve Sorting
 - We can solve Pairing in time $O(n \lg n)$ using sorting.

23-26: Reductions

- Reduction from Sorting to Pairing
 - Given an instance of Sorting, create an instance of pairing problem
 - Solve the paring problem
 - Use the solution of pairing problem to solve the sorting problem

23-27: Reductions

- Given an list L1:
 - Create a new list L2, such that L2[i] = i
 - Solve the paring problem, pairing L1 and L2
 - Use counting sort to sort L1, using the paired element from L2 as the key

23-28: Reductions

- Given an list L1:
 - Create a new list L2, such that L2[i] = i
 - Solve the paring problem, pairing L1 and L2
 - Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take? 23-29: **Reductions**

- Given an list L1:
 - Create a new list L2, such that L2[i] = i
 - Solve the paring problem, pairing L1 and L2
 - Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take?

• O(n + time to do pairing)

23-30: Reductions

• We can reduce Sorting to Pairing, such that:

- Time to do Sorting takes O(n + time to do pairing)
- Sorting takes $\Omega(n \lg n)$ time
- Thus, the pairing problem must take at least $\Omega(n \lg n)$ time as well

23-31: Reductions

- We can use a Reduction to compare problems
- If there is a reduction from problem A to problem B that can be done quickly
- Problem A is known to be hard (cannot be solved quickly)
- Problem B cannot be solved quickly, either

23-32: NP Problems

- A problem is NP if a solution can be verified easily
 - Given a potential solution to the problem, verify that the solution does solve the problem
 - Verification takes polynomial (not exponential!) time
 - (Pretty low bar for "easily")

23-33: NP Problems

- A problem is NP if a solution can be verified easily
 - Traveling Salesman Problem (TSP)
 - \bullet Given a graph with weighted vertices, and a cost bound k
 - Is there a cycle that contains all vertices in the graph, that has a total cost less than k?
 - Given any potential solution to the TSP, we can easily verify that the solution is correct

23-34: NP Problems

- A problem is NP if a solution can be verified easily
 - Graph Coloring
 - Given a graph and a number of colors k
 - Can we color every vertex using no more than k colors, such that all adjacent vertices have different colors?
 - Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct

23-35: NP Problems

- A problem is NP if a solution can be verified easily
 - Satisfiability
 - Given a boolean formula over a set of boolean variables $a_1 \dots a_n$ $(a_1 || !a_2) \& \& (a_2 || a_5 || !a_1) \& \& \dots$
 - Can we give a truth value to all variables $a_1 \dots a_n$ so that the value of the formula is true?
 - Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct

23-36: NP Problems

- A problem is NP if a solution can be verified easily
 - Sorting
 - Given a list of elements L and an ordering of the elements \leq
 - Create a permutation of L such that $L[i] \leq L[i+1]$
 - Given any potential solution to the Sorting problem, we can easily verify that the solution is correct

23-37: NP Problems

- If we can guess an answer, we can verify it quickly
- NP stands for Non-Deterministic Polynomial
 - Non-Deterministic = we can guess
 - Polynomial = "quickly"
- NP problem: If we could guess an answer, we could verify it in polynomial $(n, n^2, n^5$ not exponential) time

23-38: Non-Deterministic Machine

- Two Definitions of Non-Deterministic Machines:
 - "Oracle" allows machine to magically make a correct guess
 - Massively parallel simultaneously try to verify all possible solutions
 - Try all permutations of vertices in a graph, see if any form a cycle with cost; k
 - $\bullet\,$ Try all colorings of a graph with up to k colors, see if any are legal
 - Try all permutations of a list, see if any are sorted

23-39: NP vs. P

- A problem is NP if a non-deterministic machine can solve it in polynomial time
 - Of course, we have no real non-deterministic machines
- A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
 - Sorting is in P can sort a list in polynomial time
 - All problems in P are also in NP
 - Ignore the oracle

23-40: **NP-Complete**

- An NP problem is "NP-Complete" if there is a reduction from any NP problem to that problem
- For example, Traveling Salesman (TSP) is NP-Complete
 - We can reduce any NP problem to TSP
 - If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time
- Is TSP unique in this way?

23-41: **NP-Complete**

- There are many NP-Complete problems
 - TSP
 - Graph Coloring
 - Satisfiability
 - .. many, many more
- If we could solve any of these problems quickly, we could solve all of them quickly
- All known solutions take exponential time

23-42: NP-Complete

- If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)
 - If it could, then all NP problems could be solved quickly
 - Many people have tried for many years to find polynomial solutions for NP complete problems, all have failed
- However, no proof that NP-Complete problems require exponential time open problem

23-43: **NP =? P**

- If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly
- If that is the case, then NP=P
 - P is set of problems that can be solved by a standard machine in polynomial time
- Most everyone believes that NP ≠ P, and all NP-Complete problems require exponential time on standard computers not yet been proven

23-44: NP-Completeness

- Why is NP-Completeness important?
 - If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it
 - What can we do, if we need to solve a problem that is NP-Complete?

23-45: NP-Completeness

- What can we do, if we need to solve a problem that is NP-Complete?
 - If the problem we need to solve is very small (; 20), an exponential solution might be OK
 - We can solve an *approximation* of the problem
 - Color a graph using an non-optimal number of colors
 - Find a Traveling Salesman tour that is not optimal

23-46: Impossible Problems

• Some problems are "easy" – require a fairly small amount of time to solve

- Sorting
- Some problems are "probably hard" believed to require exponential time to solve
 - TSP, Graph Coloring, etc
- Some problems are "hard" known to require an exponential amount of time to solve
 - · Towers of Hanoi
- Some problems are impossible *cannot* be solved

23-47: Halting Problem

- Program is running seems to be taking a long time
- We'd like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
 - Takes as input the source code to a program p, and an input i
 - ullet Determines if p will run forever when run on i

23-48: Halting Problem

- Program is running seems to be taking a long time
- We'd like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
 - ullet Takes as input the source code to a program p, and an input i
 - Determines if p will run forever when run on i
- No such tool can exist!

23-49: Halting Problem

- We will prove that the halting problem is unsolvable by contradiction
 - Assume that we have a solution to the halting problem
 - Derive a contradiction
 - Our original assumption (that the halting problem has a solution) must be false

23-50: Halting Problem

```
boolean halt(char [] program, char [] input) {
    /* code to determine if the program
        halts when run on the input */

    if (program halts on input)
        return true;
    else
        return false;
}
```

23-51: Halting Problem

```
boolean selfhalt(char [] program) {
    if (halt(program, program))
         return true;
    else
         return false;
}
23-52: Halting Problem
boolean selfhalt(char [] program) {
    if (halt(program, program))
         return true;
    else
         return false;
}
void contrary(char [] program) {
    if (selfhalt(program)
       while(true); /* infinite loop */
23-53: Halting Problem
boolean selfhalt(char [] program) {
    if (halt(program, program))
         return true;
    else
        return false;
}
void contrary(char [] program) {
    if (selfhalt(program)
       while(true); /* infinite loop */
}
```

• what happens when we call contrary, passing in its own source code as input?

23-54: Reduction Example

- Hamiltonian Cycle:
 - Given an unweighted, undirected graph G, is there a cycle that includes every vertex exactly once?
- Traveling Salesman Problem (TSP)
 - Given a complete, weighed, undirected graph G and a cost bound k, is there a cycle that incldes every vertex in G, with a cost < k?

23-55: Reduction Example

• If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time

- Given any graph G, we can create a new graph G' and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G' with cost less than k
- Vertices in G' are the same as the vertices in G
- For each pair of vertices x_i and x_j in G, if the edge (x_i, x_j) is in G, add the edge (x_i, x_j) to G' with the cost 1. Otherwise, add the edge (x_i, x_j) to G' with the cost 2.
- Set the limit k = # of vertices in G

23-56: Reduction Example

Limit = 4

23-57: Reduction Example

- If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time
 - Start with an instance of Hamiltonian Cycle
 - Create instance of TSP
 - Feed instance of TSP into TSP solver
 - Use result to find solution to Hamiltonian Cycle

23-58: Reduction Example #2

- Given any instance of the Hamiltonian Cycle Problem:
 - We can (in polynomial time) create an instance of Satisfiability
 - That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
- If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

23-59: Reduction Example #2

• Given a graph G with n vertices, we will create a formula with n^2 variables:

•
$$x_{11}, x_{12}, x_{13}, \dots x_{1n}$$

 $x_{21}, x_{22}, x_{23}, \dots x_{2n}$
 \dots
 $x_{n1}, x_{n2}, x_{n3}, \dots x_{nn}$

• Design our formula such that x_{ij} will be true if and only if the *i*th element in a Hamiltonian Circuit of G is vertex # j

23-60: Reduction Example #2

- For our set of n^2 variables x_{ij} , we need to write a formula that ensures that:
 - For each i, there is exactly one j such that x_{ij} = true
 - For each j, there is exactly one i such that x_{ij} = true
 - If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_j to v_k in the graph G

23-61: Reduction Example #2

- For each i, there is exactly one j such that x_{ij} = true
 - For each i in $1 \dots n$, add the rules:
 - $(x_{i1}||x_{i2}||\dots||x_{in})$
- This ensures that for each i, there is at least one j such that x_{ij} = true
- \bullet (This adds n clauses to the formula)

23-62: Reduction Example #2

• For each i, there is exactly one j such that x_{ij} = true

```
for each i in 1 \dots n
for each j in 1 \dots n
for each k in 1 \dots n j \neq k
Add rule (!x_{ij}||!x_{ik})
```

- This ensures that for each i, there is at most one j such that x_{ij} = true
- (this adds a total of n^3 clauses to the formula)

23-63: Reduction Example #2

• If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_i to v_k in the graph G

```
for each i in 1 \dots (n-1)
for each j in 1 \dots n
for each k in 1 \dots n
if edge (v_j, v_k) is not in the graph:
Add rule (!x_{ij}||!x_{(i+1)k})
```

• (This adds no more than n^3 clauses to the formula)

23-64: Reduction Example #2

• If x_{nj} and x_{0k} are both true, then there must be a link from v_i to v_k in the graph G (looping back to finish cycle)

```
for each j in 1 \dots n
for each k in 1 \dots n
if edge (v_n, v_0) is not in the graph:
Add rule (!x_{nj}||!x_{0k})
```

• (This adds no more than n^2 clauses to the formula)

23-65: Reduction Example #2

- In order for this formula to be satisfied:
 - For each i, there is exactly one j such that x_{ij} is true
 - For each j, there is exactly one i such that x_{ji} is true
 - if x_{ij} is true, and $x_{(i+1)k}$ is true, then there is an arc from v_j to v_k in the graph G
- Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

- Exact Cover Problem
 - Set of elements A
 - $F \subset 2^A$, family of subsets
 - Is there a subset of F such that each element of A appears exactly once?

23-67: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\}\$
 - Exact cover exists: {a, b, c}, {d, e, f}, {g}

23-68: More NP-Complete Problems

- Exact Cover Problem
 - $\bullet \ A=\{a,b,c,d,e,f,g\}$
 - $F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\}$
 - No exact cover exists

23-69: More NP-Complete Problems

- Exact Cover is NP-Complete
 - Reduction from Satisfiability
 - Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover
 - Solution to Exact Cover problem tells us solution to Satisfiability problem
 - Satisfiability is NP-Complete =; Exact Cover is NP-Complete

23-70: Exact Cover is NP-Complete

- Given an instance of SAT:
 - $C_1 = (x_1 \vee \overline{x_2})$
 - $C_2 = (\overline{x_1} \vee x_2 \vee x_3)$

- $C_3 = (x_2)$
- $C_4 = (\overline{x_2} \vee \overline{x_3})$
- Formula: $C_1 \wedge C_2 \wedge C_3 \wedge C_4$
- Create an instance of Exact Cover
 - Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula
 is satisfiable

23-71: Exact Cover is NP-Complete

```
C_1 = (x_1 \vee \overline{x_2}) \ C_2 = (\overline{x_1} \vee x_2 \vee x_3) \ C_3 = (x_2) \ C_4 = (\overline{x_2} \vee \overline{x_3}) A = \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\} F = \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}, \{p_{42}\},
```

- Given any directed graph G, determine if G has a a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-73: Directed Hamiltonian Cycle

- ullet Given any directed graph G, determine if G has a a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-74: Directed Hamiltonian Cycle

- The Directed Hamiltonian Cycle problem is NP-Complete
- Reduce Exact Cover to Directed Hamiltonian Cycle
 - Given any set A, and family of subsets F:
 - ullet Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

23-75: Directed Hamiltonian Cycle

- Widgets:
 - Consider the following graph segment:

• If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \to u \to v \to w \to b$ or $c \to w \to v \to u \to d$ – but not both (why)?

23-76: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

23-77: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

23-78: Directed Hamiltonian Cycle

• Add a vertex for every variable in A (+ 1 extra)

 a_3 O

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_2, a_3\}$

 a_2 O

 a_1 O

a₀ O

23-79: Directed Hamiltonian Cycle

• Add a vertex for every subset F (+ 1 extra)

 a_3 O

 $O F_0$

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_2, a_3\}$

 a_2 O

O F_1

 a_1 O

O F_2

 a_0 O

O F_3

23-80: Directed Hamiltonian Cycle

• Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

$$a_3 \circ F_0$$

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$

 $F_3 = \{a_2, a_3\}$

O F_1

o F_2

23-81: Directed Hamiltonian Cycle

• Add 2 edges from F_i to F_{i+1} . One edge will be a "short edge", and one will be a "long edge".

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_2, a_3\}$

23-82: Directed Hamiltonian Cycle

0 •

• Add an edge from a_{i-1} to a_i for **each** subset a_i appears in.

 F_3

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_2, a_3\}$

23-83: Directed Hamiltonian Cycle

• Each edge (a_{i-1}, a_i) corresponds to some subset that contains a_i . Add an XOR link between this edge and the long edge of the corresponding subset

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_3, a_3\}$

23-84: Directed Hamiltonian Cycle

$$F_1 = \{a_1, a_2\}$$

 $F_2 = \{a_3\}$
 $F_3 = \{a_3, a_3\}$

23-85: Directed Hamiltonian Cycle

$$F_{1} = \{a_{2}, a_{4}\}$$

$$F_{2} = \{a_{2}, a_{4}\}$$

$$F_{3} = \{a_{1}, a_{3}\}$$

$$F_{4} = \{a_{2}\}$$