
Data Structures and Algorithms
CS245-2017S-04

Stacks and Queues

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

04-0: Abstract Data Types

An Abstract Data Type is a definition of a type
based on the operations that can be performed on
it.

An ADT is an interface

Data in an ADT cannot be manipulated directly –
only through operations defined in the interface

04-1: Abstract Data Types

To define an ADT, give the operations that can be
performed on it

The ADT says nothing about how the operations
are performed

Could have different implementations of the same
ADT

First ADT for thie class: Stack

04-2: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

Add an element to the top of the stack

Remove the top element

Check if the stack is empty

04-3: Stack Implementation

Array:

04-4: Stack Implementation

Array:

Stack elements are stored in an array

Top of the stack is the end of the array

If the top of the stack was the beginning of the
array, a push or pop would require moving all
elements in the array

Push: data[top++] = elem

Pop: elem = data[--top]

04-5: Stack Implementation

See code & Visualizaion

04-6: Θ() For Stack Operations

Array Implementation:

push

pop

empty()

04-7: Θ() For Stack Operations

Array Implementation:

push Θ(1)

pop Θ(1)

empty() Θ(1)

04-8: Stack Implementation

Linked List:

04-9: Stack Implementation

Linked List:

Stack elements are stored in a linked list

Top of the stack is the front of the linked list

push: top = new Link(elem, top)

pop: elem = top.element(); top = top.next()

04-10: Stack Implementation

See code & Visualization

04-11: Θ() For Stack Operations

Linked List Implementation:

push

pop

empty()

04-12: Θ() For Stack Operations

Linked List Implementation:

push Θ(1)

pop Θ(1)

empty() Θ(1)

04-13: Queue

A Queue is a First-In, First-Out (FIFO) data structure.

Queue Operations:

Add an element to the end (tail) of the Queue

Remove an element from the front (head) of the
Queue

Check if the Queue is empty

04-14: Queue Implementation

Linked List:

04-15: Queue Implementation

Linked List:

Maintain a pointer to the first and last element in
the Linked List

Add elements to the back of the Linked List

Remove elements from the front of the linked list

Enqueue: tail.setNext(new link(elem,null));

tail = tail.next()

Dequeue: elem = head.element();

head = head.next();

04-16: Queue Implementation

See code & visualization

04-17: Queue Implementation

Array:

04-18: Queue Implementation

Array:

Store queue elements in a circular array

Maintain the index of the first element (head) and
the next location to be inserted (tail)

Enqueue: data[tail] = elem;

tail = (tail + 1) % size

Dequeue: elem = data[head];

head = (head + 1) % size

04-19: Queue Implementation

Se code & visualization

04-20: Modifying Stacks

“Minimum Stacks” have one additional operation:

minimum: return the minimum value stored in the
stack

Can you implement a O(n) minimum?

04-21: Modifying Stacks

“Minimum Stacks” have one additional operation:

minimum: return the minimum value stored in the
stack

Can you implement a O(n) minimum?

Can you implement a Θ(1) minimum?

push, pop must remain Θ(1) as well!

04-22: Modifying Queues

We’d like our array-based queues and our linked
list-based queues to behave in the same way

How do they behave differently, given the
implementation we’ve seen so far?

04-23: Modifying Queues

We’d like our array-based queues and our linked
list-based queues to behave in the same way

How do they behave differently, given the
implementation we’ve seen so far?

Array-based queues can get full

How can we fix this?

04-24: Modifying Queues

Growing queues

If we do a Enqueue on a full queue, we can:
Create a new array, that is twice as big as the
old array
Copy all of the data across to the new array
Replace the old array with a new array

Why is this a little tricky?

04-25: Modifying Queues

Growing queues

If we do a Enqueue on a full queue, we can:
Create a new array, that is twice as big as the
old array
Copy all of the data across to the new array
Replace the old array with a new array

Why is this a little tricky?
Queue could wrap around the end of the
array (examples!)

04-26: Modifying Queues

Growing stacks/queues

Why do we double the size of the queue when it
gets full, instead of just increasing the size by a
constant amount

Hint – think about running times

04-27: Modifying Queues

Growing stacks/queues

What is the running time for a single
enqueue/push, if we allow the stack to grow?
(by doubling the size of the stack/queue when it
is full)

What is the running time for n
enqueues/pushes?

04-28: Modifying Queues

Growing stacks/queues

What is the running time for a single
enqueue/push, if we allow the stack to grow?
(by doubling the size of the stack/queue when it
is full)
O(n), for a stack size of n

What is the running time for n
enqueues/pushes?
O(n) – so each push/enqueue takes O(1) on
average

04-29: Modifying Queues

Growing stacks/queues

What is the running time for a single
enqueue/push, if we allow the stack to grow?
(by adding k elements when the stack/queue is
full)

What is the running time for n
enqueues/pushes?

04-30: Modifying Queues

Growing stacks/queues

What is the running time for a single
enqueue/push, if we allow the stack to grow?
(by adding k elements when the stack/queue is
full)
O(n), for a sack size of n

What is the running time for n
enqueues/pushes?

O(n ∗ n/k) = O(n2), if k is a constant

Each enqueue/dequeue takes time O(n) on
average!

04-31: Amortized Analysis

Figuring out how long an algorithm takes to run on
average, by adding up how long a sequence of
operations takes, is called Amortized Analysis

Washing Machine example

Cost of a washing machine

Amortized cost per wash

We’ll take quite a bit about amortized analysis,
complete with some more formal mathematics,
later in the semester.

	{small lecturenumber -	heblocknumber :} Abstract Data Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Abstract Data Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Stack Operations addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Stack Operations addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Stack Operations addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Stack Operations addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queueaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Queue Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Stacksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Stacksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modifying Queuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}

