Data Structures and Algorithms CS245-2017S-04

 Stacks and Queues

 Stacks and Queues}

David Galles

Department of Computer Science
University of San Francisco

04-0: Abstract Data Types

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an interface
- Data in an ADT cannot be manipulated directly only through operations defined in the interface

04-1: Abstract Data Types

- To define an ADT, give the operations that can be performed on it
- The ADT says nothing about how the operations are performed
- Could have different implementations of the same ADT
- First ADT for thie class: Stack

04-2: Stack

A Stack is a Last-In, First-Out (LIFO) data structure. Stack Operations:

- Add an element to the top of the stack
- Remove the top element
- Check if the stack is empty

04-3: Stack Implementation

Array:

04-4: Stack Implementation

Array:

- Stack elements are stored in an array
- Top of the stack is the end of the array
- If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: data[top++] = elem
- Pop: elem = data[--top]

04-5: Stack Implementation

- See code \& Visualizaion

04-6: $\Theta()$ For Stack Operations

Array Implementation:
push
pop
empty()

04-7: $\Theta()$ For Stack Operations

Array Implementation:
push $\quad \Theta(1)$
pop $\quad \Theta(1)$
empty() $\Theta(1)$

04-8: Stack Implementation

Linked List:

04-9: Stack Implementation

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the front of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()

04-10: Stack Implementation

- See code \& Visualization

04-11: $\Theta()$ For Stack Operations

Linked List Implementation: push pop empty()

04-12: $\Theta()$ For Stack Operations

Linked List Implementation:
push $\quad \Theta(1)$
pop $\quad \Theta(1)$
empty() $\Theta(1)$

04-13: Queue

A Queue is a First-In, First-Out (FIFO) data structure.
Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty

04-14: Queue Implementation

Linked List:

04-15: Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
- Enqueue: tail.setNext(new link(elem,null)); tail = tail.next()

Dequeue: elem = head.element(); head = head.next();

04-16: Queue Implementation

- See code \& visualization

04-17: Queue Implementation

Array:

04-18: Queue Implementation

Array:

- Store queue elements in a circular array
- Maintain the index of the first element (head) and the next location to be inserted (tail)

Enqueue: data[tail] = elem;
tail = (tail + 1) \% size

Dequeue: elem = data[head]; head $=($ head +1$) \%$ size

04-19: Queue Implementation

- Se code \& visualization

04-20: Modifying Stacks

"Minimum Stacks" have one additional operation:

- minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?

04-21: Modifying Stacks

"Minimum Stacks" have one additional operation:

- minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?
Can you implement a $\Theta(1)$ minimum? push, pop must remain $\Theta(1)$ as well!

04-22: Modifying Queues

- We'd like our array-based queues and our linked list-based queues to behave in the same way
- How do they behave differently, given the implementation we've seen so far?

04-23: Modifying Queues

- We'd like our array-based queues and our linked list-based queues to behave in the same way
- How do they behave differently, given the implementation we've seen so far?
- Array-based queues can get full
- How can we fix this?

04-24: Modifying Queues

- Growing queues
- If we do a Enqueue on a full queue, we can:
- Create a new array, that is twice as big as the old array
- Copy all of the data across to the new array
- Replace the old array with a new array
- Why is this a little tricky?

04-25: Modifying Queues

- Growing queues
- If we do a Enqueue on a full queue, we can:
- Create a new array, that is twice as big as the old array
- Copy all of the data across to the new array
- Replace the old array with a new array
- Why is this a little tricky?
- Queue could wrap around the end of the array (examples!)

04-26: Modifying Queues

- Growing stacks/queues
- Why do we double the size of the queue when it gets full, instead of just increasing the size by a constant amount
- Hint - think about running times

04-27: Modifying Queues

- Growing stacks/queues
- What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)
- What is the running time for n enqueues/pushes?

04-28: Modifying Queues

- Growing stacks/queues
- What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)
- $O(n)$, for a stack size of n
- What is the running time for n enqueues/pushes?
- $O(n)$ - so each push/enqueue takes $O(1)$ on average

04-29: Modifying Queues

- Growing stacks/queues
- What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements when the stack/queue is full)
- What is the running time for n enqueues/pushes?

04-30: Modifying Queues

- Growing stacks/queues
- What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements when the stack/queue is full)
- $O(n)$, for a sack size of n
- What is the running time for n enqueues/pushes?
- $O(n * n / k)=O\left(n^{2}\right)$, if k is a constant
- Each enqueue/dequeue takes time $O(n)$ on average!

04-31: Amortized Analysis

- Figuring out how long an algorithm takes to run on average, by adding up how long a sequence of operations takes, is called Amortized Analysis
- Washing Machine example
- Cost of a washing machine
- Amortized cost per wash
- We'll take quite a bit about amortized analysis, complete with some more formal mathematics, later in the semester.

