Data Structures and Algorithms CS245-2017S-06

 Binary Search Trees

 Binary Search Trees}

David Galles

Department of Computer Science
University of San Francisco

06-0: Ordered List ADT

Operations:

- Insert an element in the list
- Check if an element is in the list
- Remove an element from the list
- Print out the contents of the list, in order

06-1: Implementing Ordered List

Using an Ordered Array - Running times:
Check
Insert
Remove
Print

06-2: Implementing Ordered List

Using an Ordered Array - Running times:
$\begin{array}{ll}\text { Check } & \Theta(\lg n) \\ \text { Insert } & \Theta(n) \\ \text { Remove } & \Theta(n) \\ \text { Print } & \Theta(n)\end{array}$

06-3: Implementing Ordered List

Using an Unordered Array - Running times:
Check
Insert
Remove
Print

06-4: Implementing Ordered List

Using an Unordered Array - Running times:
$\begin{array}{ll}\text { Check } & \Theta(n) \\ \text { Insert } & \Theta(1) \\ \text { Remove } & \Theta(n) \text { Need to find element first! } \\ \text { Print } & \Theta(n \lg n) \\ & \text { (Given a fast sorting algorithm) }\end{array}$

06-5: Implementing Ordered List

Using an Ordered Linked List - Running times:
Check
Insert
Remove
Print

06-6: Implementing Ordered List

Using an Ordered Linked List - Running times:

Check	$\Theta(n)$
Insert	$\Theta(n)$
Remove	$\Theta(n)$
Print	$\Theta(n)$

06-7: The Best of Both Worlds

- Linked Lists - Insert fast / Find slow
- Arrays - Find fast / Insert slow
- The only way to examine nth element in a linked list is to traverse ($\mathrm{n}-1$) other elements

- If we could leap to the middle of the list ...

06-8: The Best of Both Worlds

06-9: The Best of Both Worlds

Move the initial pointer to the middle of the list:

We've cut our search time in half! Have we changed the $\Theta()$ running time?

06-10: The Best of Both Worlds

Move the initial pointer to the middle of the list:

We've cut our search time in half! Have we changed the $\Theta()$ running time?
Repeat the process!

06-11: The Best of Both Worlds

06-12: The Best of Both Worlds

Grab the first element of the list:

Give it a good shake -

06-13: Binary Trees

Binary Trees are Recursive Data Structures

- Base Case: Empty Tree
- Recursive Case: Node, consiting of:
- Left Child (Tree)
- Right Child (Tree)
- Data

06-14: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)

06-15: Tree Terminology

- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node n
- Length of path from root to n
- Height of a tree
- (Depth of deepest node) + 1

06-16: Full Binary Tree

- Each node has 0 or 2 children
- Full Binary Trees

- Not Full Binary Trees

06-17: Complete Binary Tree

- Can be built by starting at the root, and filling the tree by levels from left to right
- Complete Binary Trees

- Not Complete Binary Trees

06-18: Binary Search Trees

- Binary Trees
- For each node n , (value stored at node n) \geq (value stored in left subtree)
- For each node n, (value stored at node n) < (value stored in right subtree)

06-19: Example Binary Search Trees

06-20: Implementing BSTs

- Each Node in a BST is implemented as a class:
public class Node \{
public Comparable data;
public Node left; public Node right;

06-21: Implementing BSTs

```
public class Node {
    public Node(Comparable data, Node left, Node right) {
    this.data = data;
    this.left = left;
    this.right = right;
}
public Node left() {
    return left;
}
public Node setLeft(Node newLeft) {
    left = newLeft
}
... (etc)
private Comparable data;
private Node left;
private Node right;
}
```


06-22: Finding an Element in a BST

- Binary Search Trees are recursive data structures, so most operations on them will be recursive as well
- Recall how to write a recursive algorithm ...

06-23: Writing a Recursive Algorithm

- Determine a small version of the problem, which can be solved immediately. This is the base case
- Determine how to make the problem smaller
- Once the problem has been made smaller, we can assume that the function that we are writing will work correctly on the smaller problem (Recursive Leap of Faith)
- Determine how to use the solution to the smaller problem to solve the larger problem

06-24: Finding an Element in a BST

- First, the Base Case - when is it easy to determine if an element is stored in a Binary Search Tree?

06-25: Finding an Element in a BST

- First, the Base Case - when is it easy to determine if an element is stored in a Binary Search Tree?
- If the tree is empty, then the element can't be there
- If the element is stored at the root, then the element is there

06-26: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?

06-27: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?

06-28: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.

06-29: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?

06-30: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?
- The solution to the subproblem is the solution to the original problem (this is not always the case in recursive algorithms)

06-31: Finding an Element in a BST

To find an element e in a Binary Search Tree T :

- If T is empty, then e is not in T
- If the root of T contains e, then e is in T
- If $e<$ the element stored in the root of T :
- Look for e in the left subtree of T

Otherwise

- Look for e in the right subtree of T

06-32: Finding an Element in a BST

boolean find(Node tree, Comparable elem) \{ if (tree == null)
return false;
if (elem.compareTo(tree.element()) == 0) return true;
if (elem. compareTo(tree) < 0) return find(tree.left(), elem); else return find(tree.right(), elem); \}

06-33: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order

06-34: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order
- Each subproblem is a smaller version of the original problem - we can assume that a recursive call will work!

06-35: Printing out a BST

- What is the base case for printing out a Binary Search Tree - what is an easy tree to print out?

06-36: Printing out a BST

- What is the base case for printing out a Binary Search Tree - what is an easy tree to print out?
- An empty tree is extremely easy to print out - do nothing!
- Code for printing a BST ...

06-37: Printing out a BST

void print(Node tree) \{

if (tree != null) \{ print(tree.left()); System.out. println(tree.element()); print(tree.right());

\}

\}

06-38: Printing out a BST

Examples

06-39: Tree Traversals

- PREORDER Traversal
- Do operation on root of the tree
- Traverse left subtree
- Traverse right subtree
- INORDER Traversal
- Traverse left subtree
- Do operation on root of the tree
- Traverse right subtree
- POSTORDER Traversal
- Traverse left subtree
- Traverse right subtree
- Do operation on root of the tree

06-40: PREORDER Examples

06-41: POSTORDER Examples

06-42: INORDER Examples

06-43: BST Minimal Element

To find the minimal element in a BST:

- Base Case: When is it easy to find the smallest element in a BST?
- Recursive Case: How can we make the problem smaller?

How can we use the solution to the smaller problem to solve the original problem?

06-44: BST Minimal Element

To find the minimal element in a BST: Base Case:

- When is it easy to find the smallest element in a BST?

06-45: BST Minimal Element

To find the minimal element in a BST: Base Case:

- When is it easy to find the smallest element in a BST?
- When the left subtree is empty, then the element stored at the root is the smallest element in the tree.

06-46: BST Minimal Element

To find the minimal element in a BST: Recursive Case:

- How can we make the problem smaller?

06-47: BST Minimal Element

To find the minimal element in a BST: Recursive Case:

- How can we make the problem smaller?
- Both the left and right subtrees are smaller versions of the same problem
- How can we use the solution to a smaller problem to solve the original problem?

06-48: BST Minimal Element

To find the minimal element in a BST: Recursive Case:

- How can we make the problem smaller?
- Both the left and right subtrees are smaller versions of the same problem
- How can we use the solution to a smaller problem to solve the original problem?
- The smallest element in the left subtree is the smallest element in the tree

06-49: BST Minimal Element

Comparable minimum(Node tree) \{ if (tree == null)
return null;
if (tree.left() == null) return tree.element();
else return minimum(tree.left());
\}

06-50: BST Minimal Element

Iterative Version
Comparable minimum(Node tree) \{
if (tree == null)
return null;
while (tree.left() ! = null)
tree $=$ tree.left();
return tree.element();
\}

06-51: Inserting e into BST T

- What is the base case - an easy tree to insert an element into?

06-52: Inserting e into BST T

- What is the base case - an easy tree to insert an element into?
- An empty tree
- Create a new tree, containing the element e

06-53: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?

06-54: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?
- The left and right subtrees are smaller versions of the same problem.
- How do we use these smaller versions of the problem?

06-55: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?
- The left and right subtrees are smaller versions of the same problem
- Insert the element into the left subtree if $e \leq$ value stored at the root, and insert the element into the right subtree if $e>$ value stored at the root

06-56: Inserting e into BST T

- Base case $-T$ is empty:
- Create a new tree, containing the element e
- Recursive Case:
- If e is less than the element at the root of T, insert e into left subtree
- If e is greater than the element at the root of T, insert e into the right subtree

06-57: Tree Manipulation in Java

- Tree manipulation functions return trees
- Insert method takes as input the old tree and the element to insert, and returns the new tree, with the element inserted
- Old value (pre-insertion) of tree will be destroyed
- To insert an element e into a tree T:
- T = insert (T, e);

06-58: Inserting e into BST T

Node insert(Node tree, Comparable elem) \{ if (tree == null) \{ return new Node(elem);
if (elem.compareTo(tree.element() <= 0)) \{ tree.setLeft(insert(tree.left(), elem)); return tree;
\} else \{
tree.setRight(insert(tree.right(), elem)); return tree;
\}
\}

06-59: Deleting From a BST

- Removing a leaf:

06-60: Deleting From a BST

- Removing a leaf:
- Remove element immediately

06-61: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:

06-62: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child

06-63: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child
- Removing a node with two children:

06-64: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child
- Removing a node with two children:
- Replace node with largest element in left subtree, or the smallest element in the right subtree

06-65: Comparable vs. .key() method

- We have been storing "Comparable" elements in BSTs
- Alternately, could use a "key()" method - elements stored in BSTs must implement a key() method, which returns an integer.
- We can combine the two methods
- Each element stored in the tree has a key() method
- key() method returns Comparable class

06-66: BST Implementation Details

- Use BSTs to implement Ordered List ADT
- Operations
- Insert
- Find
- Remove
- Print in Order
- The specification (interface) should not specify an implementation
- Allow several different implementations of the same interface

06-67: BST Implementation Details

- BST functions require the root of the tree be sent in as a parameter
- Ordered list functions should not contain implementation details!
- What should we do?

06-68: BST Implementation Details

- BST functions require the root of the tree be sent in as a parameter
- Ordered list functions should not contain implementation details!
- What should we do?
- Private variable, holds root of the tree
- Private recursive methods, require root as an argument
- Public methods call private methods, passing in private root

