Data Structures and Algorithms CS245-2017S-FR Final Review

David Galles

Department of Computer Science University of San Francisco

FR-0: Big-Oh Notation

$O(f(n))$ is the set of all functions that are bound from above by $f(n) \mathrm{p}$
$T(n) \in O(f(n))$ if
$\exists c, n_{0}$ such that $T(n) \leq c * f(n)$ when $n>n_{0}$

fr-1: Big-Oh Examples

$$
\begin{aligned}
n & \in O(n) ? \\
10 n & \in O(n) ? \\
n & \in O(10 n) ? \\
n & \in O\left(n^{2}\right) ? \\
n^{2} & \in O(n) ? \\
10 n^{2} & \in O\left(n^{2}\right) ? \\
n \lg n & \in O\left(n^{2}\right) ? \\
\ln n & \in O(2 n) ? \\
\lg n & \in O(n) ? \\
3 n+4 & \in O(n) ? \\
5 n^{2}+10 n-2 & \in O\left(n^{3}\right) ? O\left(n^{2}\right) ? O(n) ?
\end{aligned}
$$

fr-2: Big-Oh Examples

$$
\begin{aligned}
n & \in O(n) \\
10 n & \in O(n) \\
n & \in O(10 n) \\
n & \in O\left(n^{2}\right) \\
n^{2} & \notin O(n) \\
10 n^{2} & \in O\left(n^{2}\right) \\
n \lg n & \in O\left(n^{2}\right) \\
\ln n & \in O(2 n) \\
\lg n & \in O(n) \\
3 n+4 & \in O(n) \\
5 n^{2}+10 n-2 & \in O\left(n^{3}\right), \in O\left(n^{2}\right), \notin O(n) ?
\end{aligned}
$$

fr-3: Big-Oh Examples II

$$
\begin{aligned}
\sqrt{n} & \in O(n) ? \\
\lg n & \in O\left(2^{n}\right) ? \\
\lg n & \in O(n) ? \\
n \lg n & \in O(n) ? \\
n \lg n & \in O\left(n^{2}\right) ? \\
\sqrt{n} & \in O(\lg n) ? \\
\lg n & \in O(\sqrt{n}) ? \\
n \lg n & \in O\left(n^{\frac{3}{2}}\right) ? \\
n^{3}+n \lg n+n \sqrt{n} & \in O(n \lg n) ? \\
n^{3}+n \lg n+n \sqrt{n} & \in O\left(n^{3}\right) ? \\
n^{3}+n \lg n+n \sqrt{n} & \in O\left(n^{4}\right) ?
\end{aligned}
$$

fr-4: Big-Oh Examples II

$$
\begin{aligned}
\sqrt{n} & \in O(n) \\
\lg n & \in O\left(2^{n}\right) \\
\lg n & \in O(n) \\
n \lg n & \notin O(n) \\
n \lg n & \in O\left(n^{2}\right) \\
\sqrt{n} & \notin O(\lg n) \\
\lg n & \in O(\sqrt{n}) \\
n \lg n & \in O\left(n^{\frac{3}{2}}\right) \\
n^{3}+n \lg n+n \sqrt{n} & \notin O(n \lg n) \\
n^{3}+n \lg n+n \sqrt{n} & \in O\left(n^{3}\right) \\
n^{3}+n \lg n+n \sqrt{n} & \in O\left(n^{4}\right)
\end{aligned}
$$

Fr-5: Big-Oh Examples III

$$
\begin{aligned}
& f(n)= \begin{cases}n & \text { for } n \\
n^{3} & \text { for } n\end{cases} \\
& g(n)=n^{2} \\
& f(n) \in O(g(n)) ? \\
& g(n) \in O(f(n)) ? \\
& n \in O(f(n)) ? \\
& f(n) \in O\left(n^{3}\right) ?
\end{aligned}
$$

fr-6: Big-Oh Examples III

$$
\begin{aligned}
& f(n)= \begin{cases}n & \text { for } n \text { odd } \\
n^{3} & \text { for } n \text { even }\end{cases} \\
& g(n)=n^{2} \\
& f(n) \notin O(g(n)) \\
& g(n) \notin O(f(n)) \\
& n \in O(f(n)) \\
& f(n) \in O\left(n^{3}\right)
\end{aligned}
$$

FR-7: Big- Ω Notation

$\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$
$T(n) \in \Omega(f(n))$ if
$\exists c, n_{0}$ such that $T(n) \geq c * f(n)$ when $n>n_{0}$

FR-8: Big- Ω Notation

$\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$
$T(n) \in \Omega(f(n))$ if
$\exists c, n_{0}$ such that $T(n) \geq c * f(n)$ when $n>n_{0}$

$$
f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))
$$

fr-9: Big- Θ Notation

$\Theta(f(n))$ is the set of all functions that are bound both above and below by $f(n) . \Theta$ is a tight bound
$T(n) \in \Theta(f(n))$ if

$$
T(n) \in O(f(n)) \text { and } T(n) \in \Omega(f(n))
$$

FR-10: Big-Oh Rules

1. If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$
2. If $f(n) \in O(k g(n)$ for any constant $k>0$, then $f(n) \in O(g(n))$
3. If $f_{1}(n) \in O\left(g_{1}(n)\right)$ and $f_{2}(n) \in O\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n) \in O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
4. If $f_{1}(n) \in O\left(g_{1}(n)\right)$ and $f_{2}(n) \in O\left(g_{2}(n)\right)$, then $f_{1}(n) * f_{2}(n) \in O\left(g_{1}(n) * g_{2}(n)\right)$
(Also work for Ω, and hence Θ)

fr-11: Big-Oh Guidelines

- Don't include constants/low order terms in Big-Oh
- Simple statements: $\Theta(1)$
- Loops: Θ (inside) * \# of iterations
- Nested loops work the same way
- Consecutive statements: Longest Statement
- Conditional (if) statements:

O(Test + longest branch)

Fr-12: Calculating Big-Oh

for ($\mathrm{i}=1$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$)
for ($j=1$; $j<n / 2 ; j++$)
sum++;

FR-13: Calculating Big-Oh

for ($\mathrm{i}=1$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) for ($j=1$; $j<n / 2 ; j++$) sum++;

Executed n times Executed n/2 times O(1)

Running time: $O\left(n^{2}\right), \Omega\left(n^{2}\right), \Theta\left(n^{2}\right)$

FR-14: Calculating Big-Oh

for (i=1; i<n; i=i*2) sum++;

Fr-15: Calculating Big-Oh

for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i} * 2$) Executed $\lg \mathrm{n}$ times sum++; 0(1)

Running Time: $O(\lg n), \Omega(\lg n), \Theta(\lg n)$

FR-16: Calculating Big-Oh

for ($i=1 ; i<n ; i=i * 2)$
for $(j=0 ; j<n ; j=j+1)$
sum++;
for (in; i >1; i = i / 2)
for $(j=1 ; j<n ; j=j * 2)$
for $(\mathrm{k}=1 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}=\mathrm{k} * 3)$
sum++

fr-17: Recurrence Relations

$T(n)=$ Time required to solve a problem of size n
Recurrence relations are used to determine the running time of recursive programs - recurrence relations themselves are recursive
$T(0)=$ time to solve problem of size 0

- Base Case
$T(n)=$ time to solve problem of size n
- Recursive Case

fR-18: Recurrence Relations

long power(long x, long n) \{
if ($\mathrm{n}==0$)
return 1;
else
return x * power (x, $\mathrm{n}-1$);
\}

$$
\begin{array}{ll}
T(0)=c_{1} & \text { for some constant } c_{1} \\
T(n)=c_{2}+T(n-1) & \text { for some constant } c_{2}
\end{array}
$$

fr-19: Building a Better Power

long power(long x, long n) \{
if ($\mathrm{n}==0$) return 1;
if ($\mathrm{n}==1$) return x ;
if ($(\mathrm{n} \% 2)==0)$ return power (x*x, n/2); else return power (x*x, n/2) * x;

fr-20: Building a Better Power

long power(long x, long n) \{
if ($\mathrm{n}==0$) return 1;
if ($n==1$) return x;
if ($(\mathrm{n} \% 2)==0)$
return power (x*x, n/2);
else
return power (x*x, n/2) * x;
\}

$$
\begin{aligned}
& T(0)=c_{1} \\
& T(1)=c_{2} \\
& T(n)=T(n / 2)+c_{3}
\end{aligned}
$$

(Assume n is a power of 2)

fr-21: Solving Recurrence Relations

$$
\begin{aligned}
T(n) & =T(n / 2)+c_{3} \\
& =T(n / 4)+c_{3}+c_{3} \\
& =T(n / 4) 2 c_{3} \\
& =T(n / 8)+c_{3}+2 c_{3} \\
& =T(n / 8) 3 c_{3} \\
& =T(n / 16)+c_{3}+3 c_{3} \\
& =T(n / 16)+4 c_{3} \\
& =T(n / 32)+c_{3}+4 c_{3} \\
& =T(n / 32)+5 c_{3} \\
& =\cdots \\
& =T\left(n / 2^{k}\right)+k c_{3}
\end{aligned}
$$

fr-22: Solving Recurrence Relations

$$
\begin{aligned}
& T(0)=c_{1} \\
& T(1)=c_{2} \\
& T(n)=T(n / 2)+c_{3} \\
& T(n)=T\left(n / 2^{k}\right)+k c_{3}
\end{aligned}
$$

We want to get rid of $T\left(n / 2^{k}\right)$. Since we know $T(1) \ldots$

$$
\begin{aligned}
n / 2^{k} & =1 \\
n & =2^{k} \\
\lg n & =k
\end{aligned}
$$

fr-23: Solving Recurrence Relations

$$
\begin{aligned}
& T(1)=c_{2} \\
& T(n)=T\left(n / 2^{k}\right)+k c_{3}
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =T\left(n / 2^{\lg n}\right)+\lg n c_{3} \\
& =T(1)+c_{3} \lg n \\
& =c_{2}+c_{3} \lg n \\
& \in \Theta(\lg n)
\end{aligned}
$$

FR-24: Abstract Data Types

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an interface
- Data in an ADT cannot be manipulated directly only through operations defined in the interface

FR-25: Stack

A Stack is a Last-In, First-Out (LIFO) data structure. Stack Operations:

- Add an element to the top of the stack
- Remove the top element
- Check if the stack is empty

FR-26: Stack Implementation

Array:

- Stack elements are stored in an array
- Top of the stack is the end of the array
- If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: data[top++] = elem
- Pop: elem = data[--top]

FR-27: Stack Implementation

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the front of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()

FR-28: QueUe

A Queue is a Last-In, First-Out (FIFO) data structure.
Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty

FR-29: Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
- Enqueue: tail.setNext(new link(elem,null)); tail = tail.next()

Dequeue: elem = head.element(); head = head.next();

FR-30: Queue Implementation

Array:

- Store queue elements in a circular array
- Maintain the index of the first element (head) and the next location to be inserted (tail)

Enqueue: data[tail] = elem;
tail = (tail + 1) \% size

Dequeue: elem = data[head]; head $=($ head +1$) \%$ size

fr-31: Binary Trees

Binary Trees are Recursive Data Structures

- Base Case: Empty Tree
- Recursive Case: Node, consiting of:
- Left Child (Tree)
- Right Child (Tree)
- Data

fr-32: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)

fr-33: Tree Terminology

- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node n
- Length of path from root to n
- Height of a tree
- (Depth of deepest node) + 1

fr-34: Binary Search Trees

- Binary Trees
- For each node n, (value stored at node n) > (value stored in left subtree)
- For each node n, (value stored at node n) < (value stored in right subtree)

fr-35: Writing a Recursive Algorithm

- Determine a small version of the problem, which can be solved immediately. This is the base case
- Determine how to make the problem smaller
- Once the problem has been made smaller, we can assume that the function that we are writing will work correctly on the smaller problem (Recursive Leap of Faith)
- Determine how to use the solution to the smaller problem to solve the larger problem

fr-s6: Finding an Element in a BST

- First, the Base Case - when is it easy to determine if an element is stored in a Binary Search Tree?
- If the tree is empty, then the element can't be there
- If the element is stored at the root, then the element is there

fr-37: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?
- The solution to the subproblem is the solution to the original problem (this is not always the case in recursive algorithms)

Fr-38: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order
- Each subproblem is a smaller version of the original problem - we can assume that a recursive call will work!

Fr-39: Printing out a BST

void print(Node tree) \{

if (tree != null) \{ print(tree.left()); System.out.prinln(tree.element()); print(tree.right());

\}

\}

Fr-40: Inserting e into BST T

- Base case - T is empty:
- Create a new tree, containing the element e
- Recursive Case:
- If e is less than the element at the root of T, insert e into left subtree
- If e is greater than the element at the root of T, insert e into the right subtree

Fr-41: Inserting e into BST T

Node insert(Node tree, Comparable elem) \{ if (tree == null) \{ return new Node(elem);
if (elem.compareTo(tree.element () < 0)) \{ tree.setLeft(insert(tree.left(), elem)); return tree;
\} else \{
tree.setRight(insert(tree.right(), elem)); return tree;
\}
\}

fr-42: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child
- Removing a node with two children:
- Replace node with largest element in left subtree, or the smallest element in the right subtree

fr-43: Priority Queue ADT

Operations

- Add an element / priority pair
- Return (and remove) element with highest priority

Implementation:

- Heap
$\begin{array}{ll}\text { Add Element } & O(\lg n) \\ \text { Remove Higest Priority } & O(\lg n)\end{array}$

fr-44: Heap Definition

- Complete Binary Tree
- Heap Property
- For every subtree in a tree, each value in the subtree is <= value stored at the root of the subtree

Fp-45: Heap Examples

Valid Heap

fr-46: Heap Examples

fr-47: Heap Insert

- There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree
- Inserting an element at the "end" of the heap might break the heap property
- Swap the inserted value up the tree

fr-48: Heap Remove Largest

- Removing the Root of the heap is hard
- Removing the element at the "end" of the heap is easy
- Move last element into root
- Shift the root down, until heap property is satisfied

fr-49: Representing Heaps

A Complete Binary Tree can be stored in an array:

	1	2	14	5	3	16	15	7	6	8	9		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

fr-50: CBTs as Arrays

- The root is stored at index 0
- For the node stored at index i :
- Left child is stored at index $2 * i+1$
- Right child is stored at index $2 * i+2$
- Parent is stored at index $\lfloor(i-1) / 2\rfloor$
fr-51: Trees with > 2 children
How can we implement trees with nodes that have >2 children?

fr-52: Trees with > 2 children

- Array of Children

FR-53: Trees with > 2 children

- Linked List of Children

fr-54: Left Child / Right Sibling

- We can integrate the linked lists with the nodes themselves:

fr-55: Serializing Binary Trees

- Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don't know when we've hit a null pointer
- Store null pointers, too!

$$
\mathrm{ABD} / / \mathrm{EG} / / / \mathrm{C} / \mathrm{F} / /
$$

fr-56: Serializing Binary Trees

- In most trees, more null pointers than internal nodes
- Instead of marking null pointers, mark internal nodes
- Still need to mark some nulls, for nodes with 1 child

fr-57: Serializing General Trees

- Store an "end of children" marker

fr-58: Main Memory Sorting

- All data elements can be stored in memory at the same time
- Data stored in an array, indexed from $0 \ldots n-1$, where n is the number of elements
- Each element has a key value (accessed with a key () method)
- We can compare keys for <, >, =
- For illustration, we will use arrays of integers though often keys will be strings, other Comparable types

fr-59: Stable Sorting

- A sorting algorithm is Stable if the relative order of duplicates is preserved
- The order of duplicates matters if the keys are duplicated, but the records are not.

1	1	1	2	2	3	3	Key
${ }_{\text {A }}^{\text {m }}$	J	${ }_{\text {s }}$	${ }_{\text {E }}^{\text {E }}$	${ }_{1}^{\text {A }}$	-	${ }^{\text {u }}$	Dat

A non-Stable sort

Fr.-60: Insertion Sort

- Separate list into sorted portion, and unsorted portion
- Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list
- (A list of one element is always sorted)
- Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted

fr-61: Bubble Sort

- Scan list from the last index to index 0, swapping the smallest element to the front of the list
- Scan the list from the last index to index 1 , swapping the second smallest element to index 1
- Scan the list from the last index to index 2 , swapping the third smallest element to index 2
- Swap the second largest element into position $(n-2)$

FR-62: Selection Sort

- Scan through the list, and find the smallest element
- Swap smallest element into position 0
- Scan through the list, and find the second smallest element
- Swap second smallest element into position 1 -••
- Scan through the list, and find the second largest element
- Swap smallest largest into position $n-2$

fr-63: Shell Sort

- Sort $n / 2$ sublists of length 2 , using insertion sort
- Sort $n / 4$ sublists of length 4 , using insertion sort
- Sort $n / 8$ sublists of length 8 , using insertion sort
- Sort 2 sublists of length $n / 2$, using insertion sort
- Sort 1 sublist of length n, using insertion sort

fr-64: Merge Sort

- Base Case:
- A list of length 1 or length 0 is already sorted
- Recursive Case:
- Split the list in half
- Recursively sort two halves
- Merge sorted halves together

Example: 51826437

fr-65: Divide \& Conquer

Quick Sort:

- Divide the list two parts
- Some work required - Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
- No work required!

FR-66: Quick Sort

- Pick a pivot element
- Reorder the list:
- All elements < pivot
- Pivot element
- All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3728146

FR-67: Comparison Sorting

- Comparison sorts work by comparing elements
- Can only compare 2 elements at a time
- Check for $<,>$, $=$.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

fr-68: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n ! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n ! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

fr-69: Binsort

- Sort n elements, in the range $1 \ldots m$
- Keep a list of m linked lists
- Insert each element into the appropriate linked lists
- Collect the lists together

FR-70: Bucket Sort

- Modify binsort so thtat each list can hold a range of values
- Need to keep each bucket sorted

fr-71: Counting Sort

for (i=0; i<A.length; i++) C[A[i].key ()]++;
for (i=1; i<C.length; i++) $C[i]=C[i]+C[i-1] ;$
for ($i=A . l e n g t h-1 ; i>=0 ; i++$) $\{$ $\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{i}] . \operatorname{key}(\mathrm{)}]]=\mathrm{A}[\mathrm{i}]$; C[A[i].key()]--;
\}
for (i=0; i<A.length; i++) $\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]$;

fR-72: Radix Sort

- Sort a list of numbers one digit at a time
- Sort by 1 st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort
- First Try: Sort by most significant digit, then the next most significant digit, and so on
- Need to keep track of a lot of sublists

fR-73: Radix Sort

Second Try:

- Sort by least significant digit first
- Then sort by next-least significant digit, using a Stable sort
- Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted.

fr-74: Searching \& Selecting

- Maintian a Database (keys and associated data)
- Operations:
- Add a key / value pair to the database
- Remove a key (and associated value) from the database
- Find the value associated with a key

fr-75: Hash Function

- What if we had a "magic function" -
- Takes a key as input
- Returns the index in the array where the key can be found, if the key is in the array
- To add an element
- Put the key through the magic function, to get a location
- Store element in that location
- To find an element
- Put the key through the magic function, to get a location
- See if the key is stored in that location

fr-76: Hash Function

- The "magic function" is called a Hash function
- If hash (key) = i, we say that the key hashes to the value i
- We'd like to ensure that different keys will always hash to different values.
- Not possible - too many possible keys

fr-77: Integer Hash Function

- When two keys hash to the same value, a collision occurs.
- We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.
- Example: Keys are integers
- Keys are in range 1...m
- Array indices are in range 1 . . . n
- $n \ll m$
- hash $(k)=k \bmod n$

fr-78: String Hash Function

- Hash tables are usually used to store string values
- If we can convert a string into an integer, we can use the integer hash function
- How can we convert a string into an integer?
- Concatenate ASCII digits together

$$
\sum_{k=0}^{k e y s i z e-1} k e y[k] * 256^{k e y s i z e-k-1}
$$

fr-79: String Hash Function

- Concatenating digits does not work, since numbers get big too fast. Solutions:
- Overlap digits a little (use base of 32 instead of 256)
- Ignore early characters (shift them off the left side of the string)
static long hash(String key, int tablesize) \{
long h = 0;
int i;
for (i=0; i<key.length(); i++)
h = (h << 4) + (int) key.charAt(i);
return h \% tablesize;
\}

FR-80: ElfHash

- For each new character, the hash value is shifted to the left, and the new character is added to the accumulated value.
- If the string is long, the early characters will "fall off" the end of the hash value when it is shifted
- Early characters will not affect the hash value of large strings
- Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and XOR'ed.
- Every character will influence the value of the hash function.

FR-81: Collisions

- When two keys hash to the same value, a collision occurs
- A collision strategy tells us what to do when a collision occurs
- Two basic collision strategies:
- Open Hashing (Closed Addressing, Separate Chaining)
- Closed Hashing (Open Addressing)

fr-82: Closed Hashing

- To add element X to a closed hash table:
- Find the smallest i, such that Array[hash(x) + $f(\mathrm{i})]$ is empty (wrap around if necessary)
- Add X to $\operatorname{Array[hash(X)~+~f(i)]~}$
- If $f(i)=i$, linear probing

fr-83: Closed Hashing

- Quadradic probing
- Find the smallest i, such that $\operatorname{Array}[h a s h(x)+$ $f(i)]$ is empty
- Add X to Array[hash(x) + f(i)]
- $\mathrm{f}(\mathrm{i})=i^{2}$

fr-84: Closed Hashing

- Multiple keys hash to the same element
- Secondary clustering
- Double Hashing
- Use a secondary hash function to determine how far ahead to look
- $f(i)=$ i * hash2(key)

Fr-85: Disjoint Sets

- Elements will be integers (for now)
- Operations:
- CreateSets(n) - Create n sets, for integers 0..(n-1)
- Union (x, y) - merge the set containing x and the set containing y
- Find(x) - return a representation of x 's set
- Find $(x)=$ Find (y) iff x, y are in the same set

fr-86: Implementing Disjoint Sets

- Find: (pseudo-Java)

```
int Find(x) {
    while (Parent[x] > 0)
        x = Parent [x]
```

 return x
 \}

fr-87: Implementing Disjoint Sets

- Union(x,y) (pseudo-Java)

```
void Union(x,y) {
    rootx = Find(x);
    rooty = Find(y);
    Parent[rootx] = Parent [rooty];
```

\}

fr-88: Union by Rank

- When we merge two sets:
- Have the shorter tree point to the taller tree
- Height of taller tree does not change
- If trees have the same height, choose arbitrarily

fr-89: Path Compression

- After each call to Find (x), change x's parent pointer to point directly at root
- Also, change all parent pointers on path from x to root

fr-90: Graphs

- A graph consists of:
- A set of nodes or vertices (terms are interchangable)
- A set of edges or arcs (terms are interchangable)
- Edges in graph can be either directed or undirected

fr-91: Graphs \& Edges

- Edges can be labeled or unlabeled
- Edge labels are typically the cost assoctiated with an edge
- e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

fr-92: Graph Representations

- Adjacency Matrix
- Represent a graph with a two-dimensional array G
- $G[i][j]=1$ if there is an edge from node i to node j
- $G[i][j]=0$ if there is no edge from node i to node j
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
- $G[i][j]=$ cost of link between i and j
- If there is no direct link, $G[i][j]=\infty$
fr-93: Adjacency Matrix
- Examples:

	0		1
	1	2	3
0	0	1	0

Fr-94: Adjacency Matrix

- Examples:

	0		1
	1	2	3
0	0	1	0

fr-95: Graph Representations

- Adjacency List
- Maintain a linked-list of the neighbors of every vertex.
- n vertices
- Array of n lists, one per vertex
- Each list i contains a list of all vertices adjacent to i.
fr-96: Adjacency List
- Examples:

fr-97: Adjacency List

- Examples:

- Note - lists are not always sorted

FR-98: Topological Sort

- Directed Acyclic Graph, Vertices $v_{1} \ldots v_{n}$
- Create an ordering of the vertices
- If there a path from v_{i} to v_{j}, then v_{i} appears before v_{j} in the ordering
- Example: Prerequisite chains

fr-99: Topological Sort

- Pick a node v_{k} with no incident edges
- Add v_{k} to the ordering
- Remove v_{k} and all edges from v_{k} from the graph
- Repeat until all nodes are picked.

fr-100: Graph Traversals

- Visit every vertex, in an order defined by the topololgy of the graph.
- Two major traversals:
- Depth First Search
- Breadth First Search

fr-101: Depth First Search

- Starting from a specific node (pseudo-code):

DFS(Edge G[], int vertex, boolean Visited[]) \{
Visited[vertex] = true;
for each node w adajcent to vertex:
if (!Visited[w])
DFS(G, w, Visited);
\}

fr-102: Depth First Search

```
class Edge {
    public int neighbor;
    public int next;
}
void DFS(Edge G[], int vertex, boolean Visited[]) {
    Edge tmp;
    Visited[vertex] = true;
    for (tmp = G[vertex] ; tmp != null; tmp = tmp.next) {
        if (!Visited[tmp.neighbor])
        DFS(G, tmp.neighbor, Visited);
    }
}
```


FR-103: Breadth First Search

- DFS: Look as Deep as possible, before looking wide
- Examine all descendants of a node, before looking at siblings
- BFS: Look as Wide as possible, before looking deep
- Visit all nodes 1 away, then 2 away, then three away, and so on

FR-104: Search Trees

- Describes the order that nodes are examined in a traversal
- Directed Tree
- Directed edge from v_{1} to v_{2} if the edge $\left(v_{1}, v_{2}\right)$ was followed during the traversal

fr-105: Computing Shortest Path

- Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in G.
- Undirected graph is a special case of a directed graph, with symmetric edges
- Least-cost path may not be the path containing the fewest edges
- "shortest path" == "least cost path"
- "path containing fewest edges" = "path containing fewest edges"

fr-106: Single Source Shortest Path

- If all edges have unit weight,
- We can use Breadth First Search to compute the shortest path
- BFS Spanning Tree contains shortest path to each node in the graph
- Need to do some more work to create \& save BFS spanning tree
- When edges have differing weights, this obviously will not work

FR-107: Single Source Shortest Path

- Divide the vertices into two sets:
- Vertices whose shortest path from the initial vertex is known
- Vertices whose shortest path from the initial vertex is not known
- Initially, only the initial vertex is known
- Move vertices one at a time from the unknown set to the known set, until all vertices are known

FR-108: Dijkstra's Algorithm

- Keep a table that contains, for each vertex
- Is the distance to that vertex known?
- What is the best distance we've found so far?
- Repeat:
- Pick the smallest unknown distance
- mark it as known
- update the distance of all unknown neighbors of that node
- Until all vertices are known

fr-109: Spanning Trees

- Given a connected, undirected graph G
- A subgraph of G contains a subset of the vertices and edges in G
- A Spanning Tree T of G is:
- subgraph of G
- contains all vertices in G
- connected
- acyclic

Fr-110: Spanning Tree Examples

- Graph

Fr-111: Spanning Tree Examples

- Spanning Tree

fr-112: Minimal Cost Spanning Tree

- Minimal Cost Spanning Tree
- Given a weighted, undirected graph G
- Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

FR-113: Kruskal's Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
- Add e to G if it would not cause a cycle

FR-114: Kruskal's Algorithm

- We need to:
- Put each vertex in its own tree
- Given any two vertices v_{1} and v_{2}, determine if they are in the same tree
- Given any two vertices v_{1} and v_{2}, merge the tree containing v_{1} and the tree containing v_{2}
- ... sound familiar?

FR-115: Kruskal's Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge $e=\left(v_{1}, v_{2}\right)$ in the list
- if $\operatorname{FIND}\left(v_{1}\right)!=\operatorname{FIND}\left(v_{2}\right)$
- Add e to spanning tree
- UNION $\left(v_{1}, v_{2}\right)$

fr-116: Prim's Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
- vertices in the spanning tree
- vertices not in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
- Pick the initial vertex arbitrarily

fr-117: Prim's Algorithm

- While there are vertices not in the spanning tree
- Add the cheapest vertex to the spanning tree

FR-118: Indexing

- Operations:
- Add an element
- Remove an element
- Find an element, using a key
- Find all elements in a range of key values

FR-119: 2-3 Trees

- Generalized Binary Search Tree
- Each node has 1 or 2 keys
- Each (non-leaf) node has 2-3 children
- hence the name, 2-3 Trees
- All leaves are at the same depth

FR-120: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
- If the tree is empty, return false
- If the element is stored at the root, return true
- Otherwise, recursively find in the appropriate subtree

fr-121: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
- Find the leaf where the element would live, if it was in the tree
- Add the element to that leaf
-What if the leaf already has 2 elements?
- Split!

FR-122: Splitting nodes

- To split a node in a 2-3 tree that has 3 elements:
- Split nodes into two nodes
- One node contains the smallest element
- Other node contains the largest element
- Add median element to parent
- Parent can then handle the extra pointer

FR-123: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-124: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-125: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

123

Too many keys,
need to split

FR-126: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-127: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-128: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

> Too many keys, need to split

FR-129: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-130: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-131: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-132: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-133: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-134: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-135: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-136: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-137: Deleting Leaves

- If leaf contains 2 keys
- Can safely remove a key

FR-138: Deleting Leaves

- Deleting 7

FR-139: Deleting Leaves

- Deleting 7

FR-140: Deleting Leaves

- If leaf contains 1 key
- Cannot remove key without making leaf empty
- Try to steal extra key from sibling

FR-141: Deleting Leaves

- Steal key from sibling through parent

FR-142: Deleting Leaves

- Steal key from sibling through parent

FR-143: Deleting Leaves

- If leaf contains 1 key, and no sibling contains extra keys
- Cannot remove key without making leaf empty
- Cannot steal a key from a sibling
- Merge with sibling
- split in reverse

fr-144: Merging Nodes

- Removing the 4

fr-145: Merging Nodes

- Removing the 4
- Combine 5, 7 into one node

fr-146: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
- Replace key with smallest element subtree to right of key
- Recursivly delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)

FR-147: Deleting Interior Keys

- Deleting the 4

FR-148: Deleting Interior Keys

- Deleting the 4
- Replace 4 with smallest element in tree to right of 4

FR-149: Deleting Interior Keys

FR-150: Deleting Interior Keys

- Deleting the 5

fr-151: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

fr-152: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys

FR-153: Deleting Interior Keys

- Node with two few keys
- Steal a key from a sibling

FR-154: Deleting Interior Keys

FR-155: Deleting Interior Keys

- Removing the 6

FR-156: Deleting Interior Keys

- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

FR-157: Deleting Interior Keys

- Node with too few keys
- Can't steal key from sibling
- Merge with sibling

FR-158: Deleting Interior Keys

- Node with too few keys
- Can't steal key from sibling
- Merge with sibling
- (arbitrarily pick right sibling to merge with)

FR-159: Deleting Interior Keys

FR-160: Generalizing 2-3 Trees

- In 2-3 Trees:
- Each node has 1 or 2 keys
- Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node

fr-161: B-Trees

- A B-Tree of maximum degree k :
- All interior nodes have $[k / 2\rceil \ldots k$ children
- All nodes have $[k / 2\rceil-1 \ldots k-1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3

FR-162: B-Trees

- B-Tree with maximum degree 5
- Interior nodes have 3 - 5 children
- All nodes have 2-4 keys

FR-163: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.

FR-164: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.

FR-165: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.

FR-166: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.

FR-167: DFS Revisited

- We can keep track of the order in which we visit the elements in a Depth-First Search
- For any vertex v in a DFS:
- $\mathrm{d}[\mathrm{v}]=$ Discovery time - when the vertex is first visited
- f[v] = Finishing time - when we have finished with a vertex (and all of its children

FR-168: DFS Revisited

```
class Edge {
    public int neighbor;
    public int next;
}
void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
    Edge tmp;
    Visited[vertex] = true;
    d[vertex] = time++;
    for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
        if (!Visited[tmp.neighbor])
            DFS(G, tmp.neighbor, Visited);
    }
    f[vertex] = time++;
}
```


FR-169: DFS Example

FR-170: DFS Example

FR-171: DFS Example

FR-172: DFS Example

FR-173: DFS Example

FR-174: DFS Example

FR-175: DFS Example

FR-176: DFS Example

FR-177: DFS Example

FR-178: DFS Example

d 1	d	3	d
f	f	8	f

d 2
f
d 4
f 7
d 5
f 6
d
f

FR-179: DFS Example

$d 1$	d	d	d
f	f 8	f	f

d 2
f 9
d 4
d 5
d
f 6
f

FR-180: DFS Example

d 1	d 3	d	d
f 10	f 8	f	f

d 2
f 9
d 4
f 7
$\begin{array}{ll}\text { d } & 5 \\ \text { f } 6\end{array}$
d
f

FR-181: DFS Example

d 1	d 3	d 11	d
f 10	f 8	f	f

d 2
f 9
d 4
f 7
d 5
d
f 6
f

FR-182: DFS Example

FR-183: DFS Example

FR-184: DFS Example

FR-185: DFS Example

FR-186: DFS Example

d	1	d	3	d	11
f 10	f	8	f	16	d

d 2
f 9
d 4
f 7
d 5
f 6
d 14
f 15

FR-187: Using d[] \& f[]

- Given two vertices v_{1} and v_{2}, what do we know if $f\left[v_{2}\right]<f\left[v_{1}\right]$?
- Either:
- Path from v_{1} to v_{2}
- Start from v_{1}
- Eventually visit v_{2}
- Finish v_{2}
- Finish v_{1}

FR-188: Using d[] \& f[]

- Given two vertices v_{1} and v_{2}, what do we know if $f\left[v_{2}\right]<f\left[v_{1}\right]$?
- Either:
- Path from v_{1} to v_{2}
- No path from v_{2} to v_{1}
- Start from v_{2}
- Eventually finish v_{2}
- Start from v_{1}
- Eventually finish v_{1}

FR-189: Using d[] \& f[]

- If $f\left[v_{2}\right]<f\left[v_{1}\right]$:
- Either a path from v_{1} to v_{2}, or no path from v_{2} to v_{1}
- If there is a path from v_{2} to v_{1}, then there must be a path from v_{1} to v_{2}
- $f\left[v_{2}\right]<f\left[v_{1}\right]$ and a path from v_{2} to $v_{1} \Rightarrow v_{1}$ and v_{2} are in the same connected component

FR-190: Connected Components

- Run DFS on G, calculating f[] times
- Compute G^{T}
- Run DFS on G^{T} - examining nodes in inverse order of finishing times from first DFS
- Any nodes that are in the same DFS search tree in G^{T} must be in the same connected component

FR-191: Dynamic Programming

- Simple, recursive solution to a problem
- Naive solution recalculates same value many times
- Leads to exponential running time

fr-192: Dynamic Programming

- Recalculating values can lead to unacceptable run times
- Even if the total number of values that needs to be calculated is small
- Solution: Don't recalculate values
- Calculate each value once
- Store results in a table
- Use the table to calculate larger results

FR-193: Faster Fibonacci

int Fibonacci(int n) \{
int [] FIB = new int[n+1];
$\operatorname{FIB}[0]=1 ;$
$\operatorname{FIB}[1]=1 ;$
for (i=2; i<=n; i++) FIB[i] = FIB[i-1] + FIB[i-2];
return FIB[n];
\}

FR-194: Dynamic Programming

- To create a dynamic programming solution to a problem:
- Create a simple recursive solution (that may require a large number of repeat calculations
- Design a table to hold partial results
- Fill the table such that whenever a partial result is needed, it is already in the table

Fr-195: Memoization

- Can be difficult to determine order to fill the table
- We can use a table together with recursive solution
- Initialize table with sentinel value
- In recursive function:
- Check table - if entry is there, use it
- Otherwise, call function recursively Set appropriate table value return table value

FR-196: Fibonacci Memoized

int Fibonacci(int n) \{

```
if (n == 0)
return 1;
if (n == 1)
        return 1;
```

if (T[n] == -1)
$\mathrm{T}[\mathrm{n}]=$ Fibonacci(n-1) + Fibonacci(n-2);
return T[n];

