FR-0: Big-Oh Notation

O(f(n)) is the set of all functions that are bound from above by f(n) p

 $T(n) \in O(f(n))$ if

```
\exists c, n_0 \text{ such that } T(n) \leq c * f(n) \text{ when } n > n_0
FR-1: Big-Oh Examples
                           O(n)?
                   n
                       \in
                10n
                       \in
                           O(n) ?
                       \in O(10n)?
                  n
                      \in O(n^2)?
                  n
                 n^2
                       \in O(n)?
               10n^{2}
                      \in O(n^2)?
                      \in O(n^2)?
              n \lg n
                \ln n
                      \in O(2n)?
                      \in O(n)?
                \lg n
             3n+4 \in O(n)?
     5n^2 + 10n - 2
                           O(n^3)? O(n^2) ? O(n) ?
                      \in
FR-2: Big-Oh Examples
                           O(n)
                   n
                       \in
                       \in O(n)
                10n
                  n
                      \in O(10n)
                      \in O(n^2)
                  n
                 n^2
                       \not\in O(n)
               10n^2
                      \in O(n^2)
              n \lg n
                      \in O(n^2)
                      \in O(2n)
                \ln n
                \lg n
                      \in O(n)
             3n + 4
                      \in
                           O(n)
     5n^2 + 10n - 2 \in
                           O(n^3) \in O(n^2), \notin O(n)?
FR-3: Big-Oh Examples II
                     \sqrt{n}
                           \in O(n)?
                           \in O(2^n)?
                    \lg n
                           \in O(n)?
                    \lg n
                          \in O(n) ?
                   n \lg n
                           \in O(n^2)?
                   n \lg n
                     \sqrt{n}
                           \in O(\lg n)?
                          \in O(\sqrt{n})?
                     \lg n
                          \in O(n^{\frac{3}{2}})?
                   n \lg n
     n^3 + n \lg n + n \sqrt{n}
                           \in O(n \lg n)?
                           \in O(n^3)?
     n^3 + n \lg n + n \sqrt{n}
     n^3 + n \lg n + n \sqrt{n}
                           \in
                                O(n^4) ?
```

FR-4: Big-Oh Examples II

$$\begin{array}{rcl} & \sqrt{n} & \in & O(n) \\ & \lg n & \in & O(2^n) \\ & \lg n & \in & O(n) \\ & n \lg n & \notin & O(n) \\ & n \lg n & \notin & O(n) \\ & n \lg n & \in & O(n^2) \\ & \sqrt{n} & \notin & O(\lg n) \\ & \lg n & \in & O(\sqrt{n}) \\ & n \lg n & \in & O(\sqrt{n}) \\ & n \lg n & + n\sqrt{n} & \notin & O(n \lg n) \\ & n^3 + n \lg n + n\sqrt{n} & \notin & O(n \lg n) \\ & n^3 + n \lg n + n\sqrt{n} & \in & O(n^3) \\ & n^3 + n \lg n + n\sqrt{n} & \in & O(n^4) \end{array}$$
FR-5: **Big-Oh Examples III**

$$\begin{array}{c} f(n) & \in & O(g(n)) ? \\ g(n) & \in & O(f(n)) ? \\ & n & \in & O(f(n)) ? \\ f(n) & \in & O(n^3) ? \end{array}$$
FR-6: **Big-Oh Examples III**

$$\begin{array}{c} f(n) & \in & O(g(n)) \\ g(n) & \notin & O(f(n)) ? \\ g(n) & \notin & O(f(n)) \\ g(n) & \notin & O(f(n)) \\ g(n) & \notin & O(f(n)) \\ n & \in & O(f(n)) \\ g(n) & \notin & O(f(n)) \\ n & \in & O(f(n)) \\ f(n) & \in & O(n^3) \end{array}$$

FR-7: **Big**- Ω Notation $\Omega(f(n))$ is the set of all functions that are bound from *below* by f(n)

 $T(n)\in \Omega(f(n))$ if

 $\exists c, n_0 \text{ such that } T(n) \geq c * f(n) \text{ when } n > n_0$ FR-8: **Big-** Ω **Notation** $\Omega(f(n))$ is the set of all functions that are bound from *below* by f(n)

 $T(n) \in \Omega(f(n))$ if

 $\exists c, n_0 \text{ such that } T(n) \geq c * f(n) \text{ when } n > n_0$

$$f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))$$

FR-9: **Big-** Θ Notation $\Theta(f(n))$ is the set of all functions that are bound *both* above *and* below by f(n). Θ is a *tight bound*

 $T(n) \in \Theta(f(n))$ if

 $T(n) \in O(f(n)) \text{ and } T(n) \in \Omega(f(n))$

FR-10: Big-Oh Rules

- 1. If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$
- 2. If $f(n) \in O(kg(n) \text{ for any constant } k > 0$, then $f(n) \in O(g(n))$
- 3. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$
- 4. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) * f_2(n) \in O(g_1(n) * g_2(n))$

(Also work for Ω , and hence Θ)

FR-11: Big-Oh Guidelines

- Don't include constants/low order terms in Big-Oh
- Simple statements: $\Theta(1)$
- Loops: $\Theta(inside) * # of iterations$
 - Nested loops work the same way
- Consecutive statements: Longest Statement
- Conditional (if) statements:

O(Test + longest branch)

FR-12: Calculating Big-Oh

for (i=1; i<n; i++)
for (j=1; j < n/2; j++)
 sum++;</pre>

FR-13: Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
for (j=1; j < n/2; j++) Executed n/2 times
 sum++; 0(1)</pre>

Running time: $O(n^2), \Omega(n^2), \Theta(n^2)$ FR-14: Calculating Big-Oh

for (i=1; i<n; i=i*2)
 sum++;</pre>

FR-15: Calculating Big-Oh

for (i=1; i<n; i=i*2) Executed lg n times
 sum++; O(1)</pre>

Running Time: $O(\lg n), \Omega(\lg n), \Theta(\lg n)$ FR-16: Calculating Big-Oh

```
for (i=1; i<n; i=i*2)
for (j=0; j < n; j = j + 1)
sum++;
for (i=n; i >1; i = i / 2)
for (j = 1; j < n; j = j * 2)
for (k = 1; k < n; k = k * 3)
sum++</pre>
```

FR-17: Recurrence Relations

T(n) = Time required to solve a problem of size n

Recurrence relations are used to determine the running time of recursive programs – recurrence relations themselves are recursive

T(0) = time to solve problem of size 0 - Base Case T(n) = time to solve problem of size n - Recursive Case

FR-18: Recurrence Relations

```
long power(long x, long n) {
  if (n == 0)
    return 1;
  else
    return x * power(x, n-1);
}
    T(0) = c_1
                        for some constant c_1
    T(n) = c_2 + T(n-1) for some constant c_2
FR-19: Building a Better Power
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(x \star x, n/2);
  else
    return power(x \star x, n/2) \star x;
}
```

FR-20: Building a Better Power

```
long power(long x, long n) {

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

}

T(0) = c_1

T(1) = c_2

T(n) = T(n/2) + c_3
```

(Assume n is a power of 2) FR-21: Solving Recurrence Relations

$$\begin{split} T(n) &= T(n/2) + c_3 & T(n/2) = T(n/4) + c_3 \\ &= T(n/4) + c_3 + c_3 \\ &= T(n/4) 2c_3 & T(n/4) = T(n/8) + c_3 \\ &= T(n/8) + c_3 + 2c_3 \\ &= T(n/8) 3c_3 & T(n/8) = T(n/16) + c_3 \\ &= T(n/16) + c_3 + 3c_3 \\ &= T(n/16) + 4c_3 & T(n/16) = T(n/32) + c_3 \\ &= T(n/32) + c_3 + 4c_3 \\ &= T(n/32) + 5c_3 \\ &= \dots \\ &= T(n/2^k) + kc_3 \\ \end{split}$$

We want to get rid of $T(n/2^k)$. Since we know T(1) ...

$$n/2^{k} = 1$$
$$n = 2^{k}$$
$$\lg n = k$$

FR-23: Solving Recurrence Relations

 $T(1) = c_2$ $T(n) = T(n/2^k) + kc_3$

$$T(n) = T(n/2^{\lg n}) + \lg nc_3$$

= $T(1) + c_3 \lg n$
= $c_2 + c_3 \lg n$
 $\in \Theta(\lg n)$

FR-24: Abstract Data Types

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an *interface*
- Data in an ADT cannot be manipulated directly only through operations defined in the interface

FR-25: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

- Add an element to the top of the stack
- Remove the top element

FR-22: Solving Recurrence Relations

• Check if the stack is empty

FR-26: Stack Implementation

Array:

- Stack elements are stored in an array
- Top of the stack is the *end* of the array
 - If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: data[top++] = elem
- Pop: elem = data[--top]

FR-27: Stack Implementation

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the *front* of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()

FR-28: Queue

A Queue is a Last-In, First-Out (FIFO) data structure.

Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty

FR-29: Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
- Enqueue: tail.setNext(new link(elem,null)); tail = tail.next()
- Dequeue: elem = head.element(); head = head.next();

FR-30: Queue Implementation

Array:

• Store queue elements in a circular array

- Maintain the index of the first element (head) and the next location to be inserted (tail)
- Enqueue: data[tail] = elem; tail = (tail + 1) % size
- Dequeue: elem = data[head]; head = (head + 1) % size

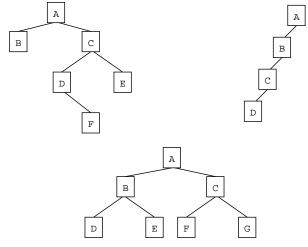
FR-31: Binary Trees

Binary Trees are Recursive Data Structures

- Base Case: Empty Tree
- Recursive Case: Node, consiting of:
 - Left Child (Tree)
 - Right Child (Tree)
 - Data

FR-32: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)



FR-33: Tree Terminology

- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node n
 - Length of path from root to n
- Height of a tree

• (Depth of deepest node) + 1

FR-34: Binary Search Trees

- Binary Trees
- For each node n, (value stored at node n) > (value stored in left subtree)
- For each node n, (value stored at node n) < (value stored in right subtree)

FR-35: Writing a Recursive Algorithm

- Determine a small version of the problem, which can be solved immediately. This is the *base case*
- Determine how to make the problem smaller
- Once the problem has been made smaller, we can assume that the function that we are writing *will work correctly on the smaller problem* (Recursive Leap of Faith)
 - Determine how to use the solution to the smaller problem to solve the larger problem

FR-36: Finding an Element in a BST

- First, the Base Case when is it easy to determine if an element is stored in a Binary Search Tree?
 - If the tree is empty, then the element can't be there
 - If the element is stored at the root, then the element is there

FR-37: Finding an Element in a BST

- Next, the Recursive Case how do we make the problem smaller?
 - Both the left and right subtrees are smaller versions of the problem. Which one do we use?
 - If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?
 - The solution to the subproblem *is* the solution to the original problem (this is not always the case in recursive algorithms)

FR-38: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order
 - Each subproblem is a smaller version of the original problem we can assume that a recursive call will work!

FR-39: Printing out a BST

```
void print(Node tree) {
    if (tree != null) {
        print(tree.left());
        System.out.prinln(tree.element());
        print(tree.right());
    }
}
```

FR-40: Inserting e into BST T

- Base case -T is empty:
 - Create a new tree, containing the element e
- Recursive Case:
 - If e is less than the element at the root of T, insert e into left subtree
 - If e is greater than the element at the root of T, insert e into the right subtree

FR-41: Inserting e into BST T

```
Node insert(Node tree, Comparable elem) {
  if (tree == null) {
    return new Node(elem);
  if (elem.compareTo(tree.element() < 0)) {
    tree.setLeft(insert(tree.left(), elem));
    return tree;
  } else {
    tree.setRight(insert(tree.right(), elem));
    return tree;
  }
}</pre>
```

FR-42: Deleting From a BST

- Removing a leaf:
 - Remove element immediately
- Removing a node with one child:
 - Just like removing from a linked list
 - Make parent point to child
- Removing a node with two children:
 - Replace node with largest element in left subtree, or the smallest element in the right subtree

FR-43: Priority Queue ADT

Operations

- Add an element / priority pair
- Return (and remove) element with highest priority

Implementation:

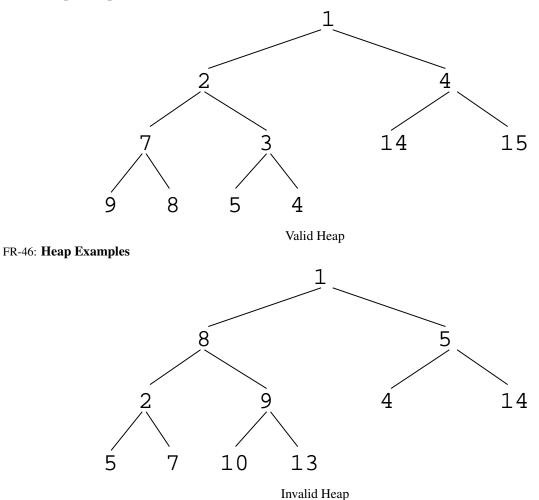
• Heap

Add Element	$O(\lg n)$
Remove Higest Priority	$O(\lg n)$

FR-44: Heap Definition

- Complete Binary Tree
- Heap Property
 - For every subtree in a tree, each value in the subtree is ;= value stored at the root of the subtree

FR-45: Heap Examples



FR-47: Heap Insert

- There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree
- Inserting an element at the "end" of the heap might break the heap property
 - Swap the inserted value up the tree

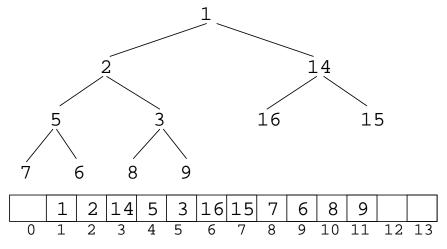
CS245-2017S-FR

FR-48: Heap Remove Largest

- Removing the Root of the heap is hard
- Removing the element at the "end" of the heap is easy
 - Move last element into root
 - Shift the root down, until heap property is satisfied

FR-49: Representing Heaps

A Complete Binary Tree can be stored in an array:

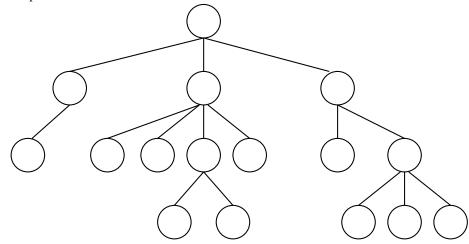


FR-50: CBTs as Arrays

- The root is stored at index 0
- For the node stored at index *i*:
 - Left child is stored at index 2 * i + 1
 - Right child is stored at index 2 * i + 2
 - Parent is stored at index $\lfloor (i-1)/2 \rfloor$

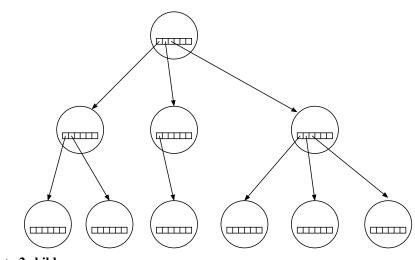
FR-51: Trees with > 2 children

How can we implement trees with nodes that have > 2 children?



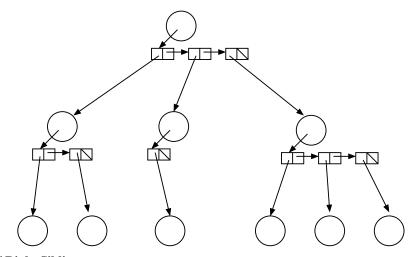
FR-52: Trees with > 2 children

• Array of Children



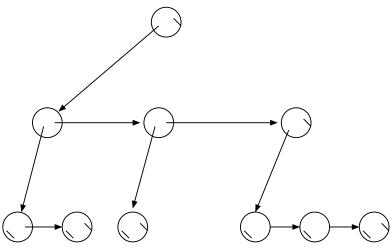
FR-53: **Trees with** > **2 children**

• Linked List of Children



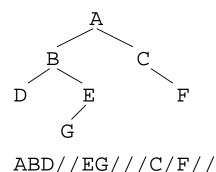
FR-54: Left Child / Right Sibling

• We can integrate the linked lists with the nodes themselves:



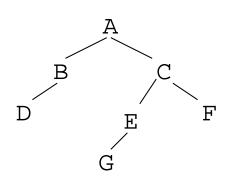
FR-55: Serializing Binary Trees

- Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don't know when we've hit a null pointer
- Store null pointers, too!



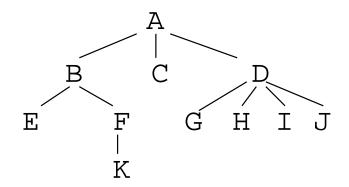
FR-56: Serializing Binary Trees

- In most trees, more null pointers than internal nodes
- Instead of marking null pointers, mark internal nodes
- Still need to mark some nulls, for nodes with 1 child



FR-57: Serializing General Trees

• Store an "end of children" marker



FR-58: Main Memory Sorting

- All data elements can be stored in memory at the same time
- Data stored in an array, indexed from $0 \dots n-1$, where n is the number of elements
- Each element has a key value (accessed with a key () method)
- We can compare keys for i, i, j
- For illustration, we will use arrays of integers though often keys will be strings, other Comparable types

FR-59: Stable Sorting

- A sorting algorithm is *Stable* if the relative order of duplicates is preserved
- The order of duplicates matters if the keys are duplicated, but the records are not.

u

е

3	1	2	1	1	2	3	Кеу
B o b	J O e	E d	A m Y	S u e	A 1	B u d	Data
1	1	1	2	2	3	3	Кеу
A	J	S	Е	A	в	В	Data

A non-Stable sort

٦

0

b

u

d

FR-60: Insertion Sort

• Separate list into sorted portion, and unsorted portion

m

У

0

е

• Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list

d

- (A list of one element is always sorted)
- Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted

FR-61: Bubble Sort

- Scan list from the last index to index 0, swapping the smallest element to the front of the list
- Scan the list from the last index to index 1, swapping the second smallest element to index 1
- Scan the list from the last index to index 2, swapping the third smallest element to index 2
- Swap the second largest element into position (n-2)

FR-62: Selection Sort

- Scan through the list, and find the smallest element
- Swap smallest element into position 0
- Scan through the list, and find the second smallest element
- Swap second smallest element into position 1
- ...
- Scan through the list, and find the second largest element
- Swap smallest largest into position n-2

FR-63: Shell Sort

- Sort n/2 sublists of length 2, using insertion sort
- Sort n/4 sublists of length 4, using insertion sort
- Sort *n*/8 sublists of length 8, using insertion sort
- Sort 2 sublists of length n/2, using insertion sort
- Sort 1 sublist of length n, using insertion sort

FR-64: Merge Sort

- Base Case:
 - A list of length 1 or length 0 is already sorted
- Recursive Case:
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7 FR-65: **Divide & Conquer** Quick Sort:

- Divide the list two parts
 - Some work required Small elements in left sublist, large elements in right sublist

- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!

FR-66: Quick Sort

- Pick a pivot element
- Reorder the list:
 - All elements < pivot
 - Pivot element
 - All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3728146 FR-67: Comparison Sorting

- · Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

FR-68: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

FR-69: Binsort

- Sort n elements, in the range $1 \dots m$
- Keep a list of *m* linked lists
- Insert each element into the appropriate linked lists
- Collect the lists together

FR-70: Bucket Sort

- Modify binsort so that each list can hold a range of values
- Need to keep each bucket sorted

FR-71: Counting Sort

```
for(i=0; i<A.length; i++)
    C[A[i].key()]++;
for(i=1; i<C.length; i++)
    C[i] = C[i] + C[i-1];
for (i=A.length - 1; i>=0; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=0; i<A.length; i++)
    A[i] = B[i];</pre>
```

FR-72: Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort
- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

FR-73: Radix Sort Second Try:

- Sort by least significant digit first
- Then sort by next-least significant digit, using a Stable sort
 - • •
- Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. FR-74: **Searching & Selecting**

- Maintian a Database (keys and associated data)
- Operations:
 - Add a key / value pair to the database
 - **Remove** a key (and associated value) from the database
 - Find the value associated with a key

FR-75: Hash Function

• What if we had a "magic function" -

- Takes a key as input
- Returns the index in the array where the key can be found, if the key is in the array
- To add an element
 - Put the key through the magic function, to get a location
 - Store element in that location
- To find an element
 - Put the key through the magic function, to get a location
 - See if the key is stored in that location

FR-76: Hash Function

- The "magic function" is called a Hash function
- If hash (key) = i, we say that the key hashes to the value i
- We'd like to ensure that different keys will always hash to different values.
- Not possible too many possible keys

FR-77: Integer Hash Function

- When two keys hash to the same value, a *collision* occurs.
- We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.
- Example: Keys are integers
 - Keys are in range $1 \dots m$
 - Array indices are in range $1 \dots n$
 - $\bullet \ n << m$
- hash(k) = kmodn

FR-78: String Hash Function

- Hash tables are usually used to store string values
- If we can convert a string into an integer, we can use the integer hash function
- How can we convert a string into an integer?
 - Concatenate ASCII digits together

$$\sum_{k=0}^{keysize-1} key[k] * 256^{keysize-k-1}$$

FR-79: String Hash Function

• Concatenating digits does not work, since numbers get big too fast. Solutions:

- Overlap digits a little (use base of 32 instead of 256)
- Ignore early characters (shift them off the left side of the string)

```
static long hash(String key, int tablesize) {
  long h = 0;
  int i;
  for (i=0; i<key.length(); i++)
    h = (h << 4) + (int) key.charAt(i);
    return h % tablesize;
}</pre>
```

FR-80: ElfHash

- For each new character, the hash value is shifted to the left, and the new character is added to the accumulated value.
- If the string is long, the early characters will "fall off" the end of the hash value when it is shifted
 - Early characters will not affect the hash value of large strings
- Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and XOR'ed.
- Every character will influence the value of the hash function.

FR-81: Collisions

- When two keys hash to the same value, a collision occurs
- A collision strategy tells us what to do when a collision occurs
- Two basic collision strategies:
 - Open Hashing (Closed Addressing, Separate Chaining)
 - Closed Hashing (Open Addressing)

FR-82: Closed Hashing

- To add element X to a closed hash table:
 - Find the smallest i, such that Array[hash(x) + f(i)] is empty (wrap around if necessary)
 - Add X to Array[hash(x) + f(i)]
 - If f(i) = i, linear probing

FR-83: Closed Hashing

- Quadradic probing
 - Find the smallest i, such that Array[hash(x) + f(i)] is empty
 - Add X to Array[hash(x) + f(i)]
 - $f(i) = i^2$

FR-84: Closed Hashing

- Multiple keys hash to the same element
 - Secondary clustering
- Double Hashing
 - Use a secondary hash function to determine how far ahead to look
 - f(i) = i * hash2(key)

FR-85: Disjoint Sets

- Elements will be integers (for now)
- Operations:
 - CreateSets(n) Create n sets, for integers 0..(n-1)
 - Union(x,y) merge the set containing x and the set containing y
 - Find(x) return a representation of x's set
 - Find(x) = Find(y) iff x,y are in the same set

FR-86: Implementing Disjoint Sets

```
• Find: (pseudo-Java)
```

```
int Find(x) {
   while (Parent[x] > 0)
        x = Parent[x]
   return x
}
```

FR-87: Implementing Disjoint Sets

```
• Union(x,y) (pseudo-Java)
```

```
void Union(x,y) {
   rootx = Find(x);
   rooty = Find(y);
   Parent[rootx] = Parent[rooty];
}
```

FR-88: Union by Rank

- When we merge two sets:
 - Have the shorter tree point to the taller tree
 - Height of taller tree does not change
 - If trees have the same height, choose arbitrarily

FR-89: Path Compression

- After each call to Find (x), change x's parent pointer to point directly at root
- Also, change all parent pointers on path from x to root

FR-90: Graphs

- A graph consists of:
 - A set of **nodes** or **vertices** (terms are interchangable)
 - A set of edges or arcs (terms are interchangable)
- Edges in graph can be either directed or undirected

FR-91: Graphs & Edges

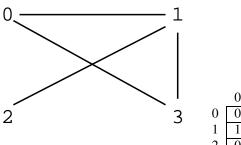
- Edges can be labeled or unlabeled
 - Edge labels are typically the *cost* assoctiated with an edge
 - e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

FR-92: Graph Representations

- Adjacency Matrix
- Represent a graph with a two-dimensional array G
 - G[i][j] = 1 if there is an edge from node *i* to node *j*
 - G[i][j] = 0 if there is no edge from node i to node j
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
 - G[i][j] = cost of link between i and j
 - If there is no direct link, $G[i][j] = \infty$

FR-93: Adjacency Matrix

• Examples:



	0	1	2	3
0	0	1	0	1
1	1	0	1	1
2	0	1	0	0
3	1	1	0	0

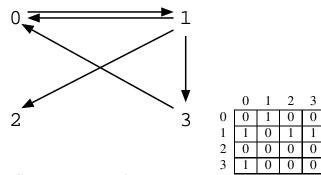
FR-94: Adjacency Matrix

• Examples:

3

1

0

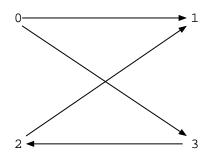


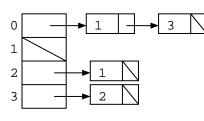
FR-95: Graph Representations

- Adjacency List
- Maintain a linked-list of the neighbors of every vertex.
 - *n* vertices
 - Array of *n* lists, one per vertex
 - Each list *i* contains a list of all vertices adjacent to *i*.

FR-96: Adjacency List

• Examples:





FR-97: Adjacency List

• Examples:

0 1 3 1 0 3 2 3 2 1

• Note – lists are not always sorted

FR-98: Topological Sort

CS245-2017S-FR

- Directed Acyclic Graph, Vertices $v_1 \dots v_n$
- Create an ordering of the vertices
 - If there a path from v_i to v_j , then v_i appears before v_j in the ordering
- Example: Prerequisite chains

FR-99: Topological Sort

- Pick a node v_k with no incident edges
- Add v_k to the ordering
- Remove v_k and all edges from v_k from the graph
- Repeat until all nodes are picked.

FR-100: Graph Traversals

- Visit every vertex, in an order defined by the topololgy of the graph.
- Two major traversals:
 - Depth First Search
 - Breadth First Search

FR-101: Depth First Search

• Starting from a specific node (pseudo-code):

```
DFS(Edge G[], int vertex, boolean Visited[]) {
   Visited[vertex] = true;
   for each node w adajcent to vertex:
        if (!Visited[w])
            DFS(G, w, Visited);
}
```

FR-102: Depth First Search

```
class Edge {
   public int neighbor;
   public int next;
}
void DFS(Edge G[], int vertex, boolean Visited[]) {
   Edge tmp;
   Visited[vertex] = true;
   for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
      if (!Visited[tmp.neighbor])
        DFS(G, tmp.neighbor, Visited);
   }
}
```

FR-103: Breadth First Search

• DFS: Look as *Deep* as possible, before looking wide

Final Review

- Examine all descendants of a node, before looking at siblings
- BFS: Look as Wide as possible, before looking deep
 - Visit all nodes 1 away, then 2 away, then three away, and so on

FR-104: Search Trees

- Describes the order that nodes are examined in a traversal
- Directed Tree
 - Directed edge from v_1 to v_2 if the edge (v_1, v_2) was followed during the traversal

FR-105: Computing Shortest Path

- Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in G.
 - Undirected graph is a special case of a directed graph, with symmetric edges
- Least-cost path may not be the path containing the fewest edges
 - "shortest path" == "least cost path"
 - "path containing fewest edges" = "path containing fewest edges"

FR-106: Single Source Shortest Path

- If all edges have unit weight,
- We can use Breadth First Search to compute the shortest path
- BFS Spanning Tree contains shortest path to each node in the graph
 - Need to do some more work to create & save BFS spanning tree
- When edges have differing weights, this obviously will not work

FR-107: Single Source Shortest Path

- Divide the vertices into two sets:
 - Vertices whose shortest path from the initial vertex is known
 - Vertices whose shortest path from the initial vertex is not known
- Initially, only the initial vertex is known
- Move vertices one at a time from the unknown set to the known set, until all vertices are known

FR-108: Dijkstra's Algorithm

- Keep a table that contains, for each vertex
 - Is the distance to that vertex known?
 - What is the best distance we've found so far?
- Repeat:

CS245-2017S-FR

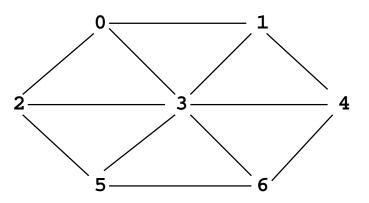
- Pick the smallest unknown distance
- mark it as known
- update the distance of all unknown neighbors of that node
- Until all vertices are known

FR-109: Spanning Trees

- Given a connected, undirected graph G
 - A subgraph of G contains a subset of the vertices and edges in G
 - A Spanning Tree T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic

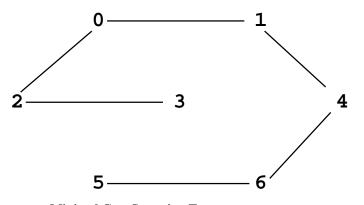
FR-110: Spanning Tree Examples

• Graph



FR-111: Spanning Tree Examples

• Spanning Tree



FR-112: Minimal Cost Spanning Tree

CS245-2017S-FR

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

FR-113: Kruskal's Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge *e* (in increasing order of cost)
 - Add e to G if it would not cause a cycle

FR-114: Kruskal's Algorithm

- We need to:
 - Put each vertex in its own tree
 - Given any two vertices v_1 and v_2 , determine if they are in the same tree
 - Given any two vertices v_1 and v_2 , merge the tree containing v_1 and the tree containing v_2
- ... sound familiar?

FR-115: Kruskal's Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge $e = (v_1, v_2)$ in the list
 - if $FIND(v_1) = FIND(v_2)$
 - Add *e* to spanning tree
 - UNION (v_1, v_2)

FR-116: Prim's Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
 - vertices in the spanning tree
 - vertices *not* in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 - Pick the initial vertex arbitrarily

FR-117: Prim's Algorithm

• While there are vertices not in the spanning tree

• Add the cheapest vertex to the spanning tree

FR-118: Indexing

- Operations:
 - Add an element
 - Remove an element
 - Find an element, using a key
 - Find all elements in a range of key values

FR-119: 2-3 Trees

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth

FR-120: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true
 - Otherwise, recursively find in the appropriate subtree

FR-121: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!

FR-122: Splitting nodes

- To split a node in a 2-3 tree that has 3 elements:
 - Split nodes into two nodes
 - One node contains the smallest element
 - Other node contains the largest element
 - Add median element to parent
 - Parent can then handle the extra pointer

FR-123: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

FR-124: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

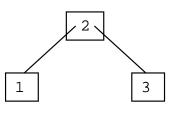
FR-125: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split

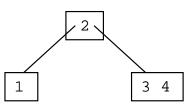
FR-126: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



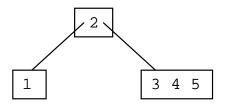
FR-127: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



FR-128: 2-3 Tree Example

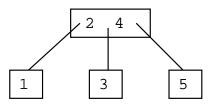
• Inserting elements 1-9 (in order) into a 2-3 tree



Too many keys, need to split

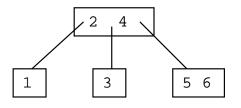
FR-129: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



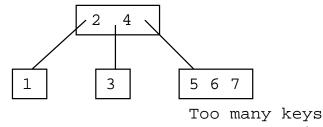
FR-130: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



FR-131: 2-3 Tree Example

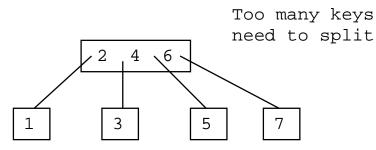
• Inserting elements 1-9 (in order) into a 2-3 tree



need to split

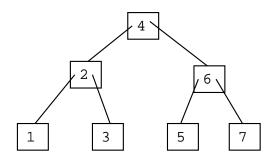
FR-132: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



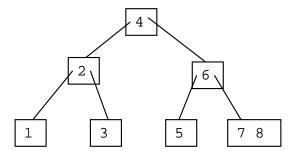
FR-133: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



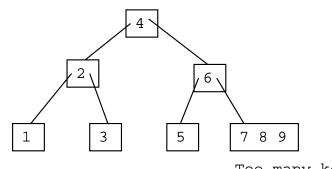
FR-134: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



FR-135: 2-3 Tree Example

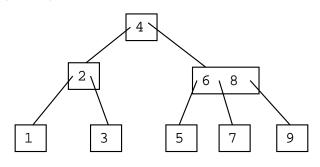
• Inserting elements 1-9 (in order) into a 2-3 tree



Too many keys need to split

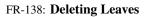
FR-136: 2-3 Tree Example

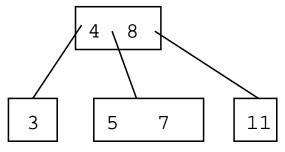
• Inserting elements 1-9 (in order) into a 2-3 tree



FR-137: Deleting Leaves

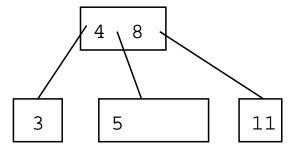
- If leaf contains 2 keys
 - Can safely remove a key





• Deleting 7

FR-139: Deleting Leaves

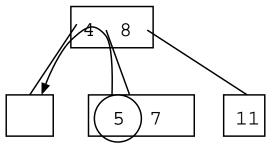


• Deleting 7

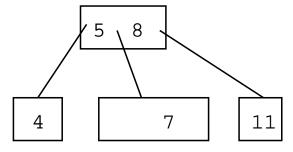
FR-140: Deleting Leaves

- If leaf contains 1 key
 - Cannot remove key without making leaf empty
 - Try to steal extra key from sibling

FR-141: Deleting Leaves



• Steal key from sibling *through parent*

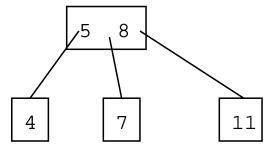


• Steal key from sibling through parent

FR-143: Deleting Leaves

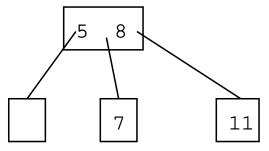
- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse

FR-144: Merging Nodes



• Removing the 4

FR-145: Merging Nodes

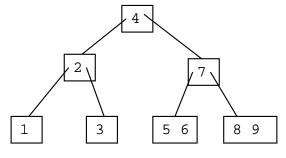


- Removing the 4
- Combine 5, 7 into one node

FR-146: Deleting Interior Keys

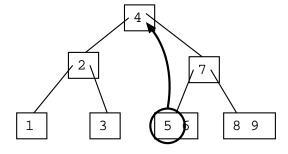
- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursivly delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)

FR-147: Deleting Interior Keys



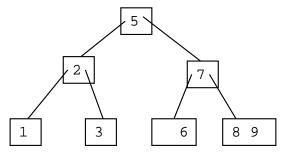
• Deleting the 4

FR-148: Deleting Interior Keys

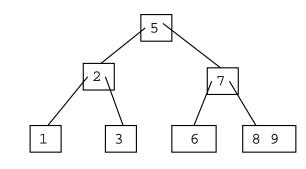


- Deleting the 4
- Replace 4 with smallest element in tree to right of 4

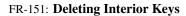
FR-149: Deleting Interior Keys

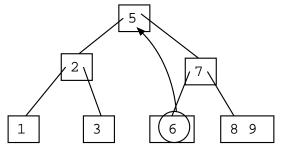


FR-150: Deleting Interior Keys



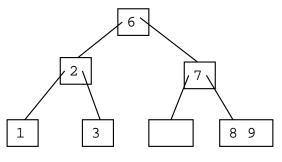
• Deleting the 5





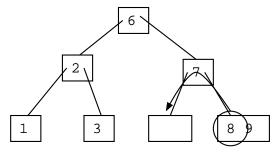
- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

FR-152: Deleting Interior Keys



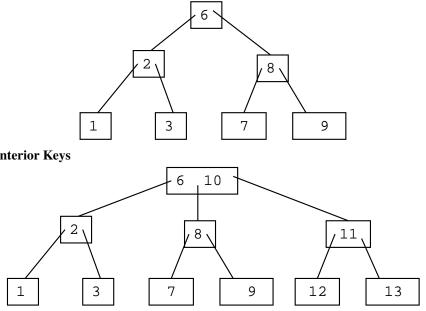
- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys

FR-153: Deleting Interior Keys



- Node with two few keys
- Steal a key from a sibling

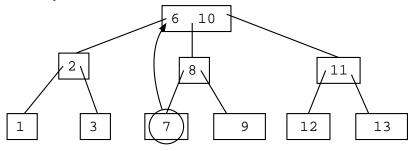
FR-154: Deleting Interior Keys



FR-155: Deleting Interior Keys

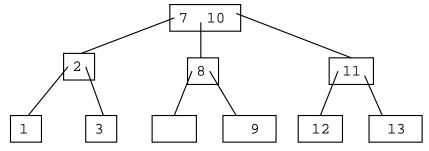
• Removing the 6

FR-156: Deleting Interior Keys



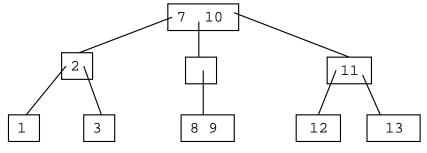
- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

FR-157: Deleting Interior Keys



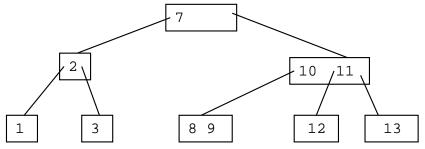
- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling

FR-158: Deleting Interior Keys



- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)

FR-159: Deleting Interior Keys



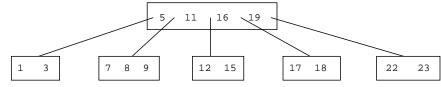
FR-160: Generalizing 2-3 Trees

- In 2-3 Trees:
 - Each node has 1 or 2 keys
 - Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node

FR-161: B-Trees

- A B-Tree of maximum degree k:
 - All interior nodes have $\lceil k/2 \rceil \dots k$ children
 - All nodes have $\lceil k/2 \rceil 1 \dots k 1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3

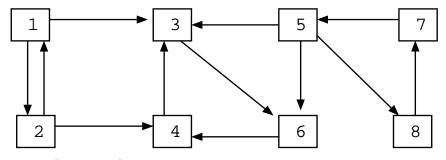
FR-162: **B-Trees**



- B-Tree with maximum degree 5
 - Interior nodes have 3 5 children
 - All nodes have 2-4 keys

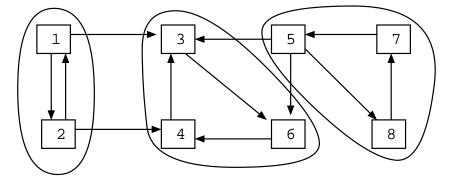
FR-163: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.



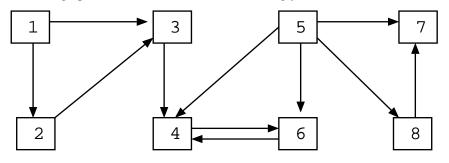
FR-164: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.



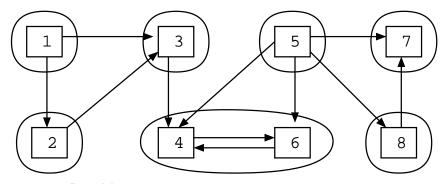
FR-165: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.



FR-166: Connected Components

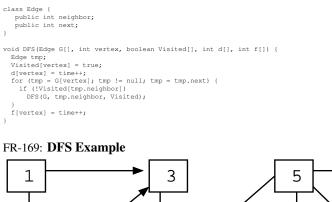
• Subgraph (subset of the vertices) that is strongly connected.

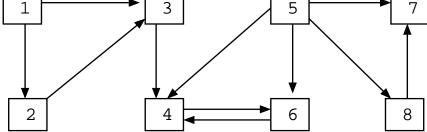


FR-167: **DFS Revisited**

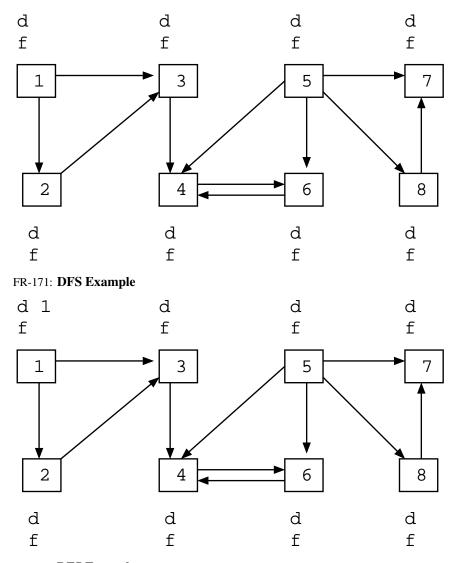
- We can keep track of the order in which we visit the elements in a Depth-First Search
- For any vertex v in a DFS:
 - d[v] = *Discovery* time when the vertex is first visited
 - f[v] = Finishing time when we have finished with a vertex (and all of its children

FR-168: DFS Revisited

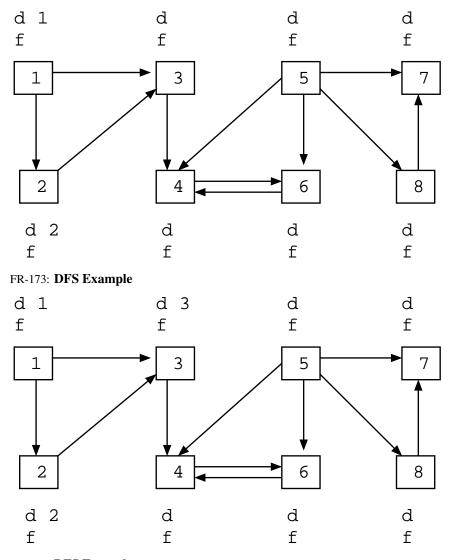




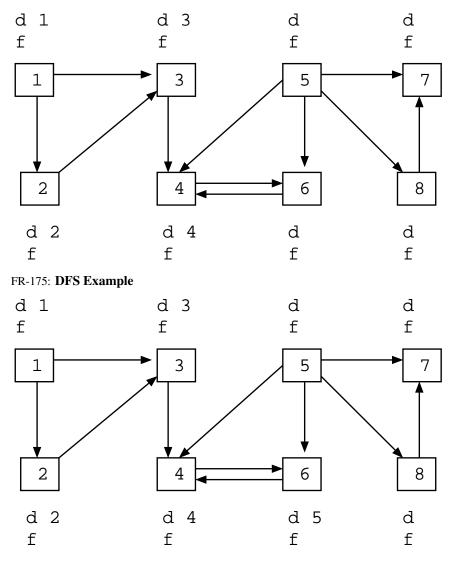
FR-170: DFS Example



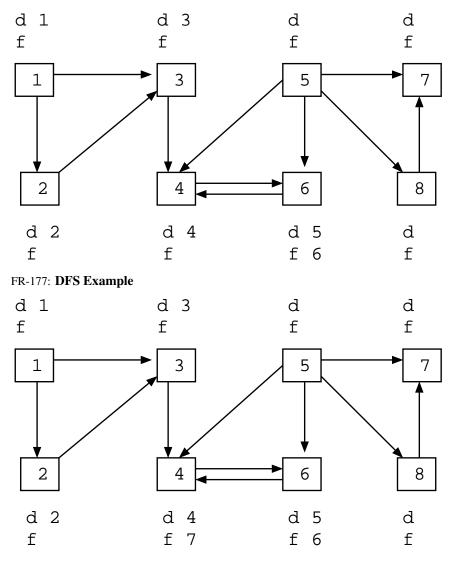
FR-172: DFS Example



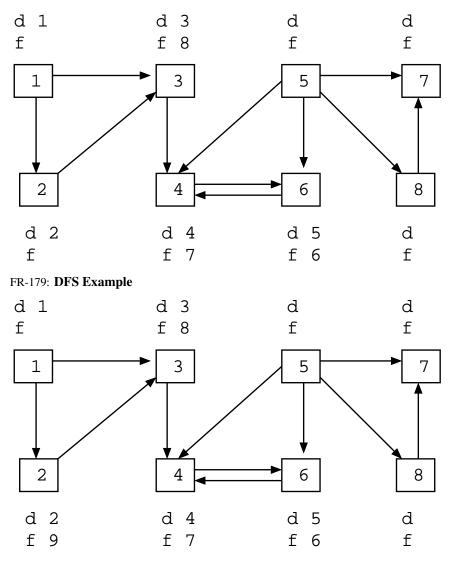
FR-174: DFS Example



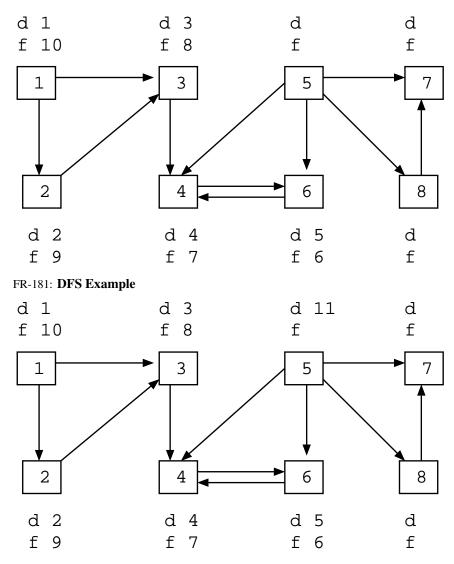
FR-176: DFS Example



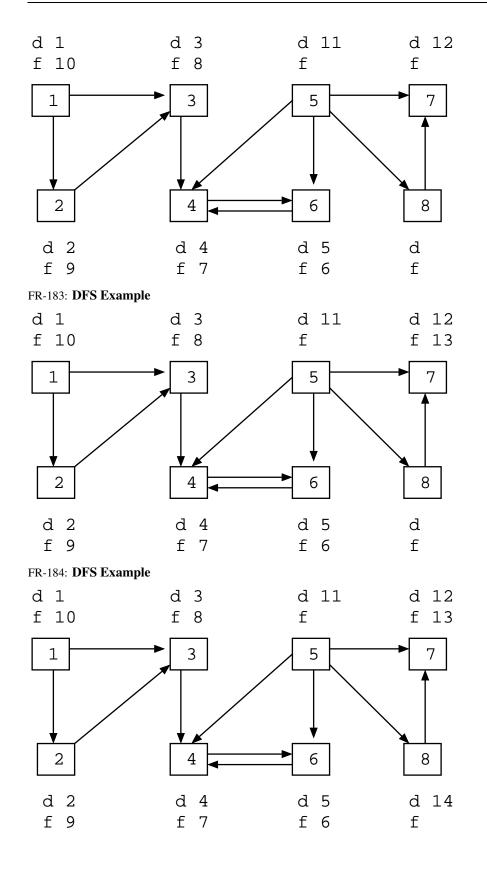
FR-178: DFS Example



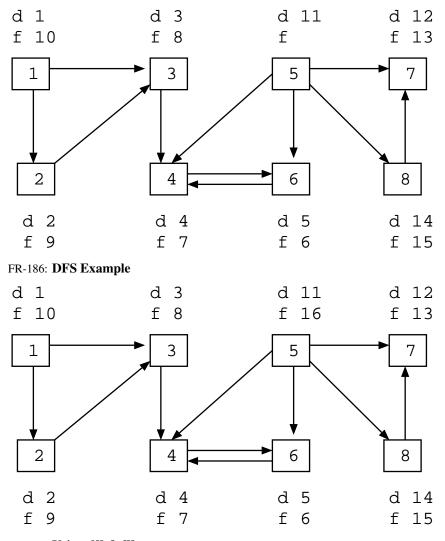
FR-180: DFS Example



FR-182: DFS Example



FR-185: DFS Example



FR-187: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - Start from v_1
 - Eventually visit v_2
 - Finish v_2
 - Finish v_1

FR-188: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:

- Path from v_1 to v_2
- No path from v_2 to v_1
 - Start from v_2
 - Eventually finish v_2
 - Start from v_1
 - Eventually finish v_1

FR-189: Using d[] & f[]

- If $f[v_2] < f[v_1]$:
 - Either a path from v_1 to v_2 , or no path from v_2 to v_1
 - If there is a path from v_2 to v_1 , then there must be a path from v_1 to v_2
- $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component

FR-190: Connected Components

- Run DFS on G, calculating f[] times
- Compute G^T
- Run DFS on G^T examining nodes in *inverse order of finishing times* from first DFS
- Any nodes that are in the same DFS search tree in G^T must be in the same connected component

FR-191: Dynamic Programming

- Simple, recursive solution to a problem
- Naive solution recalculates same value many times
- Leads to exponential running time

FR-192: Dynamic Programming

- Recalculating values can lead to unacceptable run times
 - Even if the total number of values that needs to be calculated is small
- Solution: Don't recalculate values
 - Calculate each value once
 - Store results in a table
 - Use the table to calculate larger results

FR-193: Faster Fibonacci

```
int Fibonacci(int n) {
    int[] FIB = new int[n+1];
    FIB[0] = 1;
    FIB[1] = 1;
```

}

```
for (i=2; i<=n; i++)
FIB[i] = FIB[i-1] + FIB[i-2];
return FIB[n];</pre>
```

FR-194: Dynamic Programming

- To create a dynamic programming solution to a problem:
 - Create a simple recursive solution (that may require a large number of repeat calculations
 - Design a table to hold partial results
 - Fill the table such that whenever a partial result is needed, it is already in the table

FR-195: Memoization

- Can be difficult to determine order to fill the table
- We can use a table together with recursive solution
 - Initialize table with sentinel value
 - In recursive function:
 - Check table if entry is there, use it
 - Otherwise, call function recursively Set appropriate table value return table value

FR-196: Fibonacci Memoized

```
int Fibonacci(int n) {
    if (n == 0)
        return 1;
    if (n == 1)
        return 1;
    if (T[n] == -1)
        T[n] = Fibonacci(n-1) + Fibonacci(n-2);
    return T[n];
}
```