
CS245-2017S-FR Final Review 1

FR-0: Big-Oh Notation

O(f(n)) is the set of all functions that are bound from above by f(n) p

T (n) ∈ O(f(n)) if

∃c, n0 such that T (n) ≤ c ∗ f(n) when n > n0

FR-1: Big-Oh Examples

n ∈ O(n) ?

10n ∈ O(n) ?

n ∈ O(10n) ?

n ∈ O(n2) ?

n2 ∈ O(n) ?

10n2 ∈ O(n2) ?

n lgn ∈ O(n2) ?

lnn ∈ O(2n) ?

lgn ∈ O(n) ?

3n+ 4 ∈ O(n) ?

5n2 + 10n− 2 ∈ O(n3)? O(n2) ? O(n) ?

FR-2: Big-Oh Examples

n ∈ O(n)
10n ∈ O(n)
n ∈ O(10n)
n ∈ O(n2)
n2 6∈ O(n)

10n2 ∈ O(n2)
n lgn ∈ O(n2)
lnn ∈ O(2n)
lgn ∈ O(n)

3n+ 4 ∈ O(n)
5n2 + 10n− 2 ∈ O(n3),∈ O(n2), 6∈ O(n) ?

FR-3: Big-Oh Examples II√
n ∈ O(n) ?

lgn ∈ O(2n) ?

lgn ∈ O(n) ?

n lgn ∈ O(n) ?

n lgn ∈ O(n2) ?√
n ∈ O(lg n) ?

lgn ∈ O(
√
n) ?

n lgn ∈ O(n
3

2) ?

n3 + n lgn+ n
√
n ∈ O(n lg n) ?

n3 + n lgn+ n
√
n ∈ O(n3) ?

n3 + n lgn+ n
√
n ∈ O(n4) ?

FR-4: Big-Oh Examples II

CS245-2017S-FR Final Review 2

√
n ∈ O(n)

lgn ∈ O(2n)
lgn ∈ O(n)

n lgn 6∈ O(n)
n lgn ∈ O(n2)√

n 6∈ O(lg n)
lgn ∈ O(

√
n)

n lgn ∈ O(n
3

2)
n3 + n lgn+ n

√
n 6∈ O(n lg n)

n3 + n lgn+ n
√
n ∈ O(n3)

n3 + n lgn+ n
√
n ∈ O(n4)

FR-5: Big-Oh Examples III

f(n) =

{

n for n odd
n3 for n even

g(n) = n2

f(n) ∈ O(g(n)) ?

g(n) ∈ O(f(n)) ?

n ∈ O(f(n)) ?

f(n) ∈ O(n3) ?

FR-6: Big-Oh Examples III

f(n) =

{

n for n odd
n3 for n even

g(n) = n2

f(n) 6∈ O(g(n))
g(n) 6∈ O(f(n))

n ∈ O(f(n))
f(n) ∈ O(n3)

FR-7: Big-Ω Notation Ω(f(n)) is the set of all functions that are bound from below by f(n)

T (n) ∈ Ω(f(n)) if

∃c, n0 such that T (n) ≥ c ∗ f(n) when n > n0

FR-8: Big-Ω Notation Ω(f(n)) is the set of all functions that are bound from below by f(n)

T (n) ∈ Ω(f(n)) if

∃c, n0 such that T (n) ≥ c ∗ f(n) when n > n0

f(n) ∈ O(g(n)) ⇒ g(n) ∈ Ω(f(n))

FR-9: Big-Θ Notation Θ(f(n)) is the set of all functions that are bound both above and below by f(n). Θ is a tight

bound

T (n) ∈ Θ(f(n)) if

CS245-2017S-FR Final Review 3

T (n) ∈ O(f(n)) and T (n) ∈ Ω(f(n))
FR-10: Big-Oh Rules

1. If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n))

2. If f(n) ∈ O(kg(n) for any constant k > 0, then f(n) ∈ O(g(n))

3. If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then f1(n) + f2(n) ∈ O(max(g1(n), g2(n)))

4. If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then f1(n) ∗ f2(n) ∈ O(g1(n) ∗ g2(n))

(Also work for Ω, and hence Θ)

FR-11: Big-Oh Guidelines

• Don’t include constants/low order terms in Big-Oh

• Simple statements: Θ(1)

• Loops: Θ(inside) * # of iterations

• Nested loops work the same way

• Consecutive statements: Longest Statement

• Conditional (if) statements:

O(Test + longest branch)

FR-12: Calculating Big-Oh

for (i=1; i<n; i++)

for (j=1; j < n/2; j++)

sum++;

FR-13: Calculating Big-Oh

for (i=1; i<n; i++) Executed n times

for (j=1; j < n/2; j++) Executed n/2 times

sum++; O(1)

Running time: O(n2),Ω(n2),Θ(n2)
FR-14: Calculating Big-Oh

for (i=1; i<n; i=i*2)

sum++;

FR-15: Calculating Big-Oh

for (i=1; i<n; i=i*2) Executed lg n times

sum++; O(1)

Running Time: O(lg n),Ω(lg n),Θ(lgn)
FR-16: Calculating Big-Oh

CS245-2017S-FR Final Review 4

for (i=1; i<n; i=i*2)

for (j=0; j < n; j = j + 1)

sum++;

for (i=n; i >1; i = i / 2)

for (j = 1; j < n; j = j * 2)

for (k = 1; k < n; k = k * 3)

sum++

FR-17: Recurrence Relations

T (n) = Time required to solve a problem of size n

Recurrence relations are used to determine the running time of recursive programs – recurrence relations them-

selves are recursive

T (0) = time to solve problem of size 0

– Base Case

T (n) = time to solve problem of size n
– Recursive Case

FR-18: Recurrence Relations

long power(long x, long n) {

if (n == 0)

return 1;

else

return x * power(x, n-1);

}

T (0) = c1 for some constant c1
T (n) = c2 + T (n− 1) for some constant c2

FR-19: Building a Better Power

long power(long x, long n) {

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

}

FR-20: Building a Better Power

long power(long x, long n) {

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

}

T (0) = c1
T (1) = c2
T (n) = T (n/2) + c3

CS245-2017S-FR Final Review 5

(Assume n is a power of 2) FR-21: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3
= T (n/4) + c3 + c3
= T (n/4)2c3 T (n/4) = T (n/8) + c3
= T (n/8) + c3 + 2c3
= T (n/8)3c3 T (n/8) = T (n/16) + c3
= T (n/16) + c3 + 3c3
= T (n/16) + 4c3 T (n/16) = T (n/32) + c3
= T (n/32) + c3 + 4c3
= T (n/32) + 5c3
= . . .
= T (n/2k) + kc3

FR-22: Solving Recurrence Relations

T (0) = c1
T (1) = c2
T (n) = T (n/2) + c3

T (n) = T (n/2k) + kc3

We want to get rid of T (n/2k). Since we know T (1) ...

n/2k = 1

n = 2k

lg n = k

FR-23: Solving Recurrence Relations

T (1) = c2
T (n) = T (n/2k) + kc3

T (n) = T (n/2lgn) + lg nc3

= T (1) + c3 lgn

= c2 + c3 lgn

∈ Θ(lg n)

FR-24: Abstract Data Types

• An Abstract Data Type is a definition of a type based on the operations that can be performed on it.

• An ADT is an interface

• Data in an ADT cannot be manipulated directly – only through operations defined in the interface

FR-25: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

• Add an element to the top of the stack

• Remove the top element

CS245-2017S-FR Final Review 6

• Check if the stack is empty

FR-26: Stack Implementation

Array:

• Stack elements are stored in an array

• Top of the stack is the end of the array

• If the top of the stack was the beginning of the array, a push or pop would require moving all elements in

the array

• Push: data[top++] = elem

• Pop: elem = data[--top]

FR-27: Stack Implementation

Linked List:

• Stack elements are stored in a linked list

• Top of the stack is the front of the linked list

• push: top = new Link(elem, top)

• pop: elem = top.element(); top = top.next()

FR-28: Queue

A Queue is a Last-In, First-Out (FIFO) data structure.

Queue Operations:

• Add an element to the end (tail) of the Queue

• Remove an element from the front (head) of the Queue

• Check if the Queue is empty

FR-29: Queue Implementation

Linked List:

• Maintain a pointer to the first and last element in the Linked List

• Add elements to the back of the Linked List

• Remove elements from the front of the linked list

• Enqueue: tail.setNext(new link(elem,null));

tail = tail.next()

• Dequeue: elem = head.element();

head = head.next();

FR-30: Queue Implementation

Array:

• Store queue elements in a circular array

CS245-2017S-FR Final Review 7

• Maintain the index of the first element (head) and the next location to be inserted (tail)

• Enqueue: data[tail] = elem;

tail = (tail + 1) % size

• Dequeue: elem = data[head];

head = (head + 1) % size

FR-31: Binary Trees

Binary Trees are Recursive Data Structures

• Base Case: Empty Tree

• Recursive Case: Node, consiting of:

• Left Child (Tree)

• Right Child (Tree)

• Data

FR-32: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)

A

B C

D E

F

A

B

C

D

A

B C

F GD E

FR-33: Tree Terminology

• Parent / Child

• Leaf node

• Root node

• Edge (between nodes)

• Path

• Ancestor / Descendant

• Depth of a node n

• Length of path from root to n

• Height of a tree

CS245-2017S-FR Final Review 8

• (Depth of deepest node) + 1

FR-34: Binary Search Trees

• Binary Trees

• For each node n, (value stored at node n) > (value stored in left subtree)

• For each node n, (value stored at node n) < (value stored in right subtree)

FR-35: Writing a Recursive Algorithm

• Determine a small version of the problem, which can be solved immediately. This is the base case

• Determine how to make the problem smaller

• Once the problem has been made smaller, we can assume that the function that we are writing will work correctly

on the smaller problem (Recursive Leap of Faith)

• Determine how to use the solution to the smaller problem to solve the larger problem

FR-36: Finding an Element in a BST

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?

• If the tree is empty, then the element can’t be there

• If the element is stored at the root, then the element is there

FR-37: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

• Both the left and right subtrees are smaller versions of the problem. Which one do we use?

• If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use

the right subtree.

• How do we use the solution to the subproblem to solve the original problem?

• The solution to the subproblem is the solution to the original problem (this is not always the case in

recursive algorithms)

FR-38: Printing out a BST

To print out all element in a BST:

• Print all elements in the left subtree, in order

• Print out the element at the root of the tree

• Print all elements in the right subtree, in order

• Each subproblem is a smaller version of the original problem – we can assume that a recursive call will

work!

FR-39: Printing out a BST

CS245-2017S-FR Final Review 9

void print(Node tree) {

if (tree != null) {

print(tree.left());

System.out.prinln(tree.element());

print(tree.right());

}

}

FR-40: Inserting e into BST T

• Base case – T is empty:

• Create a new tree, containing the element e

• Recursive Case:

• If e is less than the element at the root of T , insert e into left subtree

• If e is greater than the element at the root of T , insert e into the right subtree

FR-41: Inserting e into BST T

Node insert(Node tree, Comparable elem) {

if (tree == null) {

return new Node(elem);

if (elem.compareTo(tree.element() < 0)) {

tree.setLeft(insert(tree.left(), elem));

return tree;

} else {

tree.setRight(insert(tree.right(), elem));

return tree;

}

}

FR-42: Deleting From a BST

• Removing a leaf:

• Remove element immediately

• Removing a node with one child:

• Just like removing from a linked list

• Make parent point to child

• Removing a node with two children:

• Replace node with largest element in left subtree, or the smallest element in the right subtree

FR-43: Priority Queue ADT

Operations

• Add an element / priority pair

• Return (and remove) element with highest priority

CS245-2017S-FR Final Review 10

Implementation:

• Heap

Add Element O(lg n)
Remove Higest Priority O(lg n)

FR-44: Heap Definition

• Complete Binary Tree

• Heap Property

• For every subtree in a tree, each value in the subtree is ¡= value stored at the root of the subtree

FR-45: Heap Examples

1

2 4

7 3 14 15

9 8 5 4
Valid Heap

FR-46: Heap Examples

1

8 5

2 9 4 14

5 7 10 13
Invalid Heap

FR-47: Heap Insert

• There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree

• Inserting an element at the “end” of the heap might break the heap property

• Swap the inserted value up the tree

CS245-2017S-FR Final Review 11

FR-48: Heap Remove Largest

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Move last element into root

• Shift the root down, until heap property is satisfied

FR-49: Representing Heaps

A Complete Binary Tree can be stored in an array:

1

2 14

5 3 16 15

7 6 8 9

1 2 14 5 3 16 15 7 6 8 9
0 1 2 3 4 5 6 7 8 9 10 11 12 13

FR-50: CBTs as Arrays

• The root is stored at index 0

• For the node stored at index i:

• Left child is stored at index 2 ∗ i + 1

• Right child is stored at index 2 ∗ i+ 2

• Parent is stored at index ⌊(i − 1)/2⌋

FR-51: Trees with > 2 children

How can we implement trees with nodes that have > 2 children?

CS245-2017S-FR Final Review 12

FR-52: Trees with > 2 children

• Array of Children

FR-53: Trees with > 2 children

• Linked List of Children

FR-54: Left Child / Right Sibling

• We can integrate the linked lists with the nodes themselves:

CS245-2017S-FR Final Review 13

FR-55: Serializing Binary Trees

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!

A

B C

D E

G

F

ABD//EG///C/F//
FR-56: Serializing Binary Trees

• In most trees, more null pointers than internal nodes

• Instead of marking null pointers, mark internal nodes

• Still need to mark some nulls, for nodes with 1 child

A

B C

D E

G

F

FR-57: Serializing General Trees

CS245-2017S-FR Final Review 14

• Store an “end of children” marker

A

B D

E F I

C

G H J

K
FR-58: Main Memory Sorting

• All data elements can be stored in memory at the same time

• Data stored in an array, indexed from 0 . . . n− 1, where n is the number of elements

• Each element has a key value (accessed with a key() method)

• We can compare keys for ¡, ¿, =

• For illustration, we will use arrays of integers – though often keys will be strings, other Comparable types

FR-59: Stable Sorting

• A sorting algorithm is Stable if the relative order of duplicates is preserved

• The order of duplicates matters if the keys are duplicated, but the records are not.

3 1 2 1 1 2 3
B
o
b

J
o
e

E
d

A
m
y

S
u
e

A
l

B
u
d

Key

Data

1 1 1 2 2 3 3
A
m
y

J
o
e

S
u
e

E
d

A
l

B
o
b

B
u
d

Key

Data

A non-Stable sort

FR-60: Insertion Sort

• Separate list into sorted portion, and unsorted portion

• Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list

• (A list of one element is always sorted)

• Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted

CS245-2017S-FR Final Review 15

FR-61: Bubble Sort

• Scan list from the last index to index 0, swapping the smallest element to the front of the list

• Scan the list from the last index to index 1, swapping the second smallest element to index 1

• Scan the list from the last index to index 2, swapping the third smallest element to index 2

. . .

• Swap the second largest element into position (n− 2)

FR-62: Selection Sort

• Scan through the list, and find the smallest element

• Swap smallest element into position 0

• Scan through the list, and find the second smallest element

• Swap second smallest element into position 1

. . .

• Scan through the list, and find the second largest element

• Swap smallest largest into position n− 2

FR-63: Shell Sort

• Sort n/2 sublists of length 2, using insertion sort

• Sort n/4 sublists of length 4, using insertion sort

• Sort n/8 sublists of length 8, using insertion sort

. . .

• Sort 2 sublists of length n/2, using insertion sort

• Sort 1 sublist of length n, using insertion sort

FR-64: Merge Sort

• Base Case:

• A list of length 1 or length 0 is already sorted

• Recursive Case:

• Split the list in half

• Recursively sort two halves

• Merge sorted halves together

Example: 5 1 8 2 6 4 3 7 FR-65: Divide & Conquer

Quick Sort:

• Divide the list two parts

• Some work required – Small elements in left sublist, large elements in right sublist

CS245-2017S-FR Final Review 16

• Recursively sort two parts

• Combine sorted lists into one list

• No work required!

FR-66: Quick Sort

• Pick a pivot element

• Reorder the list:

• All elements < pivot

• Pivot element

• All elements > pivot

• Recursively sort elements < pivot

• Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6 FR-67: Comparison Sorting

• Comparison sorts work by comparing elements

• Can only compare 2 elements at a time

• Check for <, >, =.

• All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts

• If we know nothing about the list to be sorted, we need to use a comparison sort

FR-68: Sorting Lower Bound

• All comparison sorting algorithms can be represented by a decision tree with n! leaves

• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height

of the tree

• A decision tree with n! leaves must have a height of at least n lgn

• All comparison sorting algorithms have worst-case running time Ω(n lgn)

FR-69: Binsort

• Sort n elements, in the range 1 . . .m

• Keep a list of m linked lists

• Insert each element into the appropriate linked lists

• Collect the lists together

FR-70: Bucket Sort

• Modify binsort so thtat each list can hold a range of values

• Need to keep each bucket sorted

CS245-2017S-FR Final Review 17

FR-71: Counting Sort

for(i=0; i<A.length; i++)

C[A[i].key()]++;

for(i=1; i<C.length; i++)

C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {

B[C[A[i].key()]] = A[i];

C[A[i].key()]--;

}

for (i=0; i<A.length; i++)

A[i] = B[i];

FR-72: Radix Sort

• Sort a list of numbers one digit at a time

• Sort by 1st digit, then 2nd digit, etc

• Each sort can be done in linear time, using counting sort

• First Try: Sort by most significant digit, then the next most significant digit, and so on

• Need to keep track of a lot of sublists

FR-73: Radix Sort Second Try:

• Sort by least significant digit first

• Then sort by next-least significant digit, using a Stable sort

. . .

• Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted.

FR-74: Searching & Selecting

• Maintian a Database (keys and associated data)

• Operations:

• Add a key / value pair to the database

• Remove a key (and associated value) from the database

• Find the value associated with a key

FR-75: Hash Function

• What if we had a “magic function” –

CS245-2017S-FR Final Review 18

• Takes a key as input

• Returns the index in the array where the key can be found, if the key is in the array

• To add an element

• Put the key through the magic function, to get a location

• Store element in that location

• To find an element

• Put the key through the magic function, to get a location

• See if the key is stored in that location

FR-76: Hash Function

• The “magic function” is called a Hash function

• If hash(key) = i, we say that the key hashes to the value i

• We’d like to ensure that different keys will always hash to different values.

• Not possible – too many possible keys

FR-77: Integer Hash Function

• When two keys hash to the same value, a collision occurs.

• We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly

through the array.

• Example: Keys are integers

• Keys are in range 1 . . .m

• Array indices are in range 1 . . . n

• n << m

• hash(k) = kmodn

FR-78: String Hash Function

• Hash tables are usually used to store string values

• If we can convert a string into an integer, we can use the integer hash function

• How can we convert a string into an integer?

• Concatenate ASCII digits together

keysize−1
∑

k=0

key[k] ∗ 256keysize−k−1

FR-79: String Hash Function

• Concatenating digits does not work, since numbers get big too fast. Solutions:

CS245-2017S-FR Final Review 19

• Overlap digits a little (use base of 32 instead of 256)

• Ignore early characters (shift them off the left side of the string)

static long hash(String key, int tablesize) {

long h = 0;

int i;

for (i=0; i<key.length(); i++)

h = (h << 4) + (int) key.charAt(i);

return h % tablesize;

}

FR-80: ElfHash

• For each new character, the hash value is shifted to the left, and the new character is added to the accumulated

value.

• If the string is long, the early characters will “fall off” the end of the hash value when it is shifted

• Early characters will not affect the hash value of large strings

• Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and

XOR’ed.

• Every character will influence the value of the hash function.

FR-81: Collisions

• When two keys hash to the same value, a collision occurs

• A collision strategy tells us what to do when a collision occurs

• Two basic collision strategies:

• Open Hashing (Closed Addressing, Separate Chaining)

• Closed Hashing (Open Addressing)

FR-82: Closed Hashing

• To add element X to a closed hash table:

• Find the smallest i, such that Array[hash(x) + f(i)] is empty (wrap around if necessary)

• Add X to Array[hash(x) + f(i)]

• If f(i) = i, linear probing

FR-83: Closed Hashing

• Quadradic probing

• Find the smallest i, such that Array[hash(x) + f(i)] is empty

• Add X to Array[hash(x) + f(i)]

• f(i) = i2

FR-84: Closed Hashing

CS245-2017S-FR Final Review 20

• Multiple keys hash to the same element

• Secondary clustering

• Double Hashing

• Use a secondary hash function to determine how far ahead to look

• f(i) = i * hash2(key)

FR-85: Disjoint Sets

• Elements will be integers (for now)

• Operations:

• CreateSets(n) – Create n sets, for integers 0..(n-1)

• Union(x,y) – merge the set containing x and the set containing y

• Find(x) – return a representation of x’s set

• Find(x) = Find(y) iff x,y are in the same set

FR-86: Implementing Disjoint Sets

• Find: (pseudo-Java)

int Find(x) {

while (Parent[x] > 0)

x = Parent[x]

return x

}

FR-87: Implementing Disjoint Sets

• Union(x,y) (pseudo-Java)

void Union(x,y) {

rootx = Find(x);

rooty = Find(y);

Parent[rootx] = Parent[rooty];

}

FR-88: Union by Rank

• When we merge two sets:

• Have the shorter tree point to the taller tree

• Height of taller tree does not change

• If trees have the same height, choose arbitrarily

FR-89: Path Compression

• After each call to Find(x), change x’s parent pointer to point directly at root

• Also, change all parent pointers on path from x to root

CS245-2017S-FR Final Review 21

FR-90: Graphs

• A graph consists of:

• A set of nodes or vertices (terms are interchangable)

• A set of edges or arcs (terms are interchangable)

• Edges in graph can be either directed or undirected

FR-91: Graphs & Edges

• Edges can be labeled or unlabeled

• Edge labels are typically the cost assoctiated with an edge

• e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

FR-92: Graph Representations

• Adjacency Matrix

• Represent a graph with a two-dimensional array G

• G[i][j] = 1 if there is an edge from node i to node j

• G[i][j] = 0 if there is no edge from node i to node j

• If graph is undirected, matrix is symmetric

• Can represent edges labeled with a cost as well:

• G[i][j] = cost of link between i and j

• If there is no direct link, G[i][j] = ∞

FR-93: Adjacency Matrix

• Examples:

0 1

2 3
0 1 2 3

0 0 1 0 1

1 1 0 1 1

2 0 1 0 0

3 1 1 0 0

FR-94: Adjacency Matrix

• Examples:

CS245-2017S-FR Final Review 22

0 1

2 3
0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 0 0 0

3 1 0 0 0

FR-95: Graph Representations

• Adjacency List

• Maintain a linked-list of the neighbors of every vertex.

• n vertices

• Array of n lists, one per vertex

• Each list i contains a list of all vertices adjacent to i.

FR-96: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1 3

1

2

FR-97: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1

3

2

0 3

1

• Note – lists are not always sorted

FR-98: Topological Sort

CS245-2017S-FR Final Review 23

• Directed Acyclic Graph, Vertices v1 . . . vn

• Create an ordering of the vertices

• If there a path from vi to vj , then vi appears before vj in the ordering

• Example: Prerequisite chains

FR-99: Topological Sort

• Pick a node vk with no incident edges

• Add vk to the ordering

• Remove vk and all edges from vk from the graph

• Repeat until all nodes are picked.

FR-100: Graph Traversals

• Visit every vertex, in an order defined by the topololgy of the graph.

• Two major traversals:

• Depth First Search

• Breadth First Search

FR-101: Depth First Search

• Starting from a specific node (pseudo-code):

DFS(Edge G[], int vertex, boolean Visited[]) {

Visited[vertex] = true;

for each node w adajcent to vertex:

if (!Visited[w])

DFS(G, w, Visited);

}

FR-102: Depth First Search

class Edge {

public int neighbor;

public int next;

}

void DFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

Visited[vertex] = true;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

}

FR-103: Breadth First Search

• DFS: Look as Deep as possible, before looking wide

CS245-2017S-FR Final Review 24

• Examine all descendants of a node, before looking at siblings

• BFS: Look as Wide as possible, before looking deep

• Visit all nodes 1 away, then 2 away, then three away, and so on

FR-104: Search Trees

• Describes the order that nodes are examined in a traversal

• Directed Tree

• Directed edge from v1 to v2 if the edge (v1, v2) was followed during the traversal

FR-105: Computing Shortest Path

• Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path

from x to y in G.

• Undirected graph is a special case of a directed graph, with symmetric edges

• Least-cost path may not be the path containing the fewest edges

• “shortest path” == “least cost path”

• “path containing fewest edges” = “path containing fewest edges”

FR-106: Single Source Shortest Path

• If all edges have unit weight,

• We can use Breadth First Search to compute the shortest path

• BFS Spanning Tree contains shortest path to each node in the graph

• Need to do some more work to create & save BFS spanning tree

• When edges have differing weights, this obviously will not work

FR-107: Single Source Shortest Path

• Divide the vertices into two sets:

• Vertices whose shortest path from the initial vertex is known

• Vertices whose shortest path from the initial vertex is not known

• Initially, only the initial vertex is known

• Move vertices one at a time from the unknown set to the known set, until all vertices are known

FR-108: Dijkstra’s Algorithm

• Keep a table that contains, for each vertex

• Is the distance to that vertex known?

• What is the best distance we’ve found so far?

• Repeat:

CS245-2017S-FR Final Review 25

• Pick the smallest unknown distance

• mark it as known

• update the distance of all unknown neighbors of that node

• Until all vertices are known

FR-109: Spanning Trees

• Given a connected, undirected graph G

• A subgraph of G contains a subset of the vertices and edges in G

• A Spanning Tree T of G is:

• subgraph of G

• contains all vertices in G

• connected

• acyclic

FR-110: Spanning Tree Examples

• Graph

0 1

2 3 4

5 6
FR-111: Spanning Tree Examples

• Spanning Tree

0 1

2 3 4

5 6
FR-112: Minimal Cost Spanning Tree

CS245-2017S-FR Final Review 26

• Minimal Cost Spanning Tree

• Given a weighted, undirected graph G

• Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

FR-113: Kruskal’s Algorithm

• Start with an empty graph (no edges)

• Sort the edges by cost

• For each edge e (in increasing order of cost)

• Add e to G if it would not cause a cycle

FR-114: Kruskal’s Algorithm

• We need to:

• Put each vertex in its own tree

• Given any two vertices v1 and v2, determine if they are in the same tree

• Given any two vertices v1 and v2, merge the tree containing v1 and the tree containing v2

• ... sound familiar?

FR-115: Kruskal’s Algorithm

• Disjoint sets!

• Create a list of all edges

• Sort list of edges

• For each edge e = (v1, v2) in the list

• if FIND(v1) != FIND(v2)

• Add e to spanning tree

• UNION(v1, v2)

FR-116: Prim’s Algorithm

• Grow that spanning tree out from an initial vertex

• Divide the graph into two sets of vertices

• vertices in the spanning tree

• vertices not in the spanning tree

• Initially, Start vertex is in the spanning tree, all other vertices are not in the tree

• Pick the initial vertex arbitrarily

FR-117: Prim’s Algorithm

• While there are vertices not in the spanning tree

CS245-2017S-FR Final Review 27

• Add the cheapest vertex to the spanning tree

FR-118: Indexing

• Operations:

• Add an element

• Remove an element

• Find an element, using a key

• Find all elements in a range of key values

FR-119: 2-3 Trees

• Generalized Binary Search Tree

• Each node has 1 or 2 keys

• Each (non-leaf) node has 2-3 children

• hence the name, 2-3 Trees

• All leaves are at the same depth

FR-120: Finding in 2-3 Trees

• How can we find an element in a 2-3 tree?

• If the tree is empty, return false

• If the element is stored at the root, return true

• Otherwise, recursively find in the appropriate subtree

FR-121: Inserting into 2-3 Trees

• Always insert at the leaves

• To insert an element:

• Find the leaf where the element would live, if it was in the tree

• Add the element to that leaf

• What if the leaf already has 2 elements?

• Split!

FR-122: Splitting nodes

• To split a node in a 2-3 tree that has 3 elements:

• Split nodes into two nodes

• One node contains the smallest element

• Other node contains the largest element

• Add median element to parent

• Parent can then handle the extra pointer

FR-123: 2-3 Tree Example

CS245-2017S-FR Final Review 28

• Inserting elements 1-9 (in order) into a 2-3 tree

1

FR-124: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 2

FR-125: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split

FR-126: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3

FR-127: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4

FR-128: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4 5

Too many keys,
need to split

CS245-2017S-FR Final Review 29

FR-129: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5

FR-130: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5 6

FR-131: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5 6 7

Too many keys
need to split

FR-132: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4 6

3 5 7

Too many keys
need to split

FR-133: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

CS245-2017S-FR Final Review 30

1 3 5 7

4

2 6

FR-134: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8

4

2 6

FR-135: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8 9

4

2 6

Too many keys
need to split

FR-136: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5

4

2 6 8

7 9

FR-137: Deleting Leaves

CS245-2017S-FR Final Review 31

• If leaf contains 2 keys

• Can safely remove a key

FR-138: Deleting Leaves

4 8

3 5 7 11

• Deleting 7

FR-139: Deleting Leaves

4 8

3 5 11

• Deleting 7

FR-140: Deleting Leaves

• If leaf contains 1 key

• Cannot remove key without making leaf empty

• Try to steal extra key from sibling

FR-141: Deleting Leaves

4 8

 5 7 11

• Steal key from sibling through parent

CS245-2017S-FR Final Review 32

FR-142: Deleting Leaves

5 8

 7 114

• Steal key from sibling through parent

FR-143: Deleting Leaves

• If leaf contains 1 key, and no sibling contains extra keys

• Cannot remove key without making leaf empty

• Cannot steal a key from a sibling

• Merge with sibling

• split in reverse

FR-144: Merging Nodes

5 8

7 114

• Removing the 4

FR-145: Merging Nodes

5 8

7 11

• Removing the 4

• Combine 5, 7 into one node

FR-146: Deleting Interior Keys

CS245-2017S-FR Final Review 33

• How can we delete keys from non-leaf nodes?

• Replace key with smallest element subtree to right of key

• Recursivly delete smallest element from subtree to right of key

• (can also use largest element in subtree to left of key)

FR-147: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

• Deleting the 4

FR-148: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

• Deleting the 4

• Replace 4 with smallest element in tree to right of 4

FR-149: Deleting Interior Keys

1 3 6 8 9

5

2 7

FR-150: Deleting Interior Keys

CS245-2017S-FR Final Review 34

1 3 6 8 9

5

2 7

• Deleting the 5

FR-151: Deleting Interior Keys

1 3 6 8 9

5

2 7

• Deleting the 5

• Replace the 5 with the smallest element in tree to right of 5

FR-152: Deleting Interior Keys

1 3 8 9

6

2 7

• Deleting the 5

• Replace the 5 with the smallest element in tree to right of 5

• Node with two few keys

FR-153: Deleting Interior Keys

1 3 8 9

6

2 7

CS245-2017S-FR Final Review 35

• Node with two few keys

• Steal a key from a sibling

FR-154: Deleting Interior Keys

1 3 9

6

2 8

7

FR-155: Deleting Interior Keys

1 3 9

6 10

2 8

7 13

11

12

• Removing the 6

FR-156: Deleting Interior Keys

1 3 9

6 10

2 8

7 13

11

12

• Removing the 6

• Replace the 6 with the smallest element in the tree to the right of the 6

FR-157: Deleting Interior Keys

1 3 9

7 10

2 8

 13

11

12

CS245-2017S-FR Final Review 36

• Node with too few keys

• Can’t steal key from sibling

• Merge with sibling

FR-158: Deleting Interior Keys

1 3 8 9

7 10

2

 13

11

12

• Node with too few keys

• Can’t steal key from sibling

• Merge with sibling

• (arbitrarily pick right sibling to merge with)

FR-159: Deleting Interior Keys

1 3 8 9

7

2

 13

10 11

12

FR-160: Generalizing 2-3 Trees

• In 2-3 Trees:

• Each node has 1 or 2 keys

• Each interior node has 2 or 3 children

• We can generalize 2-3 trees to allow more keys / node

FR-161: B-Trees

• A B-Tree of maximum degree k:

• All interior nodes have ⌈k/2⌉ . . . k children

• All nodes have ⌈k/2⌉ − 1 . . . k − 1 keys

• 2-3 Tree is a B-Tree of maximum degree 3

CS245-2017S-FR Final Review 37

FR-162: B-Trees

5 11 16 19

1 3 7 8 9 12 15 17 18 22 23

• B-Tree with maximum degree 5

• Interior nodes have 3 – 5 children

• All nodes have 2-4 keys

FR-163: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

FR-164: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

FR-165: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

CS245-2017S-FR Final Review 38

FR-166: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

FR-167: DFS Revisited

• We can keep track of the order in which we visit the elements in a Depth-First Search

• For any vertex v in a DFS:

• d[v] = Discovery time – when the vertex is first visited

• f[v] = Finishing time – when we have finished with a vertex (and all of its children

FR-168: DFS Revisited

class Edge {

public int neighbor;

public int next;

}

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {

Edge tmp;

Visited[vertex] = true;

d[vertex] = time++;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

f[vertex] = time++;

}

FR-169: DFS Example

71

2

3

4

5

6 8

FR-170: DFS Example

CS245-2017S-FR Final Review 39

71

2

3

4

5

6 8

d
f

d
f

d
f

d
f

d
f

d
f

d
f

d
f

FR-171: DFS Example

71

2

3

4

5

6 8

d 1
f

d
f

d
f

d
f

d
f

d
f

d
f

d
f

FR-172: DFS Example

CS245-2017S-FR Final Review 40

71

2

3

4

5

6 8

d 1
f

d
f

d
f

d
f

d 2
f

d
f

d
f

d
f

FR-173: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d
f

d
f

d
f

FR-174: DFS Example

CS245-2017S-FR Final Review 41

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d
f

d
f

FR-175: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d 5
f

d
f

FR-176: DFS Example

CS245-2017S-FR Final Review 42

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d 5
f 6

d
f

FR-177: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f 7

d 5
f 6

d
f

FR-178: DFS Example

CS245-2017S-FR Final Review 43

71

2

3

4

5

6 8

d 1
f

d 3
f 8

d
f

d
f

d 2
f

d 4
f 7

d 5
f 6

d
f

FR-179: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f 8

d
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f

FR-180: DFS Example

CS245-2017S-FR Final Review 44

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f

FR-181: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f

FR-182: DFS Example

CS245-2017S-FR Final Review 45

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f

FR-183: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d
f

FR-184: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f

CS245-2017S-FR Final Review 46

FR-185: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f 15

FR-186: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f 16

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f 15

FR-187: Using d[] & f[]

• Given two vertices v1 and v2, what do we know if f [v2] < f [v1]?

• Either:

• Path from v1 to v2

• Start from v1

• Eventually visit v2

• Finish v2

• Finish v1

FR-188: Using d[] & f[]

• Given two vertices v1 and v2, what do we know if f [v2] < f [v1]?

• Either:

CS245-2017S-FR Final Review 47

• Path from v1 to v2
• No path from v2 to v1

• Start from v2
• Eventually finish v2
• Start from v1
• Eventually finish v1

FR-189: Using d[] & f[]

• If f [v2] < f [v1]:

• Either a path from v1 to v2, or no path from v2 to v1

• If there is a path from v2 to v1, then there must be a path from v1 to v2

• f [v2] < f [v1] and a path from v2 to v1 ⇒ v1 and v2 are in the same connected component

FR-190: Connected Components

• Run DFS on G, calculating f[] times

• Compute GT

• Run DFS on GT – examining nodes in inverse order of finishing times from first DFS

• Any nodes that are in the same DFS search tree in GT must be in the same connected component

FR-191: Dynamic Programming

• Simple, recursive solution to a problem

• Naive solution recalculates same value many times

• Leads to exponential running time

FR-192: Dynamic Programming

• Recalculating values can lead to unacceptable run times

• Even if the total number of values that needs to be calculated is small

• Solution: Don’t recalculate values

• Calculate each value once

• Store results in a table

• Use the table to calculate larger results

FR-193: Faster Fibonacci

int Fibonacci(int n) {

int[] FIB = new int[n+1];

FIB[0] = 1;

FIB[1] = 1;

CS245-2017S-FR Final Review 48

for (i=2; i<=n; i++)

FIB[i] = FIB[i-1] + FIB[i-2];

return FIB[n];

}

FR-194: Dynamic Programming

• To create a dynamic programming solution to a problem:

• Create a simple recursive solution (that may require a large number of repeat calculations

• Design a table to hold partial results

• Fill the table such that whenever a partial result is needed, it is already in the table

FR-195: Memoization

• Can be difficult to determine order to fill the table

• We can use a table together with recursive solution

• Initialize table with sentinel value

• In recursive function:

• Check table – if entry is there, use it

• Otherwise, call function recursively

Set appropriate table value

return table value

FR-196: Fibonacci Memoized

int Fibonacci(int n) {

if (n == 0)

return 1;

if (n == 1)

return 1;

if (T[n] == -1)

T[n] = Fibonacci(n-1) + Fibonacci(n-2);

return T[n];

}

