
Computer Science 245
Final Reveiw
Do not turn in!

1. Give the Θ() running time for each of the following functions, in terms of the input parameter n:

(a) int f(int n) {

int i;

sum = 0; Theta(1)

for (i=0; i<n; i=i+2) executed n/2 times

sum++; Theta(1)

return sum; Theta(1)

}

Θ(n)

(b) int g(int n) {

int i;

sum = 0; Theta(1)

for (i=0; i<n; i=i+1) exeucted n times

sum += f(n); Theta(n)

return sum; Theta(1)

}

Θ(n2)

(c) int h(int n) {

for (i=1; i<n; i=i*2) Executed lg n times

sum += f(n); Theta(n)

return sum; Theta(1)

}

Θ(n lg n)

2. For each of the following recursive functions, describe what the function computes, give the recurrence
relation that describes the running time for the function, and then solve the recurrence relation.

(a) int recursive1(int n) {

if (n <= 1)

return 1;

else

return recursive1(n-2) + recursive1(n-2);

}

This function computes 2bn/2c

Recurrence relation:

T (0) = c1

T (1) = c1

T (n) = 2T (n− 2) + c2

Using the substitution method:
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T (n) = 2T (n− 2) + c2

= 2(2T (n− 4) + c2) + c2

= 4T (n− 4) + 3c2

= 4(2T (n− 6) + c2) + 3c2

= 8T (n− 6) + 7c2

= 8(2T (n− 8) + c2) + 7c2

= 16T (n− 8) + 15c2

= 16(2T (n− 10) + c2) + 15c2

= 32T (n− 10) + 31c2

= 32(2T (n− 12) + c2) + 31c2

= 64T (n− 12) + 63c2

. . .

= 2kT (n− 2k) + (2k − 1)c2

We set n− 2k = 0, or k = n/2 to get

T (n) = 2n/2T (n− 2n/2) + (2n/2 − 1)c2

= 2n/2T (0) + 2n/2c2 − c2

= 2n/2c1 + 2n/2c2 − c2

∈ Θ(2n/2)

Using a recursion tree:
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(b) int recursive2(int n) {

if (n <= 1)

return 1;

else

return 2 * recursive2(n-2);

}

This function also computes 2bn/2c (though does it a bit more efficiently ...)
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Reccurence relation:

T (0) = c1

T (1) = c1

T (n) = T (n− 2) + c2

Using the substitution method:

T (n) = T (n− 2) + c2

= (T (n− 4) + c2) + c2

= T (n− 4)2c2

= (T (n− 6) + c2) + 2c2

= T (n− 6) + 3c2

= (T (n− 8) + c2) + 3c2

= T (n− 8) + 4c2

= (T (n− 10) + c2) + 4c2

= T (n− 10) + 5c2

= (T (n− 12) + c2) + 5c2

= T (n− 12) + 6c2

= (T (n− 14) + c2) + 6c2

= T (n− 14) + 7c2

. . .

= T (n− 2k) + kc2

We set n− 2k = 0, or k = n/2 to get

T (n) = T (n− 2(n/2)) + (n/2)c2

= T (0) + (n/2)c2

= c1 + (n/2)c2

∈ Θ(n)

Using a recursion tree:
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3. Consider a B-Tree with maximum degree k (that is, all interior nodes have dk/2e . . . k children – a 2-3
tree is a B-Tree with maximim degree 3).

(a) What is the largest number of keys that can be stored in a B-Tree of height h with maximum
degree k? If the tree is completely full, then every internal node will have k children, and every
node will have k − 1 keys. Thus there will be 1 node at the root, k nodes at the second level of
the tree, k2 nodes at the next level, and so on – up to kh−1 leaves:

One node

k nodes

k   nodes2

k         leavesh-1

(k   )0

......

So, the total number of nodes is:

0 + k + k2 + k3 + . . . + kh−1 =

h−1∑
i=0

ki

=
k(h−1)+1 − 1

k − 1

=
kh − 1

k − 1

Since each node has k − 1 keys, the total number of keys in the entire tree is just (# of keys /
node) * (# of nodes):

(k − 1) ∗ k
h − 1

k − 1
= kh − 1

(b) What is the smallest number of keys that can be stored in an B-Tree of height h with maximum
degree k?

We can use similar logic to the above, however note that the root can have as few as 2 children.
Each interior node (other than the root) will have dk/2e children, and every node (other than the
root) will have dk/2e − 1 keys.

One node

2 nodes (root is a special case)

(k   )0

2 k/2 nodes

2 k/2 nodes
2

2 k/2 nodes
h-2

The total number nodes is:

1 + 2 + 2 ∗ dk/2e+ 2 ∗ dk/2e2 + 2 ∗ dk/2e3 . . . 2 ∗ dk/2eh−1 = 1 + 2 ∗
h−2∑
i=0

dk/2ei
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= 1 + 2 ∗ dk/2e(h−2)+1 − 1

dk/2e − 1

= 1 +
2dk/2eh−1 − 2

dk/2e − 1

4. Consider the following directed graph:
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Run the connected component algorithm on this graph. Show all discovery and finish times, as well as
the depth-first forrest for the final pass of the algorithm.

After computing discovery / finsh times (there is more than one valid set of discovery / finish times,
of course):
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After taking transpose:
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Final depth-first forrest:
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5. Consider the following graph:
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(a) Show the Vertex / Distance / Path table after Dijkstra’s algorithm is run on this graph

Vertex Known Distance Path

0 true 0 -1
1 true 1 0
2 true 3 0
3 true 4 0
4 true 4 5
5 true 2 1
6 true 9 3

(b) Show the Vertex / Distance / Path table after Prim’s algorithm is run on th this graph

Vertex Known Distance Path

0 true 0 -1
1 true 1 0
2 true 3 0
3 true 4 (0 or 5)
4 true 2 5
5 true 1 1
6 true 5 3

6. Look over all the visualizations for algorithms used in the class, be sure you know how all of them
work.
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