
CS326-01 GDB 1

gdb - An Introduction

Debugging is programming. You will spend more of your time debugging than actually writing code.
Even very experienced programmers spend a significant time debugging. Even if you write rock solid code,
chances are you are going to be using libraries and system calls written by someone else. So, you can also
end up debugging problems surrounding the interfaces between your code and other code.

The GNU debugger (gdb) is a very popular command-line tool for stepping through and analyzing C
code. It can also be used with other languages such as C++, Java, and assembly. The basic idea is that you
first start gdb by giving it the name of the program (executable) that you want to debug. Once inside gdb,
you can set breakpoints at arbitrary locations in the source code. Then you can run your program until the
code hits a breakpoint or until the program causes an exception (like a segmentation violation, also known
as dereferencing a bad pointer).

The gdb program is most useful in finding out how a program is executing by watching the program flow
and by inspecting the values of variables at run time. Although gdb is very sophisticated, you only need to
learn a small subset of the commands in order to make it useful. In linux, there are some GUI debuggers
based on gdb, such as ddd. To get more information on gdb type info gdb.

gdb - Summary

• gdb is an interactive, source level, command-line debugger

• Prepare a binary at compile time using the -g option: gcc -g -o foo foo.c

• gdb can be used to get breakpoints. While running your program from within gdb, you program will
stop at each break point so you can inspect the values of important variables.

• gdb allows you to step through your program one statement at a time.

• gdb can be used to find out were a segmentation fault occurs.

• gdb allows you to show a backtrace of the call stack. This allows you to see the chain of functions calls
that leads to the current statement.

gdb command summary

• r (run) – start the program to be debugged

• b line-number (breakpoint) – set a breakpoint at the specified line number. Use b function-name

to break at a function.

• info b – show all your breakpoints

• d – delete all breakpoints

• d number – delete a specific breakpoint

• c (continue) – continue program execution after stopping at a breakpoint or for CTRL-C.

• n (next) – execute the next statement (do not go into functions)

• s (step) – execute the next statement (go into functions)

• p var (print) – print the value of a variable

• bt (backtrace) – show the function call stack

• q (quit) – quit gdb

CS326-01 GDB 2

Preparing a program for debugging

In order to debug a program with gdb you need to compile your source code (all source modules that
you want to debug) with the -g option:

gcc -g -o foo foo.c

Starting gdb

Simply start gdb with the name of your executable:

$ gcc -g -o foo foo.c

$ gdb foo

GNU gdb 5.1.1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-suse-linux"...

(gdb)

To start your program within gdb, simple use the “r” command (for run):

(gdb) r

Optionally, you can put command arguments that you want to send to your program after the “r”
command:

(gdb) r arg1 arg2 ... argN

Example 1 - setting breakpoints and examining variables

Here is a program that is supposed to add 2 to the variable j in every iteration of the for-loop:

#include <stdio.h>

int main(int argc, char *argv[])

{

int i, j = 0;

for (i = 0; i < 100; i++); /* <-- unwanted semicolon */

j += 2;

printf("The value of j is: %d\n", j);

return 0;

}

Compiling and running the program reveals that it is not adding 2 to j 100 times:

$ gcc -g -o ex1 ex1.c

$./ex1

The value of j is: 2

Because we compiled ex1.c with the -g option we can run gdb on the ex1 executable.

CS326-01 GDB 3

$ gdb ex1

GNU gdb 5.1.1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-suse-linux"...

(gdb) l

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 int i, j = 0;

6 for (i = 0; i < 100; i++); /* <-- unwanted semicolon */

7 j += 2;

8 printf("The value of j is: %d\n", j);

9 return 0;

10 }

(gdb)

Using the b command we can set a breakpoint at the beginning of the main function.

(gdb) b main

Breakpoint 1 at 0x8048456: file ex1.c, line 5.

Now we can begin executing the program using the the r command:

(gdb) r

Starting program: /home/benson/tch/usf/cs326/2002F/handouts/03-gdb/src/ex1

Breakpoint 1, main (argc=1, argv=0x3ffff184) at ex1.c:5

5 int i, j = 0;

The n command executes the next statement in the program:

(gdb) n

6 for (i = 0; i < 100; i++); /* <-- unwanted semicolon */

(gdb) n

7 j += 2;

(gdb)

Note that the line displayed after typing n is the next line of the program to be executed. Up to this
point we have executed the for-loop, but have not executed j += 2. Now we can use the print command
to view the values of i and j:

(gdb) p i

$1 = 0

(gdb) p j

$2 = 0

CS326-01 GDB 4

After executing the for-loop, j should be 200. It seems that j is not getting incremented. Close inspection
of the for-loop reveals that we have a semi-colon where we do not want one. If we remove the semi-colon, u

with get incremented properly. To end the gdb session we can use the quit command:

(gdb) q

The program is running. Exit anyway? (y or n) y

Example 2 - finding a segmentation fault

You can also use gdb to find the location of a segfault.
Consider the following program:

#include<stdio.h>

int main(int argc, char *argv[])

{

int a[10];

int *a1;

a1 = a;

a1 = 0;

a1[0] = 1;

return 0;

}

Let’s run it under gdb:

[2785]orb: gdb segfault

GNU gdb 5.1.1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-suse-linux"...

(gdb) r

Starting program: /home/benson/tch/usf/cs326/2002F/handouts/03-gdb/src/segfault

Program received signal SIGSEGV, Segmentation fault.

0x08048426 in main (argc=1, argv=0x3ffff174) at segfault.c:13

13 a1[0] = 1;

(gdb)

Notice how gdb shows exactly where the segfault occurs.

