Distributed Software Development
Cooperative MAS

Chris Brooks
Department of Computer Science
University of San Francisco

Outline
- What is an agent?
- What are MAS/DAI problems?
- Recommender Systems
- Coordination
 - Contract Net
 - Distributed Planning
- Societies of agents

Distributed AI (more often called Multiagent Systems these days) is the study of how multiple agents can and do interact with each other.
- May include both human or computational agents.
- May be a closed or an open system
- Agents may be cooperative or self-interested.

Qualities of an agent
- Autonomy
- Adaptation
- Goal-directed behavior
- Has “beliefs” and “intentions”
- Proactive
- Situated within an environment

Autonomy
- Autonomy is a quality often attributed to agents.
- An autonomous agent is able to rely on its percepts and past experience to make decisions, rather than asking a human for help.
- This is a thorny area - most agents will not have complete autonomy.
 - When might we not want an agent to have complete autonomy?
 - Challenge: Designing an agent that can reason about its own autonomy and know when to ask for help.

Agent-oriented Programming
- We can also think of agents as a programming paradigm.
 - The next logical step after objects.
 - “Objects do it for free, agents do it for money.”
 - Objects are receivers of actions, agents are actors.
 - It’s less useful to think of agent as an objective label than as a subjective description.
 - Agency is a useful abstraction for us as programmers.
 - Allows us to think about a program at a higher level.
 - Treat something as an agent if that helps to understand, predict, or explain its behavior.
 - Thermostats as agents
Usefulness of the agent metaphor

- Why bother with all this? We already know how to write programs.
- Agents tend to be open-ended programs
 - Difficult to specify in advance what they should do in all cases.
- It's helpful to talk about them as if they were intelligent.
- "The robot wants to find the power supply."
- "The server believes that the client has reset."
- This assigning of mental states to programs is called the intentional stance.

Agents and Services

- Service-oriented computing is a direct extension of the agent metaphor
- Idea: An agent is able to provide one or more services
 - Specified at a high level, extracted from implementational details.
 - A service might actually involve gathering information from other agents, delegating a task to another agent, or recombining information.

Why solve DAI problems?

- So a DAI or MAS problem involves a number of agents interacting with each other.
- Why not construct a centralized system?
 - Complexity
 - Geographic or temporal separation of components
 - Separate ownership
 - Dynamic or changing system

Some examples

- NASA
 - Coordinating Mars rovers
 - multiple orbiting satellites
- Scheduling
 - Robots in factories
 - Power generation and distribution
 - Troop movement and deployment
- Financial markets
- P2P networks
- etc

Recommender Systems

- A problem that can be considered in a multiagent context concerns the gathering and combination of information from multiple sources.
- For example, Amazon, Netflix, MovieFinder, etc.
- There are two different approaches to this problem:
 - Content-based Filtering
 - Collaborative Filtering

Content-based Filtering

- In Content-based filtering, a model of each user is constructed based on their expressed preferences.
 - Things you bought, pages you looked at, things you said you liked.
- A model of each product is constructed.
- Those products that are "closest" to your preference model are recommended.
- Approach: Match users to items.
Content-based Filtering

- Advantages of Content-based Filtering:
 - Every product in the system can be recommended.
 - Recommendations will (in theory) correspond directly to a user’s preferences.
- Disadvantages of Content-based Filtering:
 - A potentially complex product model must be constructed.
 - Users may have to evaluate a large number of products to build an accurate model of their preferences.
 - Getting users to tell you their preferences is hard.

Collaborative Filtering

- Collaborative Filtering takes the opposite approach.
- Matches users to users.
- Intuition: If Bob likes A, B, and C, and Mary likes A and B, she’ll probably also like C.
 - In other words, she’s assumed to be similar to Bob.
 - Products are typically just atomic items.
- Approach: match users with users

Collaborative Filtering

- A user is represented by an n-dimensional vector
 - n is the number of products in the system
- A clustering or nearest-neighbor algorithm is used to group users.
- A user is then recommended items that are unseen but highly-rated by users who are “close”.

Collaborative Filtering

- Advantages of collaborative filtering
 - Can combine information from multiple sources
 - Each user potentially has to rate fewer items
 - No involved modeling needed.
- Disadvantages of Collaborative Filtering
 - How to deal with new items?
 - If no one has rated an item, it can’t be recommended.
 - Tends to “push toward the middle” and recommend popular items.
- Much of the current work on recommender systems involves combining these approaches.

Coordination

- Coordination turns out to be one of the most fundamental problems in MAS.
- Coordination can occur because:
 - Agents must work together to solve some larger problem.
 - There is the possibility of conflict
 - There is the possibility of shared goals.

Mechanisms for Coordination

- Organizational structure
 - Little communication needed
- Agents do not need to know about the entire population
- Structure must be agreed on in advance
- Can be brittle, or inefficient.
Mechanisms for Coordination

- Negotiation mechanisms
 - More communication needed
 - Agents do not have to be cooperative
 - Challenges: designing a negotiation protocol that is fair and efficient.

- Markets and auctions
 - Can deal with relatively large numbers of agents.
 - Agents can be self-interested
 - Under certain conditions, efficient outcomes are reached.
 - If those conditions are not met, outcomes are less predictable.
 - Can include NP-hard problems, which limits the size of the population.
 - Potential expressivity problems.

- Social norms/laws
 - Designed for Internet-level population sizes
 - Rules are defined for how one “should act.”
 - Violators are (ideally) discouraged from behaving poorly.
 - Challenge: enforcement.

Cooperative environments

- We’ll start with cooperative environments.
 - Distribution due to spatial/geographic reasons or complexity.
 - Agents are assumed to tell the truth, and act to achieve a global goal.

Contract Net

- Contract Net is one of the oldest and most widely-used coordination mechanisms.
 - Simple, easy to implement.
 - Works best in cooperative environments, but can be used in self-interested environments.
 - Used to allocate tasks.
 - Who will agree to do what?

- Begin with an agent known as the manager
 - Allocates tasks
 - A set of agents act as contractors
 - Potentially perform these tasks
Contract Net

- The manager announces a task to (a subset of) the contractors.
- Any agent who can complete the task responds with a bid.
- Manager evaluates all bids and assigns the task.
- Awarder now has a commitment to accomplish this task.
- It may further contract this task out.
- Note that there's an implicit research problem in here: constructing languages that allow agents to describe and negotiate about tasks.

Example: distributed sensor management

- A set of cameras located around campus can track people.
- Cameras each have an area they can see.
- A camera is tracking a person. As the person leaves its line of sight, it announces a bid to continue tracking.
- The first agent to reply wins the contract and continues tracking.
- Since all agents are cooperative, the 'bidding' is quite simple.

What's interesting about contract net?

- Contract net seems very simple; why is it interesting?
- Decisions about how tasks are allocated are made by both the manager and the contractor.
- Manager cannot force an agent to take on a task.
- Formal bidding models can easily be added onto the basic protocol.
- Works nicely in environments where tasks appear dynamically.

Distributed Planning

- Contract Net works nicely for environments that have discrete one-shot tasks.
- In many cases, domains are more complex.
- Agents are specialized.
- A 'task' may require a sequence of steps.
- These steps may be accomplished in several ways.
- This leads into the realm of distributed planning.

Planning in Five Minutes

- A plan is a sequence of operations meant to accomplish a goal.
- The goal is specified declaratively: at(luggage, airport), at(brooks, airport), at(students, airport).
- Actions are ways of accomplishing parts of a plan.
- They have preconditions and effects.
- Preconditions must be true to perform the action.
- Effects must hold after the action is taken.
- PutLuggageInTrunk. pre: holding(luggage) effect: in(luggage, trunk).
- Planning is the process of finding a sequence of actions that accomplishes a goal.

Planning in Five Minutes

- Many algorithms exist for building and repairing plans.
- Issues:
 - Ordering constraints
 - Dealing with failure
 - Adapting to changes in the world
 - Scaling
- A common way to deal with large planning problems is to construct a hierarchical plan.
Hierarchical Planning
• Many times, aspects of a problem can be solved independently.
• Example: taking a trip to Peru can be decomposed into:
 • Buying tickets
 • Getting everyone to the airport
 • Getting on the plane and flying there.
• I can figure out how to solve each of these problems more or less independently.
• Subproblems represented as an AND/OR graph
• Some decisions made at runtime.
 • Caveat: decisions made in one subproblem may affect possible choices in other subproblems.

Distributed Planning
• Distributed planning comes about when multiple agents (usually with hierarchical plans) must share resources.
 • A communication channel, a bridge, a power supply
 • Alternatively, there may be opportunities for synergy.
 • Both agents plan to deliver packages to the same location.
• How can agents synchronize their plans?

Societies of agents
• Contract net and distributed planning work for tens of agents.
• How can we govern environments with thousands (or more) agents?
• These are often referred to as agent societies
 • Still a research area
 • Inspiration drawn from human society, Internet-scale protocols.

A better solution:
• Detect whether there is:
 • No problem: all possible interactions may be interleaved.
 • No solution: plans must be serialized.
 • Some solution: We then ‘step down a level’ in the plans and force agents to commit to particular alternatives.
• Tradeoff: Deeper level requires more communication and interleaving (an exponential problem), but produces finer-grained coordination.

Solution 1: Submit plans to a centralized coordinator.
• Doesn’t scale
• Agents may not be willing to share more information than is needed.

Solution 2: broadcast top-level constraints to each other.
• This allows agents to detect whether there is a top-level conflict.
• Plans will either be totally serialized or totally parallel.

Research in this area can be divided into descriptive and prescriptive domains:
• Descriptive: “Given a structure or behavior on the world, what is the outcome?”
• Prescriptive: “If a structure or behavior is enforced, what outcomes result?”
• There is also a vigorous debate about whether participants in an Internet-level agent society should be treated as self-interested, cooperative, or a mix of the two.
• Cooperation potentially allows for more beneficial outcomes, if participants can be trusted.
• Many of the same issues as P2P systems arise.
Example

- The agent society approach can be used to construct teams of agents, each with very simple behavior, who can collectively solve a difficult task.
- Ant algorithms
 - Problem: Explore an unknown area and locate high-resource areas

Rules

- Avoid obstacles.
- If you are not holding a resource, wander randomly. If you sense ‘pheromones’, weight random selection towards them.
- If you find resources, pick them up and begin dropping pheromones. Follow a beacon back home.
- If you make it home, drop the resource.
- Over time, pheromone paths are built up between the home and the resource.

Issues

- Achieving macro-level behavior from microlevel rules.
- How do you guarantee outcomes? Is there an efficient way to synthesize these sorts of rules?
- Imposition of social norms or laws
 - What outcomes can be guaranteed for a given set of norms or laws? What language is necessary to describe norms or laws?
- Mechanisms for trust and reputation
 - How can noncompliance be enforced?

Summary

- Multiagent problems arise due to spatial, privacy or scaling constraints.
- Combining of information is a fundamental task.
- Coordination is also a fundamental problem
 - Contract net
 - Distributed planning
 - Ant Algorithms

Next time

- Lying liars and the lies they tell.
- or,
- What to do when agents are out for themselves.
- Applying economics to coordination and allocation problems.