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ABSTRACT
Agents in a multiagent system are not typically entirely
self-sufficient; instead, they frequently need to enlist other
agents to perform tasks for them or to exchange goods or
services with them. This creates a problem: how can an
agent efficiently locate other agents to work or trade with?
As the number of agents grows, the cost of this computation
can become prohibitively large. One solution to this is for
the system to self-organize into smaller groups of agents. In
this paper, we apply the idea of congregating to a model of
an information economy. We illustrate how participants in
this economy can self-organize into a set of markets such
that agents are able to find suitable partners while retain-
ing low computational costs. We show how congregating
can help allocation problems scale to large populations by
allowing agents to interact locally.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—coherence and coordination, multiagent systems

General Terms
Design, economics,performance

1. INTRODUCTION
In a dynamic, open multiagent system, agents must con-

tinually make and re-evaluate their decisions as to which
other agents they should interact with. These interactions
might include the buying and selling of goods, negotiation
over a set of tasks to perform, or cooperation to achieve a
joint goal. A great deal of research, including auction the-
ory [13], coalition formation [11], and team formation [12]
has focused on how a group of agents can make these sorts of
decisions. Two problems typically arise in these sorts of ap-
proaches: scaling to domains with large numbers of agents,
and dealing with the fact that the composition of the agent
population is not typically known to any single agent.
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Our research addresses the problem of how a large popula-
tion of agents can, in a self-organizing fashion, separate itself
into subgroups known as congregations. Ideally, each con-
gregation should contain a collection of agents who would
like to interact with each other. Once these groups exist,
standard allocation algorithms such as auctions or coalitions
can be used within each congregation to decide which agents
should perform particular tasks or exchange goods.

Congregations are a useful self-organizing mechanism for
several reasons. First, they allow the system to scale: once
an agent has joined a congregation, decisions as to whom it
should interact with can (at least initially) consider only the
other members of its congregation. As long as the congre-
gation size remains relatively constant, the population can
grow without impacting an agent’s decision process. Second,
it provides the system with a type of institutional memory.
The congregation can be considered as an entity unto it-
self, much in the way that we can talk about an anthill or a
football team both in terms of its members and as a single
object. The exact population of a congregation may change
as particular agents leave or arrive, and yet the group as
a whole is able to maintain a long-term existence. Third,
it can serve as a way of coordinating agents’ decisions as
to which group(s) to join. By describing a congregation in
a meaningful way, a system designer can hope to attract
agents of particular types or interests.

Congregating can be seen as a form of ‘cooperative’ learn-
ing, or group-level learning, even though the participants are
all completely self-interested. The population as a whole
is trying to learn how to organize itself. In most multi-
agent systems, the agents are playing a general-sum game,
in which there are particular configurations of congregations
that will lead to higher utility for a large fraction of the agent
population. Therefore, discovery of these congregations can
be viewed as an adaptive distributed search through the
space of all possible congregations, in which each agent has
a partial influence on the exploration process.

A congregation serves the same sort of purpose as a focal
point does in game theory [8, 10]. A focal point is a “nat-
ural” solution to a game with many equilibria that allows
the players to coordinate their decision as to which equilib-
rium strategy to pursue. Once a congregation has formed,
it can serve as a focal point for agent decisions; our previous
work [3] demonstrated how labels could be used to construct
focal points and aid in the formation of congregations. In
this paper, we eschew external mechanisms for coordination
and instead consider how congregations can form as a result
of the learning of individual agents.



In the rest of this paper, we will discuss the role of con-
gregations in an information economy. We will define more
precisely what we mean by a congregation and describe it
in terms of a simple model of an information economy. We
will then show experimental results that suggest that con-
gregations can improve the overall utility of the agents in a
multiagent system. We will conclude with future directions
for studying the formation and dynamics of congregations.

2. CONGREGATING IN INFORMATION
ECONOMIES

Our past research (e.g. [4, 5]) has focused on how produc-
ers in an information economy can locate consumer niches
and efficiently learn the preferences of consumers in these
niches. It is this first problem, that of locating a niche, that
is most relevant to congregating. In this problem, two or
more producers are each separately selecting a set of goods
to sell and a pricing mechanism for these goods. In do-
ing this, they separate the consumer population into one or
more markets, each of which buys from one producer, plus
the market consisting of consumers who choose not to buy
from any producer. Each producer’s problem is then to find
a profitable location in price/product space, subject to the
decisions of the other producers.

In this paper, we take the problem of market formation
one step further, and draw directly on the congregating
metaphor to examine the process of market formation in
a multiagent system containing a large number of produc-
ers and consumers. Our previous research [2] presented
a general model of congregations focusing on the affinity
group domain. This work showed how congregating can be
difficult when the solution space is very sparse, and sug-
gested the introduction of labelers as a signaling mechanism,
thereby coordinating agents’ decisions. It also showed how
congregating could be used to improve average payoff when
agents with heterogeneous preferences played a coordination
game. Our current paper applies congregating to informa-
tion economies. We show how congregating can be used to
stimulate producers and consumers in an information econ-
omy to self-select into separate markets so that the average
profit in the system is increased. The effectiveness of this
approach depends upon the number of markets available, as
well as the specificity of agent preferences.

In many large-scale economies, the problem of who to buy
or sell from is a significant one. Mechanisms that pair buyers
and sellers, such as auctions, can be used to do this when the
number of agents is relatively small, but if the population is
large or the auction is combinatorial, both the allocation of
goods and the selection of bids becomes a difficult compu-
tational problem. A solution to this is to construct several
smaller auctions, each of which contains buyers and sellers
with ‘similar’ interests.

One inspiration for this approach was the University of
Michigan Digital Library (UMDL) [7], which was a mar-
ket in which automated agents would buy and sell informa-
tion goods. The UMDL contained consumers with many
different interests, and providers offering a wide set of dif-
ferent types of articles. Each consumer had a User Inter-
face Agent (UIA) that located sellers of relevant informa-
tion goods. The sellers were also represented by agents,
known as Collection Interface Agents (CIA). These agents
interacted through auctions, each of which was described

using an ontology that indicated the goods being bought
and sold. These auctions were instantiated via the Auction
Manager Agent (AMA), which would dynamically create
new auctions when it noticed unsatisfied consumer demand
and delete auctions when they experienced a lack of activity.
This was a centralized process that allowed for the partition-
ing of the market space into separate congregations, making
the location of potential customers or goods a manageable
process for both the human users and the agents involved.

In our exploration of congregating and market formation,
one goal is to reproduce this process without the interme-
diation of a centralized market maker (the AMA). Instead,
we propose that this functionality can be handled by a dis-
tributed set of market makers, each of which has the goal
of attracting buyers and sellers such that its market is suc-
cessful (measured in terms of either the number of trades
or the surplus generated). In essence, we would like for the
formation of multiple markets, each of which is composed of
buyers and sellers with complementary interests, to be an
emergent phenomenon. The purpose of this work is to iden-
tify whether congregating can in fact be a viable strategy
for a large group of self-interested agents.

3. CONGREGATIONS
In this section, we define more precisely what we mean by

a congregation, both generally and in terms of our informa-
tion economy model. This model was originally presented
(with minor differences) in [2].

We begin by considering a general model of a multiagent
system. Let A = {a1, a2, ..., an} be a set of agents in the
system at time t. (For ease of presentation, we’ll assume
discrete time. However, nothing in our model requires it.)
The essential criterion for congregating to be an interesting
problem is that each agent needs to interact with some other
subset of the agents in the population. In utility-theoretic
terms, each agent a has a utility function Ua : P (A) →
R. (P (A) is the power set of all agents.) This function
indicates the utility that agent a receives from interacting
with a particular set of other agents.

It is assumed that an agent cannot interact with every
other agent, due to computational and communication con-
straints. (Recall that n is large.) Therefore, at every time
t an agent will need to choose a subset of agents from the
larger population to interact with.

Congregations are a way of simplifying this decision prob-
lem; rather than choosing agents from the entire population
of size n, an agent can join a congregation of size c << n.
This allows the agent to reduce the size of its search problem
by considering the c agents in its congregation to interact
with. Additionally, in domains in which agents have sym-
metric interests (meaning that if agent a wants to interact
with agent b, then b wants to interact with a), forming con-
gregations will improve an agent’s chances of a ‘successful’
interaction by allowing agents to group together with other
like-minded types.

Most generally, a congregation c is a tuple < l, Ac, t >,
where Ac is a set of agents {ai, ..., aj} who have all collo-
cated at a ‘location’ l at time t. (This need not be a physical
location; it could be a particular multicast address, radio fre-
quency, or mailing list. The point is that they communicate
only with other agents in the congregation.) We assume for
simplicity that an agent is only a member of one congrega-
tion at a time; future work will relax this assumption. A



congregation is defined intrinsically by its membership. It
may be useful for the members of a congregation or for other
agents, such as market makers, to try to describe a congre-
gation extrinsically by characterizing some quality shared
by its members, but this is just a label.

Let us make this all more concrete by placing it in terms of
an information economy. Our set A of agents consists of two
disjoint subsets: a set B of buyers and a set S of sellers.1 Our
commodity is information goods: an information good is an
article of a particular category c ∈ {c1, ..., ck}. Examples of
categories include Sports, Arts, International News, and so
on. At each time t, a seller is able to select a type of good
to offer. Each buyer has a category c∗ of good that it most
prefers; articles in this category have a reservation value r.
A good from another category c′ is valued at:

V (c′) = r(1 −
|c∗ − c′|

k
) (1)

where c∗ − c′ indicates the rank difference between two cat-
egories. The intuition behind this is that consumers are
willing to pay a fraction of their reservation value for goods
that are similar to their favorite, and that similarity de-
creases linearly with distance, as does willingness to pay.
The assumption that categories are arranged according to a
’similarity’ metric on the k axis is a simplification, but it is
sufficient for our needs. It also provides our model with some
similarities to the Hotelling model [1], which is a common
economic framework for product differentiation. Hotelling
models typically contain one or more product dimensions
along which producers can differentiate themselves, and con-
sumers with heterogeneous preferences along these dimen-
sions. Each producer must determine where to locate, given
the expected locations of the other producers.

In our model, each agent a has a threshold τa that indi-
cates the fraction of reservation value r it wants to receive
from a transaction. This threshold can be interpreted either
as a production or consumption cost, or as a form of satis-
ficing, whereby all transactions yielding utility greater than
τar are considered satisfactory by agent a.

In a simple world, this would be all that is needed for a
model; buyers and sellers could be paired up using some sort
of predetermined mechanism, either a decentralized mech-
anism such as Contract Net [6], in which agents broadcast
offers to each other, or a more centralized mechanism such
as an auction, where bids are submitted to a central author-
ity that computes allocations. In either case, there is some
computation that must be performed in order to determine
an allocation. In the case of Contract Net, this computation
is the exchange of messages, and in the case of an auction, it
is the winner determination algorithm. In either case, this
computation does not come for free; we assume that the
agents in the system must pay for it. By separating into
separate congregations, they can ease their computational
burden, hopefully without a large decrease in the efficiency
of the allocation of goods.

In order to capture this notion of agents separating into
subgroups, our model also consists of a set of marketplaces
M = {m1, ..., mq}. These are the locations described above;
buyers and sellers will congregate here. Each buyer and

1We assume that there is no resale; buyers consume their
goods immediately. Economies containing supply chains are
also a promising area of application for congregations, but
are not treated here.

seller will choose exactly one marketplace from M to join.
At a time t, the market will close, and an allocation will
be computed for all agents in the marketplace. The cost
of this allocation will be shared equally amongst all agents
in the marketplace. The mechanism we use is a Nth-price
Vickrey auction. This was chosen for simplicity; however,
any allocation mechanism can be used in this model. If costs
are superlinear in the number of agents, the same qualitative
effects will be seen. Each buyer bids its reservation value and
the allocation of goods is computed. Each agent a can then
decide whether to remain in its current congregation or to
leave for another; this decision will be based on whether the
value received (less computation cost) exceeds the agent’s
threshold τa.

Clearly, in a single market, the allocation which maxi-
mizes efficiency can be computed. This will be used as a
benchmark in our experiments. However, computing the op-
timal allocation in a combinatorial auction is NP-complete [9].
Even a Vickrey auction for simple goods (no combinations)
requires O(bs) running time, where b is the number of buy-
ers and s is the number of sellers. In other simple allocation
problems, such as coalition formation, the number of mes-
sages exchanged is polynomial in the number of agents in the
system, which leads to scalability problems as the number
of agents becomes large.

In our past work [2, 4], we have analyzed the convergence
properties for a simple congregating model and shown how
congregating can lead to higher net utility in a domain where
agents try to locate other agents of the same “type.” One
observation from that work is that congregating is useful
because it helps to build a “critical mass;” a group of agents
will form a congregation that is mutually beneficial, and so
the congregation will persist over time. This provides a focal
point for the attraction of other agents that may want to be
a part of this congregation. Essentially, the congregation
allows a subset of agents to “hold still” and allow others to
find them.

In this paper, we are explicitly interested in the learning
dynamics of market formation, and how congregating can
improve overall profit by providing this sort of critical mass.
We focus on experimental methods to determine when con-
gregating is a viable strategy, and how overall profits (as a
measure of system performance) change as the number of
markets is altered.

4. USING CONGREGATIONS TO IMPROVE
NET PROFIT

In this section, we present experiments demonstrating the
usefulness of congregating when agents must incur a cost
for computing an allocation of goods. We show how congre-
gating is a useful strategy when agents must pay for com-
putation, and study the efficiency of the allocation (both
gross, pre-computation cost and net, post-computation) as
the number of marketplaces is varied.

In the first experiment, we consider an information econ-
omy composed of 50 producers and 50 consumers. There
are 10 categories of information goods; at the beginning of
the experiment, each producer randomly chooses a category
of good to sell. Each consumer also has a favorite cate-
gory (drawn from a uniform distribution) and preferences
over non-favorite goods indicated by equation 1. Reserva-
tion values for a consumer’s most-preferred good are drawn



from U [5, 10]. The number of marketplaces is fixed at the
beginning of the experiment; it is assumed that each agent
knows m, the number of marketplaces, and each agent has
agreed to share equally in the costs of computation in de-
termining an allocation within its market. We assume that
computation has a cost of 0.1 for each message sent or com-
parison of valuations made. Since we are using a generalized
Vickrey auction to compute allocations, it is straightforward
for the market to hold an auction, determine the cost of this
computation, and charge each agent accordingly. For each
producer, we simply sort the consumers by their valuation of
that producer’s good, beginning with the producer who has
the closest match with a consumer in the market. The con-
sumer with the highest valuation receives the good, pays the
second-highest valuation, and is removed from consideration
for other producers’ goods.

After each market closing, every agent is able to change
marketplaces. If a producer receives less than τr for its good,
or if a consumer receives a good that it values at less than
τr, it will move to a new congregation chosen at random. In
our initial experiments, τ was set to 0.5 for all agents. This
is varied in section 5.

Figure 1 shows the average cumulative profit achieved by
all producers (averaged across 1000 iterations) as the num-
ber of marketplaces is increased. As the number of market-
places is increased, initial profits are much lower, as it be-
comes more difficult for each agent to locate a congregation
in which it can find a suitable match. Also, the system as
a whole reaches a suboptimal configuration. However, this
figure does not take into account the costs of computation.
Figure 2 shows how computational costs fall off quickly when
the economy contains more than one marketplace. These
two graphs are combined in Figure 3. In this figure, we can
see that, even though a single market is able to compute the
optimal allocation, the computational costs are high enough
that producers end up with a negative net profit. As the
number of marketplaces is increased, the computational cost
falls off much more quickly than profit, until at 25 market-
places the average cumulative net profit is maximized. As
more marketplaces are added, net profits begin to decline,
as the computational savings is outweighed by the difficulty
of finding a marketplace containing a suitable matchup.

In Figure 3, we can see the dynamics of market formation
as the number of marketplaces is increased. With a very
small number of marketplaces (3 or 5) a stable configuration
is reached almost immediately. As we increase the number of
marketplaces to 10 or 25, convergence is slightly slower, but
the configuration of congregations that is found yields higher
average profit. As the number of marketplaces is further
increased, the quality of the configuration falls off slightly,
and convergence time becomes much longer. It is difficult
to quantify this comparison directly from Figure 3, due to
the number of lines and the fact that total performance is
actually the area under each curve. Figure 4 makes this
tradeoff more explicit; it shows the average net profit (over
1000 iterations) as the number of marketplaces is increased.
Here we can clearly see that net profit increases steeply as
the number of marketplaces is increased, and then falls off
after m = 25.

We can also see that introducing too many marketplaces,
as in the case of m = 250 or m = 500, introduces too much
inefficiency without a significant extra reduction in compu-
tational cost. Buyers and sellers spend a great deal of the
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initial iterations in a market with no suitable agents.
In our next experiment, we examine whether the advan-

tages of congregating scale as the number of agents in the
system is increased. We vary the number of producers and
consumers from 10 to 500 of each, keeping the number of
producers and consumers equal and, in each case, setting
the number of marketplaces to half the number of produc-
ers, since this was observed to be the optimal number of
marketplaces in the previous experiments. The average net
(post-computation cost ) profit per producer over the course
of the run is presented in Figure 5.

As we can see, congregating is in fact a method that is able
to scale to large numbers of agents. Profits are invariant as
the number of agents in the system is increased. (In fact,
net profits for small numbers of agents are slightly lower;
this is an artifact of the way in which agents are randomly
generated. For low numbers of agents, it is less likely, for
any given producer, that there is a consumer whose most
desired good corresponds to that produced.) As long as
the agents in the system have a rough idea of how many
other agents are in the economy and are able to construct
the appropriate number of marketplaces (half the number
of producers in this case), market size remains constant, the
economy can scale, and producers and consumers are still
able to find each other and make successful transactions.

Of course, these results are dependent on the particular
costs and reservation values chosen. The higher the ratio
of reservation values to computation costs, the more utility
will be placed on an optimal solution. On the other hand,
as computation costs become a significant portion of net
profits, agents will prefer cheaper solutions and congregating
will gain appeal.

5. VARYING CONSUMER PREFERENCES
A large part of the effectiveness of congregating comes

from its ability to serve as a coordination mechanism for
agents’ decisions. A subset of agents will move into a par-
ticular marketplace and, if they are happy, stay there. This
reduces the complexity of the problem for agents who have
yet to find a suitable marketplace, since fewer agents are
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Figure 6: An illustration of the changes being per-
formed on a simplified landscape. Figure 6a shows
a simple two-peaked profit landscape. As agents’
τ is increased, the “sea level” increases, leading to
Figure 6b. The original landscape is indicated by a
dotted line. When consumers reduce the number of
categories they value, the result is the attenuated
landscape shown in Figure 6c. The heights of the
peaks remain constant, but the fraction of the land-
scape occupied by the plateaus increases.

moving. If we visualize the congregating process as a search
over a landscape, congregating allows the search process to
move along a gradient more effectively. Of course, this as-
sumes that the landscape has a gradient. In this section, we
alter the gradient of the landscape and examine the effec-
tiveness of congregating.

In our first experiment, we alter each agent’s threshold τ .
(We assume here that all agents have the same τ .) Recall
that τ is the fraction of reservation value an agent must
receive to be satisfied with a transaction. As τ increases,
an agent is satisfied with fewer congregations. In terms of
the search landscape, this lowers all the peaks equally, as
if there was a flood. Fewer points on the landscape have
positive profit, but the topology is not deformed. Figure 6
illustrates this.

Experiments were again conducted with 50 consumers and
50 producers. All experiments were performed with 25 mar-
ketplaces, seen to be the optimal number in our previous
experiments. τ was varied between 0.1 and 1.0. Results are
shown in Figure 7.

As we see from Figure 7, when τ = 1, the process takes
longer to converge to a solution, but the quality of the final
solution is improved. When τ is small, the process converges
more quickly, but to a local optimum. The encouraging re-
sult here is that even when the threshold is high, meaning
that agents have a high cost of producing or consuming ar-
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ticles, congregating still quickly finds a desirable solution.
In our second experiment regarding consumer preferences,

we alter the number of categories each consumer values pos-
itively. We do this by giving each consumer a value n that
indicates the number of categories they value positively. If
an article offered by a producer is of a category less than
n

2
away from the consumer’s preferred category, it is valued

according to 1. Otherwise, it has value 0. This has the effect
of attenuating the congregating search space. The gradient
around an optimum is increased, producing steeper peaks
and larger flat areas. While the profits attained by the sys-
tem at the optima do not change, the profits for non-optimal
configurations of congregations decrease, since consumers
value fewer categories. In essence, the search problem be-
comes more difficult. This is also illustrated in Figure 6.

Once again, experiments were performed with 50 con-
sumers, 50 producers, 25 marketplaces and 20 potential cat-
egories. τ was fixed at 0.5. Results for this experiment are
shown in Figure 8.

As we can see from Figure 8, as consumer preferences
become more specific, the search process becomes more dif-
ficult; many configurations of congregations do not contain
a critical mass of agents receiving a positive profit. In terms
of the search landscape, the size of the plateaus increases.
The more interesting result is that, even though the search
process becomes more difficult, through the use of congrega-
tions, the agents in the system are still able to self-organize
into congregations that yield a large fraction of the optimal
profit. This tells us that congregating is a method that is ro-
bust to the particular shape of agent preferences; even when
consumers have very specific preferences as to the goods
they want, congregating allows producers and consumers to
locate each other.

6. DISCUSSION
In this paper, we have provided an example of how con-

gregating can be applied to information economies and used
to model the process of market formation. As we have seen,
if the participants in a market must pay for their compu-
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tation, they are often happier to realize an allocation that
yields slightly less utility, but can be found at a much lower
computational cost. The mechanism is essentially a self-
organizing one; initially, agents that are happy in a market
will stay there, providing a fixed location that other ‘like-
minded’ agents can find. The only common knowledge that
is required is that the agents all agree on the existence of a
set of marketplaces at the beginning of the economy’s life-
time. Once this initial commitment is made, an agent need
not consider the global state or worry about the identity of
all the other agents in the system; it can simply concern
itself with the other agents in its congregation.

We have also shown that congregating is a technique that
allows multiagent systems to scale up to large numbers of
agents. When agents must consider the costs of computation
in determining who to purchase from or how to allocate
goods, congregating allows the system to scale so that net
profit remains relatively constant as the system grows.

Additionally, we have shown that congregating is rela-
tively robust to the shape of agent preferences. Even when
consumers have a very high processing cost, or very nar-
row preferences, congregating still allows producers and con-
sumers to make satisfactory exchanges, although the time
needed to discover the optimal configuration of congrega-
tions increases.

There are many other potential directions for this re-
search. As noted previously, goods in this economy are im-
mediately consumed. If goods are instead transformed and
resold, then the need for well-constructed markets becomes
even more important. Additionally, this work does not ex-
plicitly treat nonstationarity in the consumer population.
An important question to ask would be whether the exis-
tence of congregations makes consumer and producer entry
more difficult.

Finally, we earlier stressed the notion of a congregation
as an entity unto itself. This leads one to consider notions
of group selection, whereby it becomes rational for agents
within a congregation to behave altruistically, so as to in-
crease the fitness of the rest of the congregation and im-

prove their chances when competing with agents outside of
the congregation. In environments in which agents typically
interact within a congregation, but occasionally encounter
agents from the population at large, this can be a very effec-
tive strategy (see [14] for ecological examples). This would
also lead us to examine the relationship between individual
and group-level learning: as individual agents develop more
sophisticated strategies, how does the composition of the
congregation change?
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