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A few years ago the authors of a book about the 
Linux kernel asked me to review a first-draft of 

their revised edition, for 'technical accuracy'

In Chapter 3 they made a sweeping statement 
which, to me, seemed unlikely to be true:

“page-faults are not allowed in kernel mode”

I realized that I knew enough about Linux, and 
about CPU behavior, that I could quickly write 
some x86 assembly language to test this claim

A 'background' story



  

An x86 'introductory overview' 

If I explain my idea for the 'test', and show you a 
few of its details, I can cover the basic topics 

Professor Pacheco had requested:

-- registers and addressing modes

-- integer (and other) operations

-- instruction encoding

-- some x86 historical notes



  

Historical note

● The x86 processor is a 'work-in-progresswork-in-progress'
● It has evolved over more than three decades
● Its features have responded to 'market forces'
● It has fiercely maintained 'backward compatibilitybackward compatibility'

● So today's x86 implements an immense legacy
● Earliest 16-bit real-modereal-mode still is x86 'startup' mode
● It can switch to 16-bit or 32-bit protected-modeprotected-mode
● It can emulate real-mode within virtual-8086 modevirtual-8086 mode
● It can now be switched to 64-bit enhanced modeenhanced mode



  

Design-evolution influences

● Faster
● Cheaper
● Smaller
● Stronger
● Safer
● Cooler

--Yet always keeping 'backward compatibilitybackward compatibility'

introduced in 2009

introduced in 1985

. . .



  

The original 8086 registers

Descriptive names are used for these 'nonorthogonal' registers

AX

BX

CX

DX

SI

BP

SP

CS

DS

ES

SS

DI

FLAGS

IP

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

Each of these registers is 16-bits16-bits wide



  

The 80386 registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

DS

ES

FS

GS

SS

Here the 'Extended' registers are 32-bits32-bits wide

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

For 'backward compatibility', the former 16-bit registers are implemented within
 these 'Extended' 32-bit registers (i.e., as the least-significant 16-bits in each)



  

Lab machines use Intel's i7 CPU

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

RFLAGS

RIP

CS

DS

ES

FS

GS

SS

Here the 'Revised' registers are 64-bits64-bits wide

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

For 'backward compatibility', the former 32-bit registers are implemented within
 these 'Revised' 64-bit registers (i.e., as the least-significant 32-bits in each)

AND there are 8 additional 64-bit general registers (named R8, R9, R10, ... R15)AND there are 8 additional 64-bit general registers (named R8, R9, R10, ... R15)



  

Sub-registers

RAXRAX                                                                                          
(64-bits)                                                                                           

EAXEAX                                          
(32-bits)                                           

AX                     AX                     
(16-bits)                    

ALAL
(8-bits)

63                                                                                      31                                        15                   7                  0

Each general-purpose register can, by using different assembly language names, 
    be treated in programs as having a width of 64-bits, 32-bits, 16-bits, or 8-bits.    

EXAMPLE:EXAMPLE: The accumulator register can be called  ALAL, or AXAX, or EAXEAX, or RAXRAX.

Similarly for the other general-purpose registers (e.g.,  BB,  CC, and DD ).



  

Little-Endian vs Big-Endian

● A signature feature of x86 processors (as well 
as Intel's various peripheral-device controllers) 
is its use of the “little-endian” convention when 
representing multi-byte data-values 

● A programming advantage of x86 “little-endian” 
data-storage convention is that operands with 
differing widths can be addressed in a uniform 
manner, by referencing their earliest address.

78 56 34 12

memory

12 34 56 78

32-bit register
data-transfer

   m+0    m+1    m+2    m+3

m



  

Address-Spaces

An unusual feature of the x86 architecture is its 
use of different address-spaces for accesses to 
memory-locations versus I/O device-registers 

CPU CPU CPU CPU

NorthBridge (MCH)
display
memory

RAM
memory

SouthBridge (ICH)I / OI / O

I / OI / O I / OI / O I / OI / O

I / OI / O



  

x86 Privilege Levels

 code-segment selector  
in CS register

Index
CC
PP
LL

T
I

   15                                      3   2  1  0  

Current Privilege Level (CPL) 



  

Earliest instruction-categories

● Data Transfer
● Control Transfer
● Arithmetical/Logical
● Processor Control
● Bit-manipulation
● String-manipulation

Some useful general rules apply to these catagories



  

Arithmetical/Logical

● ADD, SUB, ADC, SBB, CMP, NEG
● AND, OR, XOR, TEST, NOT 
● MUL, IMUL, DIV, IDIV
● INC, DEC
● CBW, CWD, CWDE, CDQ
● AAA, AAS, AAM, AAD, DAA, DAS



  

Data Transfer

● MOV, XCHG, XLAT, BSWAP
● PUSH, POP, PUSHA, POPA
● LEA, LDS, LES, LSS, LFS, LGS
● LAHF, SAHF, PUSHF, POPF
● IN, OUT



  

Control Transfer

● JMP, CALL, RET, 
● JC/JNC, JS/JNS, JZ/JNZ, JP/JNP, JO/JNO
● JA/JAE, JB/JBE, JL/JLE, JG/JGE
● LOOP, LOOPE/LOOPZ, LOOPNE/LOOPNZ
● JCXZ/JECXZ
● INT, IRET, INTO, INT3



  

Processor Control

● CLI, STI
● CLD, STD
● CLC, STC, CMC 
● NOP, HLT, WAIT, ESC, LOCK
● CS:, DS:, ES:, SS:, FS:, GS:
● INVD, WBINVD, INVLPG

 



  

Bit-manipulation

● SHL, SHR, SAL, SAR
● ROL, ROR, RCL, RCR
● BT, BTS, BTR, BTC
● SHLD, SHRD



  

String Manipulation

● MOVS
● CMPS
● SCAS
● STOS
● LODS
● INS/OUTS
● REP/REPE/REPZ
● REPNE/REPNZ



  

The FLAGS register

C
F1

P
F0

A
F0

Z
F

S
F

T
F

I
F

D
F

O
F

N
T IOPL . . .

      15      14       13      12       11       10         9        8         7         6        5         4         3        2         1         0 

   Status FlagsStatus Flags automatically get modified by Arithmetic and Logic instructions 

CF = Carry Flag
PF = Parity Flag 
AF = Auxilliary Flag
ZF = Zero Flag
SF = Sign Flag
OF = Overflow Flag 

    DF = Direction Flag
     IF = Interrupt Flag
    TF = Trap Flag
IOPL = I/O Privilege Level

Control FlagsControl Flags are only modified by an explicit use of a specific instruction 



  

Assembly Language Statement Format

l    label   : opcode <WS><WS>   operand(s) ##   comment   <NL><NL>

label
termination
character

whitespace
separation
 character

hashsign
separation
 character

statement
termination
character

Example 1: An unlabeled double-operand data-transfer instruction-statement

mov %rdx, %rax # copies value from RDX into RAX

Example 2: An unlabeled single-operand arithmetical instruction-statement

inc %rbx # increases the value in RBX by +1



  

x86 Machine-Instruction Format
x86 instructions may be of varying lengths, between 1 and 15 bytes inclusive

machine-code (hex):       48       87       44     CB       40         # 5-byte instruction-length 

REX     Opcode     ModR/M     SIB     DisplacementREX     Opcode     ModR/M     SIB     Displacement

01 000 100    11 001 011

ExampleExample:     xchg     %rax, 0x40( %rbx, %rcx, 8 )     # exchange register with memory

1   rax  sib      8  rcx  rbx



  

The One-Byte Opcode-Table

Note: The 0x0F byte is the 'escape' to the Two-Byte Opcode Table.

Note: The bytes 0xD8, 0xD9, ... 0xDF are 'escapes' to co-processor opcode tables.



  

CISC string-instruction example

msg: .asciz “Hello, World!”

# for computing the length of a 'null-terminated' character-string

.equ MAXLEN, 65535

strlen: xor %al, %al # null-byte in register AL
mov $msg, %edi # EDI = string's address
mov $MAXLEN, %ecx # ECX = maximum length
cld # use forward processing
repne scasb # scan for the final byte
sub $msg, %edi # subtract initial from final 

# now EDI will contain the number of bytes scanned



  

Now, what is a 'page-mapping'?
virtual address-space

 physical address-space

memory as the 
CPU sees it

memory as it 
actually is

kernel space

    user space

Linux kernel
Linux kernel

application 1

application 2

application 1 transient mapping

persistent mapping

The CPU only “sees” those portions
of the physical memory which are

currently “mapped” into its 
virtual address space 



  

And, what is a 'task-switch'?
virtual address-space

 physical address-space

memory as the 
CPU sees it

memory as it 
actually is

kernel space

    user space

Linux kernel
Linux kernel

application 1

application 2

application 2 transient mapping

persistent mapping

The CPU only “sees” those portions
of the physical memory which are

currently “mapped” into its 
virtual address space 



  

So, what is a 'page-fault'?

● If the CPU tries to access a memory-address 
that is not currently “mapped”-- or that it lacks 
appropriate privilege – this will be detected by 
the CPU as an illegal memory-reference -- and 
is known as a 'page-fault exceptionpage-fault exception'

● The CPU will automatically jump to a routine in 
kernel space, known as an 'exception handler', 
after first saving a tiny amount of information 
about the situation that led to this 'exception'

● For more details we need some background...  



  

page-fault context-information

error-code

RIP

CS

RFLAGS

The kernel's stack

RSP
64-bits (8 bytes)

0

8

16

24

32

NOTE: The CS register's value includes the 2-bit 'Current Privilege Level' (CPL) 



  

Basic idea for my page-fault tester

# my global variables
unsigned short selector; # global variable for storing 16-bit value
unsigned long oldisr14; # global variable for storing 64-bit constant

# my Interrupt Service Routine 'front-end' for handling 'page-fault' exceptions
isr_entry:

mov 16(%rsp), %rax # data-transfer from memory to register

mov %ax, selector # data-transfer from register to memory    

jmp *oldisr14 # indirect control-transfer via memory

# NOTE: this simple code-fragment ignores a few crucial issues...



  

Essential issues to confront

● Another 'page-fault' is likely to happen quickly
● So any saved 'selector' value will get 'overwritten'

● Any interrupt-routine must preserve registers
● With my 'handler' the RAX register gets 'clobbered'

● All SMP interrupt-routines must be 'reentrant'
● Multiple CPUs could access 'selector' in parallel  



  

1. use an array of storage-cells

 

      #define MAXNUM 255

unsigned short selector[ MAXNUM ]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
mov pgfaults, %rbx # setup count as array-index in EBX

mov 16(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector( , %rbx, 2) # and save it into the next array cell 

incq pgfaults # increment count for the next fault  

jmpq *oldisr14 # transfer to the normal fault-handler



  

2. Preserve the 'working' registers

 

      
#define MAXNUM 255

unsigned short selector[ MAXNUM ]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
pushpush %rax%rax # save the RAX register-value # save the RAX register-value 
pushpush %rbx%rbx # save the RBX register-value# save the RBX register-value

mov pgfaults, %rbx # setup count as array-index in EBX

mov 3232(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector( , %rbx, 2) # and save it into the next array cell 

incq pgfaults # increment count for the next fault

poppop %rbx%rbx # recover the RBX register-value# recover the RBX register-value
poppop %rax  %rax  # recover the RAX register-value# recover the RAX register-value

jmpq *oldisr14 # transfer to the normal fault-handler



  

Stack after pushing RAX and RBX

RBX

RIP

CS

RFLAGS

The kernel's stack

RSP
64-bits (8 bytes)

0

8

16

24

32

NOTE: The CS register's value includes the 2-bit 'Current Privilege Level' (CPL) 

RAX

error-code

40

48



  

3. Increment 'pgfaults' atomically

 

      

#define MAXNUM 255

unsigned short selector[ MAXNUM ]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
push %rax # save the RAX register-value
push %rbx # save the RBX register-value

movmov $1, %rbx$1, %rbx # amount of the 'pgfaults' increment# amount of the 'pgfaults' increment
xaddxadd %rbx, pgfaults%rbx, pgfaults # use XADD for SMP-safe update# use XADD for SMP-safe update   

mov 32(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector( , %rbx, 2) # and save it into the next array cell

pop %rbx # recover the RBX register-value
pop %rax # recover the RAX register-value 

jmpq *oldisr14 # transfer to the normal fault-handler



  

But now a 'new' issue arises

● After a certain number of page-faults occur,  
our 'selector[ ]' storage-array will overflow!

● Can you think of a way to solve that problem?

(There is more than one way you could do it)



  

From our 'faultcpl.c' demo



  

Output from '/proc/faultcpl' demo 



  

So what's the “coolest” thing?

● Knowing x86 assembly language gives you the 
power to investigate all capabilities of the CPUs 
being used in today's most common platforms

● It's like having Galileo's telescope: you can see 
whether 'conventional wisdom' is correct or not

● And you can investigate new x86 features as 
soon as they are implemented, without waiting 
until software tools or programming languages 
have been developed to offer support for them   
   



  

Model Specific Registers (MSR)

● As enhancements get added to the x86 CPU, 
additional registers are needed for controls.

● So Intel devised a scheme for accessing up to 
4-billion so-called MSRs by means of just two 
privileged instructions: rdmsrrdmsr and wrmsrwrmsr.

● EXAMPLE:     # reading from a 64-bit MSR
mov $0x19C, %ecx # load MSR's ID-number into ECX

rdmsr # read the Model Specific Register

mov %eax, msr_lo # EAX holds least-significant 32-bits

mov %edx, msr_hi # EDX holds most-significant 32-bits



  

Intel-x86 Processor Modulation

This is a fairly recent Intel-x86 enhancement that allows monitoring and controlling 
    the temperature inside the CPU, to prevent circuit-damage due to'overheating'



  

Intel-x86 Thermal Status register



  

IA32_THERM_CONTROL



  

IA32_THERM_INTERRUPT



  

Our 'celsius.c' example

● We wrote this kernel module to let users view 
the value in a cpu's THERM_STATUS register

● Its 'Digital ReadoutDigital Readout' field will show how far the 
processor's current temperature is below what 
Intel regards as its maximum (called 'Tj Max')

● The processor shuts down if this difference is 0
● These temperatures are in degrees-Celsius
● (Note: AMD's cpus employ a different scheme)



  

'/proc/celsius'

● Our 'celsius.c' module creates this pseudo-file, 
which a user can access with this command:

$ cat  /proc/celsius

● Here's what the screen-output would look like:
 

Note: This demo was run on a machine with an Intel Core 2 Quad processor.



  

Demos and Questions

Speaker's website: <http://cs.usfcs.edu/~cruse/>
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