

What's cool about x86 assembly language?

Allan B. Cruse
Emeritus Professor

Computer Science and Mathematics
University of San Francisco

A few years ago the authors of a book about the
Linux kernel asked me to review a first-draft of

their revised edition, for 'technical accuracy'

In Chapter 3 they made a sweeping statement
which, to me, seemed unlikely to be true:

“page-faults are not allowed in kernel mode”

I realized that I knew enough about Linux, and
about CPU behavior, that I could quickly write
some x86 assembly language to test this claim

A 'background' story

An x86 'introductory overview'

If I explain my idea for the 'test', and show you a
few of its details, I can cover the basic topics

Professor Pacheco had requested:

-- registers and addressing modes

-- integer (and other) operations

-- instruction encoding

-- some x86 historical notes

Historical note

● The x86 processor is a 'work-in-progresswork-in-progress'
● It has evolved over more than three decades
● Its features have responded to 'market forces'
● It has fiercely maintained 'backward compatibilitybackward compatibility'

● So today's x86 implements an immense legacy
● Earliest 16-bit real-modereal-mode still is x86 'startup' mode
● It can switch to 16-bit or 32-bit protected-modeprotected-mode
● It can emulate real-mode within virtual-8086 modevirtual-8086 mode
● It can now be switched to 64-bit enhanced modeenhanced mode

Design-evolution influences

● Faster
● Cheaper
● Smaller
● Stronger
● Safer
● Cooler

--Yet always keeping 'backward compatibilitybackward compatibility'

introduced in 2009

introduced in 1985

. . .

The original 8086 registers

Descriptive names are used for these 'nonorthogonal' registers

AX

BX

CX

DX

SI

BP

SP

CS

DS

ES

SS

DI

FLAGS

IP

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

Each of these registers is 16-bits16-bits wide

The 80386 registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

DS

ES

FS

GS

SS

Here the 'Extended' registers are 32-bits32-bits wide

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

For 'backward compatibility', the former 16-bit registers are implemented within
 these 'Extended' 32-bit registers (i.e., as the least-significant 16-bits in each)

Lab machines use Intel's i7 CPU

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

RFLAGS

RIP

CS

DS

ES

FS

GS

SS

Here the 'Revised' registers are 64-bits64-bits wide

general-purpose
registers

addressing
registers

segment
registers

speciall-purpose
registers

For 'backward compatibility', the former 32-bit registers are implemented within
 these 'Revised' 64-bit registers (i.e., as the least-significant 32-bits in each)

AND there are 8 additional 64-bit general registers (named R8, R9, R10, ... R15)AND there are 8 additional 64-bit general registers (named R8, R9, R10, ... R15)

Sub-registers

RAXRAX
(64-bits)

EAXEAX
(32-bits)

AX AX
(16-bits)

ALAL
(8-bits)

63 31 15 7 0

Each general-purpose register can, by using different assembly language names,
 be treated in programs as having a width of 64-bits, 32-bits, 16-bits, or 8-bits.

EXAMPLE:EXAMPLE: The accumulator register can be called ALAL, or AXAX, or EAXEAX, or RAXRAX.

Similarly for the other general-purpose registers (e.g., BB, CC, and DD).

Little-Endian vs Big-Endian

● A signature feature of x86 processors (as well
as Intel's various peripheral-device controllers)
is its use of the “little-endian” convention when
representing multi-byte data-values

● A programming advantage of x86 “little-endian”
data-storage convention is that operands with
differing widths can be addressed in a uniform
manner, by referencing their earliest address.

78 56 34 12

memory

12 34 56 78

32-bit register
data-transfer

 m+0 m+1 m+2 m+3

m

Address-Spaces

An unusual feature of the x86 architecture is its
use of different address-spaces for accesses to
memory-locations versus I/O device-registers

CPU CPU CPU CPU

NorthBridge (MCH)
display
memory

RAM
memory

SouthBridge (ICH)I / OI / O

I / OI / O I / OI / O I / OI / O

I / OI / O

x86 Privilege Levels

 code-segment selector
in CS register

Index
CC
PP
LL

T
I

 15 3 2 1 0

Current Privilege Level (CPL)

Earliest instruction-categories

● Data Transfer
● Control Transfer
● Arithmetical/Logical
● Processor Control
● Bit-manipulation
● String-manipulation

Some useful general rules apply to these catagories

Arithmetical/Logical

● ADD, SUB, ADC, SBB, CMP, NEG
● AND, OR, XOR, TEST, NOT
● MUL, IMUL, DIV, IDIV
● INC, DEC
● CBW, CWD, CWDE, CDQ
● AAA, AAS, AAM, AAD, DAA, DAS

Data Transfer

● MOV, XCHG, XLAT, BSWAP
● PUSH, POP, PUSHA, POPA
● LEA, LDS, LES, LSS, LFS, LGS
● LAHF, SAHF, PUSHF, POPF
● IN, OUT

Control Transfer

● JMP, CALL, RET,
● JC/JNC, JS/JNS, JZ/JNZ, JP/JNP, JO/JNO
● JA/JAE, JB/JBE, JL/JLE, JG/JGE
● LOOP, LOOPE/LOOPZ, LOOPNE/LOOPNZ
● JCXZ/JECXZ
● INT, IRET, INTO, INT3

Processor Control

● CLI, STI
● CLD, STD
● CLC, STC, CMC
● NOP, HLT, WAIT, ESC, LOCK
● CS:, DS:, ES:, SS:, FS:, GS:
● INVD, WBINVD, INVLPG

Bit-manipulation

● SHL, SHR, SAL, SAR
● ROL, ROR, RCL, RCR
● BT, BTS, BTR, BTC
● SHLD, SHRD

String Manipulation

● MOVS
● CMPS
● SCAS
● STOS
● LODS
● INS/OUTS
● REP/REPE/REPZ
● REPNE/REPNZ

The FLAGS register

C
F1

P
F0

A
F0

Z
F

S
F

T
F

I
F

D
F

O
F

N
T IOPL . . .

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status FlagsStatus Flags automatically get modified by Arithmetic and Logic instructions

CF = Carry Flag
PF = Parity Flag
AF = Auxilliary Flag
ZF = Zero Flag
SF = Sign Flag
OF = Overflow Flag

 DF = Direction Flag
 IF = Interrupt Flag
 TF = Trap Flag
IOPL = I/O Privilege Level

Control FlagsControl Flags are only modified by an explicit use of a specific instruction

Assembly Language Statement Format

l label : opcode <WS><WS> operand(s) ## comment <NL><NL>

label
termination
character

whitespace
separation
 character

hashsign
separation
 character

statement
termination
character

Example 1: An unlabeled double-operand data-transfer instruction-statement

mov %rdx, %rax # copies value from RDX into RAX

Example 2: An unlabeled single-operand arithmetical instruction-statement

inc %rbx # increases the value in RBX by +1

x86 Machine-Instruction Format
x86 instructions may be of varying lengths, between 1 and 15 bytes inclusive

machine-code (hex): 48 87 44 CB 40 # 5-byte instruction-length

REX Opcode ModR/M SIB DisplacementREX Opcode ModR/M SIB Displacement

01 000 100 11 001 011

ExampleExample: xchg %rax, 0x40(%rbx, %rcx, 8) # exchange register with memory

1 rax sib 8 rcx rbx

The One-Byte Opcode-Table

Note: The 0x0F byte is the 'escape' to the Two-Byte Opcode Table.

Note: The bytes 0xD8, 0xD9, ... 0xDF are 'escapes' to co-processor opcode tables.

CISC string-instruction example

msg: .asciz “Hello, World!”

for computing the length of a 'null-terminated' character-string

.equ MAXLEN, 65535

strlen: xor %al, %al # null-byte in register AL
mov $msg, %edi # EDI = string's address
mov $MAXLEN, %ecx # ECX = maximum length
cld # use forward processing
repne scasb # scan for the final byte
sub $msg, %edi # subtract initial from final

now EDI will contain the number of bytes scanned

Now, what is a 'page-mapping'?
virtual address-space

 physical address-space

memory as the
CPU sees it

memory as it
actually is

kernel space

 user space

Linux kernel
Linux kernel

application 1

application 2

application 1 transient mapping

persistent mapping

The CPU only “sees” those portions
of the physical memory which are

currently “mapped” into its
virtual address space

And, what is a 'task-switch'?
virtual address-space

 physical address-space

memory as the
CPU sees it

memory as it
actually is

kernel space

 user space

Linux kernel
Linux kernel

application 1

application 2

application 2 transient mapping

persistent mapping

The CPU only “sees” those portions
of the physical memory which are

currently “mapped” into its
virtual address space

So, what is a 'page-fault'?

● If the CPU tries to access a memory-address
that is not currently “mapped”-- or that it lacks
appropriate privilege – this will be detected by
the CPU as an illegal memory-reference -- and
is known as a 'page-fault exceptionpage-fault exception'

● The CPU will automatically jump to a routine in
kernel space, known as an 'exception handler',
after first saving a tiny amount of information
about the situation that led to this 'exception'

● For more details we need some background...

page-fault context-information

error-code

RIP

CS

RFLAGS

The kernel's stack

RSP
64-bits (8 bytes)

0

8

16

24

32

NOTE: The CS register's value includes the 2-bit 'Current Privilege Level' (CPL)

Basic idea for my page-fault tester

my global variables
unsigned short selector; # global variable for storing 16-bit value
unsigned long oldisr14; # global variable for storing 64-bit constant

my Interrupt Service Routine 'front-end' for handling 'page-fault' exceptions
isr_entry:

mov 16(%rsp), %rax # data-transfer from memory to register

mov %ax, selector # data-transfer from register to memory

jmp *oldisr14 # indirect control-transfer via memory

NOTE: this simple code-fragment ignores a few crucial issues...

Essential issues to confront

● Another 'page-fault' is likely to happen quickly
● So any saved 'selector' value will get 'overwritten'

● Any interrupt-routine must preserve registers
● With my 'handler' the RAX register gets 'clobbered'

● All SMP interrupt-routines must be 'reentrant'
● Multiple CPUs could access 'selector' in parallel

1. use an array of storage-cells

 #define MAXNUM 255

unsigned short selector[MAXNUM]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
mov pgfaults, %rbx # setup count as array-index in EBX

mov 16(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector(, %rbx, 2) # and save it into the next array cell

incq pgfaults # increment count for the next fault

jmpq *oldisr14 # transfer to the normal fault-handler

2. Preserve the 'working' registers

#define MAXNUM 255

unsigned short selector[MAXNUM]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
pushpush %rax%rax # save the RAX register-value # save the RAX register-value
pushpush %rbx%rbx # save the RBX register-value# save the RBX register-value

mov pgfaults, %rbx # setup count as array-index in EBX

mov 3232(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector(, %rbx, 2) # and save it into the next array cell

incq pgfaults # increment count for the next fault

poppop %rbx%rbx # recover the RBX register-value# recover the RBX register-value
poppop %rax %rax # recover the RAX register-value# recover the RAX register-value

jmpq *oldisr14 # transfer to the normal fault-handler

Stack after pushing RAX and RBX

RBX

RIP

CS

RFLAGS

The kernel's stack

RSP
64-bits (8 bytes)

0

8

16

24

32

NOTE: The CS register's value includes the 2-bit 'Current Privilege Level' (CPL)

RAX

error-code

40

48

3. Increment 'pgfaults' atomically

#define MAXNUM 255

unsigned short selector[MAXNUM]; # enough space for lots of 16-bit values
unsigned long oldisr14; # to store address of the original handler
unsigned long pgfaults = 0; # keep count of page-fault occurrences

isr_entry:
push %rax # save the RAX register-value
push %rbx # save the RBX register-value

movmov $1, %rbx$1, %rbx # amount of the 'pgfaults' increment# amount of the 'pgfaults' increment
xaddxadd %rbx, pgfaults%rbx, pgfaults # use XADD for SMP-safe update# use XADD for SMP-safe update

mov 32(%rsp), %rax # copy CS-selector-image into RAX
mov %ax, selector(, %rbx, 2) # and save it into the next array cell

pop %rbx # recover the RBX register-value
pop %rax # recover the RAX register-value

jmpq *oldisr14 # transfer to the normal fault-handler

But now a 'new' issue arises

● After a certain number of page-faults occur,
our 'selector[]' storage-array will overflow!

● Can you think of a way to solve that problem?

(There is more than one way you could do it)

From our 'faultcpl.c' demo

Output from '/proc/faultcpl' demo

So what's the “coolest” thing?

● Knowing x86 assembly language gives you the
power to investigate all capabilities of the CPUs
being used in today's most common platforms

● It's like having Galileo's telescope: you can see
whether 'conventional wisdom' is correct or not

● And you can investigate new x86 features as
soon as they are implemented, without waiting
until software tools or programming languages
have been developed to offer support for them

Model Specific Registers (MSR)

● As enhancements get added to the x86 CPU,
additional registers are needed for controls.

● So Intel devised a scheme for accessing up to
4-billion so-called MSRs by means of just two
privileged instructions: rdmsrrdmsr and wrmsrwrmsr.

● EXAMPLE: # reading from a 64-bit MSR
mov $0x19C, %ecx # load MSR's ID-number into ECX

rdmsr # read the Model Specific Register

mov %eax, msr_lo # EAX holds least-significant 32-bits

mov %edx, msr_hi # EDX holds most-significant 32-bits

Intel-x86 Processor Modulation

This is a fairly recent Intel-x86 enhancement that allows monitoring and controlling
 the temperature inside the CPU, to prevent circuit-damage due to'overheating'

Intel-x86 Thermal Status register

IA32_THERM_CONTROL

IA32_THERM_INTERRUPT

Our 'celsius.c' example

● We wrote this kernel module to let users view
the value in a cpu's THERM_STATUS register

● Its 'Digital ReadoutDigital Readout' field will show how far the
processor's current temperature is below what
Intel regards as its maximum (called 'Tj Max')

● The processor shuts down if this difference is 0
● These temperatures are in degrees-Celsius
● (Note: AMD's cpus employ a different scheme)

'/proc/celsius'

● Our 'celsius.c' module creates this pseudo-file,
which a user can access with this command:

$ cat /proc/celsius

● Here's what the screen-output would look like:

Note: This demo was run on a machine with an Intel Core 2 Quad processor.

Demos and Questions

Speaker's website: <http://cs.usfcs.edu/~cruse/>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

