
Denial of Service 

EJ Jung 



Denial of Service (DoS) 

 Goal: overwhelm victim machine and deny 
service to its legitimate clients 

 Exploits vulnerabilities in many network 
protocols, anywhere in the stack 



Internet Infrastructure 

local network 

Internet service 
provider (ISP) 

backbone 

ISP 

local network 

  TCP/IP for packet routing and connections 
  Border Gateway Protocol (BGP) for route discovery 
 Domain Name System (DNS) for IP address discovery 



OSI Protocol Stack 

application 

presentation 

session 

transport 

network 

data link 

physical 

IP 

TCP 

email, Web, NFS 

RPC 

Ethernet 



Data Formats 

Application data 

data TCP 
header data TCP 

header data TCP 
header 

data TCP 
header 

IP 
header 

data TCP 
header 

IP 
header 

Ethernet 
header 

Ethernet 
trailer 

application 
layer 

transport 
layer 

network 
layer 

data link 
layer 

message 

segment 

packet 

frame 



TCP (Transmission Control Protocol) 

 Sender: break data into packets 
•  Sequence number is attached to every packet 

 Receiver: reassemble packets in correct order 
•  Acknowledge receipt; lost packets are re-sent 

 Connection state maintained on both sides 

book 
remember received pages 

and reassemble mail each 
page 



IP (Internet Protocol) 

 Connectionless 
•  Unreliable, “best-effort” protocol 

 Uses numeric addresses for routing 
•  Typically several hops in the route 

Alice’s computer 

Alice’s ISP 

Bob’s ISP 

Bob’s computer 

Packet 
Source 128.255.44.135 

72.14.203.104 

3 

Dest 

Seq 
128.255.44.135 

72.14.203.104 



ICMP (Internet Control Message Protocol) 

 Extension of IP by RFC 792 
 Provides feedback about network operation 

•  “Out-of-band” messages carried in IP packets 
•  Error reporting, congestion control, reachability, etc. 

 Example messages: 
•  Destination unreachable 
•  Time exceeded 
•  Redirect to better gateway 
•  Reachability test (echo / echo reply) 
•  Message transit delay (timestamp request / reply) 



DoS attacks in TCP/IP 

 IP addresses are public 
•  Smurf attacks 

 TCP connection requires state 
•  SYN flooding 

 TCP state is easy to guess 
•  TCP spoofing and connection hijacking 



Smurf Attack 

gateway victim 

1 ICMP Echo Req 
Src: victim’s address 
Dest: broadcast address 

Looks like a legitimate 
“Are you alive?” ping 

request from the victim 

Every host on the network 
generates a ping (ICMP 
Echo Reply) to victim 

Stream of ping replies 
overwhelms victim 

Solution: reject external packets to broadcast addresses at router 



“Ping of Death” 

 If an old Windows machine received an ICMP 
packet with a payload longer than 64K, machine 
would crash or reboot 
•  Programming error in older versions of Windows 
•  Packets of this length are illegal, so programmers of 

Windows code did not account for them 

Solution: patch OS, filter out ICMP packets 



TCP Handshake 

C S 

SYNC 

SYNS, ACKC 

ACKS 

Listening… 

Store data 
(connection state, etc.) 

Wait 

Connected 



SYN Flooding Attack 

S 

SYNC1 Listening… 

Store data 
SYNC2 

SYNC3 

SYNC4 

SYNC5 

… and more data 

… and more 

… and more 

… and more 

… and more 



SYN Flooding Explained 

 Attacker sends many connection requests with 
spoofed source addresses 

 Victim allocates resources for each request 
•  Connection state maintained until timeout 
•  Fixed bound on half-open connections 

 Once resources exhausted, requests from 
legitimate clients are denied 

 This is a classic denial of service (DoS) attack 
•  Common pattern: it costs nothing to TCP initiator to 

send a connection request, but TCP responder must 
allocate state for each request (asymmetry!) 



Preventing Denial of Service 

 DoS is caused by asymmetric state allocation 
•  If responder opens a state for each connection 

attempt, attacker can initiate thousands of connections 
from bogus or forged IP addresses 

 Cookies ensure that the responder is stateless 
until initiator produced at least 2 messages 
•  Responder’s state (IP addresses and ports of the con-

nection) is stored in a cookie and sent to initiator 
•  After initiator responds, cookie is regenerated and 

compared with the cookie returned by the initiator 



SYN Cookies 
[Bernstein & Schenk] 

C S 

SYNC Listening… 

Does not store state 

F(source addr, source port,  
   dest addr, dest port, 
   coarse time, server secret) 

SYNS, ACKC 
sequence # = cookie 

Cookie must be unforgeable  
   and tamper-proof (why?) 
Client should not be able 
   to invert a cookie (why?) 

F=Rijndael or crypto hash 

Recompute cookie,  
compare with with the one 
received, only establish  
connection if they match  

ACKS(cookie) 

Compatible with standard TCP; 
simply a “weird” sequence number scheme 

More info: http://cr.yp.to/syncookies.html  



Anti-Spoofing Cookies: Basic Pattern 

 Client sends request (message #1) to server 
 Typical protocol: 

•  Server sets up connection, responds with message #2 
•  Client may complete session or not (potential DoS) 

 Cookie version: 
•  Server sends hashed connection data back 

–  Send message #2 later, after client confirms he is listening 

•  Client confirms by returning hashed data 
–  If source IP address is bogus, attacker can’t confirm 

•  Need an extra step to send postponed message #2 
–  Ok in TCP since the extra step (SYN-ACK) is already there 



Another Defense: Random Deletion 

121.17.182.45 

231.202.1.16 

121.100.20.14 

5.17.95.155 

SYNC 

 If SYN queue is full, delete random entry 
•  Legitimate connections have a chance to complete 
•  Fake addresses will be eventually deleted 

 Easy to implement 

half-open connections 



TCP Connection Spoofing 

 Each TCP connection has an associated state 
•  Sequence number, port number 

 TCP state is easy to guess 
•  Port numbers are standard, sequence numbers are 

often predictable 
•  Can inject packets into existing connections 

 If attacker knows initial sequence number and 
amount of traffic, can guess likely current number 
•  Send a flood of packets with likely sequence numbers 



DoS by Connection Reset 

 If attacker can guess current sequence number 
for an existing connection, can send Reset packet 
to close it 
•  With 32-bit sequence numbers, probability of guessing 

correctly is 1/232 (not practical) 
•  Most systems accept large windows of sequence 

numbers ⇒ much higher probability of success 
–  Need large windows to handle massive packet losses 

 Especially effective against long-lived connections 
•  For example, BGP (Border Gateway Protocol) 



User Datagram Protocol (UDP) 

 UDP is a connectionless protocol 
•  Simply send datagram to application process at the 

specified port of the IP address 
•  Source port number provides return address 
•  Applications: media streaming, broadcast 

 No acknowledgement, no flow control, no 
message continuation 

 Denial of service by UDP data flood 



Countermeasures 

 Above transport layer: SSL/TLS and SSH 
•  Protects against connection hijacking and injected data 
•  Does not protect against DoS by spoofed packets 

 Above transport layer: Kerberos 
•  Provides authentication, protects against spoofing 
•  Does not protect against connection hijacking 

 Network (IP) layer: IPSec 
•  Protects against hijacking, injection, DoS using 

connection resets, IP address spoofing 



Distributed Denial of Service (DDoS) 

 First, scan hundreds of thousands of computers 
on the Internet for known vulnerabilities 

 Turn vulnerable computers into “zombies” 
•  Exploit vulnerabilities to gain root access, install attack 

and communication tools, use them for further scans 

 Form a distributed attack network from zombies 
•  Choose a subset of compromised machines with 

desired network topology and characteristics 

 Command zombies to stage a coordinated attack 
on the victim 



DDoS Architecture 

Victim 

Attacker 

Master machines 

Zombie machines 



 Scan for known buffer overflows in Linux & Solaris 
•  Unpatched versions of wu-ftpd, statd, amd, … 
•  Root shell on compromised host returns confirmation 

 Install attack daemon using remote shell access 
 Send commands (victim IP, attack parameters, 

etc.), using plaintext passwords for authentication 
•  Attacker to master: TCP, master to zombie: UDP 
•  To avoid detection, daemon issues warning if someone 

connects when master is already authenticated 

 In August of 1999, a network of 227 Trin00 
zombies took U. of Minnesota offline for 3 days 

DDoS Tools: Trin00 



 Supports multiple DoS attack types 
•  Smurf; ICMP, SYN, UDP floods 

 Attacker runs masters directly via root backdoor; 
masters talk to zombies using ICMP echo reply 
•  No authentication of master’s commands, but 

commands are encoded as 16-bit binary numbers 
inside ICMP packets to prevent accidental triggering 

•  Vulnerable to connection hijacking and RST sniping 

 List of zombie daemons’ IP addresses is encrypted 
in later versions of TFN master scripts 
•  Protects identities of zombies if master is discovered 

DDoS Tools: Tribal Flood Network 



 Combines “best” features of Trin00 and TFN 
•  Multiple attack types (like TFN) 

 Symmetric encryption for attacker-master 
connections 

 Master daemons can be upgraded on demand 
 February 2000: crippled Yahoo, eBay, Amazon, 

Schwab, E*Trade, CNN, Buy.com, ZDNet 
•  Smurf-like attack on Yahoo consumed more than a 

Gigabit/sec of bandwidth 
•  Sources of attack still unknown 

DDoS Tools: Stacheldraht 



 Date: Fri, 19 Mar 2004 
 Quote from email: 

 “The campus switches have been bombarded with these packets 
[…] and apparently 3Com switches reset when they get these 
packets. This has caused the campus backbone to be up and 
down most of yesterday. The attack seems to start with 
connection attempts to port 1025 (Active Directory logon, which 
fails), then 6129 (DameWare backdoor, which fails), then 80 
(which works as the 3Com’s support a web server, which can’t be 
disabled as far as we know). The HTTP command starts with 
‘SEARCH /\x90\x02\xb1\x02’ […] then goes off into a continual 
pattern of ‘\x90’ ” 

U. of Toronto, 2004(from David Lie’s slides) 



 Authenticate packet sources 
•  Not feasible with current IP (unless IPSec is used) 

 Filter incoming traffic on access routers or rate-
limit certain traffic types (ICMP and SYN packets) 
•  Need to correctly measure normal rates first! 

 Force clients to do an expensive computation or 
to prove that they are human 
•  If connection requested, ask client to solve a “puzzle” 

–  E.g., invert a short hash value or solve a graphical Turing test 

•  Honest clients can easily do this, but zombies can’t 
•  Requires modification of TCP/IP stack (not feasible?) 

Defending Against DDoS 



 Note: this will only locate zombies 
•  Forensics on zombie machines can help find masters 

and the attacker who remotely controls them 

 Can use existing IP routing infrastructure 
•  Link testing (while attack is in progress) 
•  Packet logging (for post-mortem path reconstruction) 

 …or propose changes to routing infrastructure 
•  IP traceback (e.g., via packet marking) 
•  … and dozens of other proposals 
•  Changing routing infrastructure is hard! 

Finding Attack Sources 



 Only works while attack is in progress 
 Input debugging 

•  Victim reports attack to upstream router 
•  Router installs a filter for attack traffic, determines 

which upstream router originated it  
•  Repeat upstream (requires inter-ISP cooperation) 

 Controlled flooding 
•  Iteratively flood each incoming link of the router; if 

attack traffic decreases, this must be the guilty link 
–  Use a form of DoS to throttle DoS traffic (!!) 

•  Need a good network map and router cooperation 

Link Testing 



 How to determine 
the path traversed 
by attack packets? 

 Assumptions: 
•  Most routers remain 

uncompromised 
•  Attacker sends many 

packets  
•  Route from attacker 

to victim remains 
relatively stable 

R6 R7 R8 

A4 A5 A1 A2 A3 

R9 R10 

R12 

Victim 

IP Traceback Problem 



Obvious Solution Doesn’t Work 

 Obvious solution: have each router on the path 
add its IP address to packet; victim will read 
path from the packet 

 Problem: requires space in the packet 
•  Paths can be long 
•  Current IP format provides no extra fields to store 

path information 
•  Changes to packet format are not feasible 



 DDoS involves many 
packets on the same path 

 With some probability, 
each router marks packet 
with router’s address 
•  Fixed space per packet 
•  Large number of packets 

means that each router on 
the path will appear in 
some packet 

R6 R7 R8 

A4 A5 A1 A2 A3 

R9 R10 

R12 

Victim 

Probabilistic Packet Marking 



Node and Edge Sampling 

 Node sampling 
•  With probability p, router stores its address in packet 
•  Router at distance d shows up with probability p(1-p)d 

 Edge sampling 
•  Packet stores an edge and distance since it was stored 

– More space per packet, but fewer packets to reconstruct path 

•  With probability p, router stores the current edge and 
sets distance to 0, else increments distance by 1 

R 

p 1-p 1-p 1-p 

V 

d 



Storing Edges in IP Packets 

 16-bit Identification field 
•  Used for fragmentation 
•  Fragmentation is rare 

 Storing an edge in 16 bits 

•  Store start⊕end 
•  Work backwards to get path: 

(start⊕end)⊕end = start 

Version Header length 
Type of service 

Total length 
Identification 

Flags 

Time to live 
Protocol 

Header checksum 

Source address of originating host 

Destination address of target host 

Options 

Padding 

IP Data 

Fragment offset 

Identification 

offset distance edge chunk 

0     2 3         7 8               15 

a ⊕ b b ⊕ c c ⊕ d d 
a b c d V 


