Spam filtering
What is spam?

- An unsolicited email
 - equivalent to Direct Mail in postal service
 - UCE (unsolicited commercial email)
 - UBE (unsolicited bulk email)
 - 82% of US email in 2004 [MessageLabs 2004]

- Etymology
 - Monty Python’s spam episode
 - “ham” = not spam
Historical events

- **May 3rd, 1978**
 - Sent to Arpanet west coast users
 - Invitation to see new models of DEC-20
 - Violated ARPA’s user policy
 - Vendors were chastised & ceased (for then)

- **March 31st, 1993** – first UUCP spam
 - Unix-to-Unix Copy

- **April, 1994** – Green Card Lottery spam
 - Message posted to EVERY UUCP group
Who’s the victim?

- Internet Service Provider (ISP)
 - much higher bandwidth usage
- Email service providers
 - need to support larger disk space
 - need to deploy anti-spam measures
- Businesses
 - time spent on spam
 - damage by spams and viruses and worms
- Us?
Does spam bother you?

- Potentially malicious
 - viruses, worms
 - phishing emails

- Fill up the disk space

- Does it bother you more than DMs?
 - if so, why?
How much email is spam?

Other numbers

- **Spamhaus**
 - >90%
 - http://www.spamhaus.org/effective_filtering.html

- **Postini (Google owned)**
 - >90%-95%

- **Consensus:** >90% of all email is spam
How many messages?

- Is (was) exponentially increasing

Number of spam messages

- 1978
- 2002
- 2004
- 2005
- 2006
- February, 2007
- June, 2007
Cost of spam

- Very back of the envelope...
- 100,000,000,000 messages/month

Recipient
- $0.025
- $2.5 billion/month for recipients

Sender
- $0.00001 for sender to generate
- $1 million/month for sender

Profit?
- 1:200,000 = 500,000 sales. $2 is break-even point
Legal actions

- CAN-SPAM Act of 2003
 - UBE must be labeled
 - Must have opt-out option
- Some people went to jail...
- Some ISPs have been shut down
Some ways to blocking spam

Network-level
- DNS blackholes/blacklisting
- Edge filtering

Content-level
- Rule-based
- checksum
- Machine learning
 - Probabilistic
 - SVM

Cost-based approach
DNS filtering

- Blacklist = list of known spammers
 - IP addresses/domains/senders
 - Top five spamming ISPs account for > 80% of spam traffic!

- Whitelist = list of known good senders
 - IP addresses/domains/senders

Further reading:
- Zhang et al. Highly Predictive Blacklisting
How much email is spam?

Edge filtering

Filtering at “edges” of network.
- **Ingress:** filtering traffic entering your network
- **Egress:** filtering traffic exiting your network
Content filtering

- Rule-based
 - regular expressions on headers, contents, ...
 - blacklist
 - Hash/checksum database

- Bayesian probability/networks
 - probabilistic approach

- Support Vector Machine
 - High dimension hyper-plane!
Goal

Given new email message do I deliver or trash?

Spam I’ve seen
Rule-based filtering

- Rules are expressed as regular expressions (or SNORT traces)
 - If contains “refinancing” & “mortgage”, trash
 - If contains non-English alphabets, trash
 - If attachment type = executable, trash

- Limitations
 - Difficult to write rules general enough to catch spam but not legit email
 - Often miss obvious tricks
 - Misspelling on purpose
Checksums – Fuzzy hashing

- Goal: resilient to spelling changes
- Does it look like spam I’ve already seen?
Fuzzy vs. non-fuzzy hashing

Traditional hashing
- Same: Fixed length output
- Different: Unique input = (nearly) unique output
- 1 bit change in input = COMPLETELY different hash

Fuzzy hashing
- Same: Fixed length output
- Different: “mostly the same” = SAME value
Fuzzy hashing example

Output = fixed length. Look at distance between outputs. Shorter distance = more similar. Input = message
Bayesian Theorem

- Conditional probability

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]

- Bayes’ Theorem

\[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]
Given a word “stock” in an email, what is the probability of this email being spam?

\[
P(\text{spam} | \text{stock}) = \frac{P(\text{stock} | \text{spam})P(\text{spam})}{P(\text{stock})}
\]
Does more words mean higher probability?
- related words such as stock, jackpot, blue chip, ...
- not-related words such as stock, diet, ...
- n words require $O(2^n)$ probabilities to compute

Naïve Bayesian filter
- assumes the independence between words
- $O(n)$ probabilities to compute

$$P(\text{spam/stock, jackpot}) = \frac{P(\text{stock, jackpot} | \text{spam})P(\text{spam})}{P(\text{stock, jackpot})}$$
Support Vector Machine

- Given records, plot them in n-dimension spaces and find a “plane” that divides the plots the best.
Feature selection

How do we choose which tokens to examine?

Words alone are not sufficient
- phrases, punctuation, ...
- sender’s email address, IP address, domain name, ...
- URLs, images, tags, ...

More sophisticated conditions
- attachment?
- contains images?
Hybrid approaches

- **SpamAssassin**
 - open-source
 - combination of rule-based and Bayesian
 - commonly run at SMTP server
 - can be applied for an individual user

- **Vipul’s Razor**
 - Collaborative, distributed, checksum (statistical & randomized signature-based) anti-spam solution
 - Commercial version: Cloudmark, Inc
Charging for email

➢ If you can’t win the game, change the rules...
➢ Would you pay $0.0025 to send an email?

➢ If you sent 50 emails/day:
 • ~$46/year

➢ Spammers:
 • 100,000,000,000 * $.0025 = $250,000,000 dollars
 • Assuming adoption rate of 1:200,000
 • Break even = $1,250